000085171 001 __ 85171
000085171 005 __20141007154245.0
000085171 024 8_ $9 artpubuab $9 driver $a oai:ddd.uab.cat:85171
000085171 024 7_ $2 doi $a 10.5565/PUBLMAT_56112_07
000085171 035 __ $9 articleid $a 02141493v56n1p191
000085171 041 __ $a eng
000085171 100 __ $a Hartmann, Andreas
000085171 245 1_ $a Bundary values in range spaces of co-analytic truncated toeplitz operators
000085171 520 3_ $a Functions in backward shift invariant subspaces have nice analytic continuation properties outside the spectrum of the inner function de ning the space. Inside the spectrum of the inner function, Ahern and Clark showed that under some distribution condition on the zeros and the singular measure of the inner function, it is possible to obtain non-tangential boundary values of every function in the backward shift invariant subspace as well as for their derivatives up to a certain order. Here we will investigate, at least when the inner function is a Blaschke product, the non- tangential boundary values of the functions of the backward shift invariant subspace after having applied a co-analytic (truncated) Toeplitz operator. There appears to be a smoothing effect.
000085171 540 __ $9 info:eu-repo/semantics/restrictedAccess $a Tots els drets reservats $u http://www.europeana.eu/rights/rr-f/
000085171 546 __ $a Anglès.
000085171 599 __ $a recerca
000085171 653 1_ $a Continuation
000085171 653 1_ $a Model spaces
000085171 653 1_ $a Toeplitz operators
000085171 653 1_ $a Truncated Toeplitz operators
000085171 655 _4 $a info:eu-repo/semantics/article
000085171 655 _4 $a info:eu-repo/semantics/publishedVersion
000085171 700 __ $a Ross, William T.
000085171 773 __ $g Vol. 56, Núm. 1 ( 2012), p. 191-223 $t Publicacions matemàtiques $x 0214-1493
000085171 856 40 $p 33 $s 421019 $u http://ddd.uab.cat/pub/pubmat/02141493v56n1/pubmat_a2012v56n1p191.pdf
000085171 973 __ $f 0191 $l 223 $m  $n 1 $v 56 $x 02141493v56n1 $y 2012
000085171 980 __ $a ARTPUB $b PUBMAT $b UAB