A Note on a Conjecture of Smale

JAUME LLIBRE & CARLES SIMO

Introduction. The full classification of the invariant manifolds I, of the
planar three-body problem (see [5], [2], [3], [l]) for positive masses of
the bodies takes into account the order of the values of the normalized potential
V at the critical points. Let L be a Lagrangian point and E, the Eulerian
one corresponding to the bodies on a line in the order i, j, k. In [5] (see
also [1] page 740) Smale conjectured that for almost all choices of m,, m,,
m, the numbers V(L), V(E,,;), WE,;,), V(E,,,) are distinct. In this note
we prove the conjecture and we point out that for a given order of the
masses, i.e. m, = m, = m,, we have a related order of the potentials
V(L) > WV(E,,,) = WE,,;) = W(E,,). In a neighbourhood of the limiting
cases we prove the inequalities analytically, and in the remaining region we
show the results of a numerical computation.

3
In the planar three-body problem with normalized masses z m, =1
i=1

the knowledge of the relative equilibrium solutions is equivalent to the
knowledge of the critical points of the normalized potential V (see [5], [3],

[1]). The potential ¥ = — 2,-<, mm,/r, r,=|x,— x|, where x, € R” is
the position of m, with respect to the center of mass, is normalized by keeping
the moment of inertia I = (1/2) 2 m,m, r; equal to 1.

i<j

It is well known that there are exactly five critical points: 2 Lagrangian
points with the masses forming an equilateral triangle and 3 Eulerian points
with masses on a line. The masses can be viewed as the barycentric coordinates
of a point of a triangle 7. We shall refer to that triangle as the mass triangle.

Let I,_ be the set of points of the phase space with energy 4 and angular
momentum c. We call loosely /,_ an invariant manifold because it is invariant
under the three-body flow. It is not true that I, is a manifold for all
(h, c) values.

We hope that the knowledge of the topology of I, can help to fully understand
the flow in the three-body problem. The study of I, for different (h, c)
pairs requires to know the order of the normalized potentials. The first objective
of this note is to prove the following theorem that was conjectured by Smale

[5].
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Theorem 1. For almost all choices of positive masses m,, m,, m, the
values of the normalized potential at the critical points are distinct.

Proof. The relation I = 1 and the triangle inequality show that the set
of values r,,, r,;, r;, we deal with is diffeomorphic to a triangle. The vertices
must be excluded because they are related to collisions (see [2]). The sides
are related to collinear configurations. It is known that in this triangle there
is a Lagrangian point for which ¥ is a maximum and that the three Eulerian
points are saddles [1]. ¥ is always negative and tends to —oo when points
on the triangle tend to a vertex. This is enough to show V(L) > W(E,)
for any values of i, j, k.

Now we seek relations for the masses which equate two of the potentials
at Eulerian points. It is obvious that V(E,) = W(E,) if m, = m,. From
now on we confine our study to the region 7' of T defined by m, >
m, > m, (see Fig. 1). Points P, Q, R, S, O, W are representative, respectively,
of the following values of the masses: (1,0,0), (0,1,0), (0,0,1), (1/2,1/2,0),
(1/3,1/3,1/3), (0,1/2,1/2).

Let us suppose that on a line the bodies are disposed in the order 3,1,2
and the distances from m, to m, and from m, to m, equal a and ax, respectively
(see Fig. 2). Then the critical point E,,, is obtained solving the equation

px)=(m, + m,) + 2m, + 3m,)x + 3m, + m,)x2
— @Bmy + m)x’ — (3m, + 2m)x* — (my + m)x* = 0.

(For the details see [7 page 276] where it is also proved that it has only
one positive root.)
Then

_ 1
V(E;;) = — ;‘ (

+mym, +

mlm2 m2m3>
9’
X 1+ x

S Q

FiGure 1
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a ax

m; m, m,

FIGURE 2

where @® [m,m,x* + mym, + mym,(1 + x)°] = 2.
We introduce the function

A(m,,m,, my, x) = 272(E312)
= [m,myx* + mym, + mym,(1 + x)°]

m,m, m,m, 2
. + mym, + .
x 1+ x

In a symmetric way, applying circular permutation, we obtain the equations
q(y) = 0, r(2) = 0 and introduce the functions B(m,, m,, m,, y) =
A(m,, my, m, ), C(m,, m,, m,, z) = A(m,, m,, m,, z), for the cases E ,,
and E,,,, respectively. As in T’ we have p(1) > 0, g(1) < 0, r(1) > 0,
we get immediately x > 1,y <1, z> 1.

