Per citar aquest document: http://ddd.uab.cat/record/97782
Assessing influence in survival data with a cure
Ortega, Edwin M. M.
Cancho, Vicente G.
Lachos, Victor Hugo

Data: 2008
Resum: Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Cure fraction ; Bayesian inference ; Local influence ; Generalized leverage ; Survival data
Publicat a: SORT : statistics and operations research transactions, Vol. 32, Núm. 2 (July-December 2008) , p. 115-140, ISSN 1696-2281



26 p, 325.3 KB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles publicats > SORT : Statistics and Operations Research Transactions

 Registre creat el 2012-07-25, darrera modificació el 2014-11-21



   Favorit i Compartir
QR image