Per citar aquest document: http://ddd.uab.cat/record/93735
Optimization of touristic distribution netwoorks using genetic algorithms
Medina, Josep R. (Universidad Politécnica de Valencia)
Yepes, Victor (Agència Valenciana del Turisme)

Data: 2003
Resum: The eight basic elements to design genetic algorithms (GA) are described and applied to solve a low demand distribution problem of passengers for a hub airport in Alicante and 30 touristic destinations in Northern Africa and Western Europe. The flexibility of GA and the possibility of creating mutually beneficial feed-back processes with human intelligence to solve complex problems as well as the difficulties in detecting erroneous codes embedded in the software are described. A new three-parent edge mapped recombination operator is used to solve the capacitated vehicle routing problem required for estimating associated costs with touristic distribution networks of low demand. GA proved to be very flexible especially in changing business environments and to solve decision-making problems involving ambiguous and sometimes contradictory constraints.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Distribution networks ; Vehicle routing problem ; Tourism demand ; Air transportation ; Genetic algorithms ; Edge mapped recombination operator
Publicat a: SORT : statistics and operations research transactions, Vol. 27, Núm. 1 (January-June 2003) , p. 95-112, ISSN 1696-2281



17 p, 161.7 KB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles publicats > SORT : Statistics and Operations Research Transactions
Articles > Articles de recerca

 Registre creat el 2012-07-18, darrera modificació el 2016-08-04



   Favorit i Compartir