The p and g equations can be rewritten as

A=)+ D) m, + 38 +3x+ 3 m, + {— (> +3x +3)}m, =0,
(=0 +3y + N m + {1 =y)» + DImy+ 3y* +3y + 13 m, =0,

from where we can obtain smoothly m,, m, in terms of m, for every
x > 1, y < 1. Hence the map f:T' — f(T’) C R? defined by
f(m,, m,, m;) = (x,y) is a diffeomorphism.

Now we equate F(E,,,) and W(E,,,), or, equivalently, we put 4 = B.
Therefore

*) Y1+ y) [mymyx* + mym, + mymy(1 + x)°]
- [mymy,(1 + x) + mym x(1 + x) + m,m, x]*
= X*(1 + x)’[mym,y* + m,m, + mym,(1 + y)°]
- [mymy(1 +y) + mym,y(1 +y) + mym,y]°.
This is an algebraic curve y whose algebraic dimension is one and hence

the topological dimension is also one. Its measure in R? is zero and therefore

the measure of f~'(y N f(T’)) is also zero. By symmetry the same result
holds for B = C and C = A. In R’ the set of masses for which some
of the potentials at Eulerian points coincide is an algebraic cone. O
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More than what has been proved is actually true. A numerical computation

shows that in T'(i.e. if m, > m, > m,) we have V(E,,,) > W(E,,;) > V(E,;)).
Fig. 3 displays a quantitative representation of the negative potentials obtained
through direct computation with a fine mesh (steps of 0.005 in the masses,
i.e. 3333 points in T’). The common value at m, = m, = m, is V(E,) =
—5x 3'?/54 = 0.160375. For a given point in T’ the maximum of the
differences between the values of the three potentials at that point is =0.0058.
Hence the relative differences in Fig. 3 are very small. We prove part of
what has been observed numerically in the next statement (we refer to Fig.
1 for the names of the points). For the sake of simplicity we call the functions
V(E,,,), W(E,,;) and W(E,,,) defined on T, V,, V, and V,, respectively.

Theorem 2.  There is a neighbourhood U of the boundary T = 9T’ such
thatin T’ N U we have V, > V, > V,. On T the next table holds

set | 'SP | o | Int(0s) | Int(PO)
Relations |V, = Vy=Vy= —mm) 2 /N2 |V, = V=V, = —5V3/54 |V, =V, >V, | V,>V, =V,

where Int means the open segment.

FIGURE 3
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Proof. First we study the behaviour in the boundary. The only nontrivial
assertions are V|, > V, in Int( PO) and V¥, > V, in Int( OS). We take into
account symmetries and the fact that ¥, > ¥V, in a neighbourhood of P
(to be proved below). To prove our assertions it is enough to show that
on PW the functions ¥V, and V, only coincide at the points P, O and W
and that the function V-V, has a simple zero at O.

If m, = m, we get x = 1, m;, = 1 — 2m,. The insertion in the equation
marked (*) (i.e. V, = V,) and in g(y) = 0 produces the system

Y1+ )Y@ = Tm,) = 2[2 = dm, + 2 — 4my)y + (1 — m,)y’]
“lmy+ 2 =3my)y + (1 - 2my)y°]?
2m, + Sm,y + 4m,y* — (3 — 5my)y’ — 3 — 4my)y* — (1 —m,)y° = 0.

We know the solutions (m,,y) = (0, 0), (1/3, 1), (1/2, 1.4318316 ..)
corresponding to points P, O, W, respectively. Last value of y is the solution
of G(y) = 2 + 5y + 4y> — y> — 2y* — y° = 0. The elimination of m,
gives the polynomial F(y) = y*(1 — y) G(») K(»), where

K(y) = 144 + 768y + 1768y” + 2224y + 1543y + 391y°
—275y° = 311y" — 133y° — 27y° — 2y"°.

As K is the difference of two positive monotonic functions in R, and
K(3/2) = 21105/2, the positive zero is greater than 3/2. On the other side
my=1-=Q+5y +4y"+2y° +y)/Q + 5y + 4y> + 59> + 4y* + %)
is an increasing function if y > 1. For y = 3/2 we get m, = 1053/2023.
Therefore, there is no additional change of sign of V, — V, in PW.

For the remaining part of the proof we consider four separate cases a),

b), ¢), d) and introduce four neighbourhoods U,, U,, U,, U, of P, PO, OS

and SP, respectively. The behaviour in the neighbourhoods, U;, U, of points

O and S follows easily from the preceding cases. The assertion of the theorem
6

will be provenin U,, i = 1 + 6. Then we take U = |J U,.

i=1
a) As m,, m, are small and m, = 1 — m, — m, we can expand the potentials
in (fractionary) powers of m,, m,. We get

1
V,=—(m, + m3)3/2 + ; (3m22 + m,m, + 3m§) (m, + m3)'/2 + 0,,,,

4/3
1/6

3
V,=—-(m,+ m3)3/2 - mym,(m, + m,)"" + '2— (m, + m, )5/2
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1
~1/2
+ ; m,m, (m, — m,)(m, + my) 24 0,7/6

4/3

3/2 _ 1/6 5/2

3
Vy=—(m, + mj) mym,(m, + m,)"" + ; (m, + m;)

1
- ? m,m, (m, — m,) (m, + ma)_l/z + 0,76

where O, means a term of the order of (m, + m,)’. From the preceding
expressions a) follows.
b) Due to the symmetry V, (m,, m,, m;) = V,(m,, m;, m,) (on PO)
and it is enough to prove
av.
=— <0,

arn2 m, fixed
ma=nmg

and use a) for points near P.
The function V, is given by

1 (fmm, mym,
Vy=—— + +mym, ),
al\l+:z z

a being such that &’ [m,m,(1 + z)* + mym,z’ + mym,] = 2, and z being
the unique positive root of r(z) = 0. We recall that z= 1 in PO.
After some manipulation we obtain

D [a2 1+2 : ]
=m, | — +2z)+ ———
e ) z(1 + 2)a

oz [a2 L+ 22) 1( 1 1)]
+mm, — | — +2)+—\|\—+5) -
T am, L 2 o a \(1+2° 2

We prove that the second bracket is zero. This is equivalent to proving

m, m,
+—+m, | (1+22)
1+ 2z z

1 1
—m(+2+mzZ+m (———+—)=0.
[ 1( ) 1 2] (l + 2)2 Z2
After simplification we have

m(—=32-3z—1)+mQ2+5+42 -7 -22—1)=0,

which is the equation r(z) = O restricted to PO.
The proof of b) will be ended if we show that the first bracket in D
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is negative. This is equivalent to showing
glzm) =2+ Q2 +32+2)(m, - 1)<0,

on PO. If g(z,m,) = 0 then m, = 1 — 2/(22° + 32 + 2). Inserting this
value in r(z) we have

5(z)=—42 - 10z - 1022 =272+ 3z+1=0,

on PO. Descartes’ rule ensures that there is a unique positive root z < 1.
Since z = 1 on PO, we have g(z,m,) < 0. _

¢) Using symmetry again, it is enough to prove D < 0 on OW, and hence
only the fact that g(z,m,) < 0 must be verified. Now m, < 1/3 and
z<1.

The solution z of r(z) = 0 on OW satifies z > 3/5. This is obvious be-
cause when m, increases z increases and r(3/5) > 0. (In fact r(z) = 0
has the solution_z = 0.69840614 for m, = 0.) Since s(3/5) < 0, we have
g(z;m,) < O0Oon OW.

d) We rewrite the normalized potentials as

1 m,m, m,m,
Vi=—=—\mm, + + ,

a, Py 1+p,

1 mym, m,m,
V,=——|mm, + + ,

a, P2 p,— 1

1 mym, m,m,
Vi=——|mm, + + )

a, P3 1—p,

where a} [m,m, + pim,m, + (1 + p,)’mym,] = 2, and a, and a, satisfy
similar relations and p, are the solutions of suitable quintics (see Fig. 4).

Put m, = ¢, m, = m) —e/2, my,=m) — ¢/2. It is enough to study the
behaviour of 9V, /de|,_, . We have

av, 1 1 m my
—_— =—-——| -——+—+
de |.0 o 2 p 1+p,
0. o0

mym,a 1

—1—2—0<——+m(,’p12+mg(1 +Pl)2) >
4 2
af
ap i’fil
Esna Ml Eqsz m; E723
a

FiGure 4
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oV, 1 ( 1 md m; )
=—-—(-—+—+
e |0 a P2 P 1
0o__0
mim,a, 1 o 2 . 2)
- ——+mpi+m -7,
4 ( 2 1P 2(P2 )
av, 1 1 m m;
=—-—|-—+—++
98 |0 a 2 p 1—p,
o__0
mi m,a 1
I (2 gm0 o).

where a, = (mm3/2)"'/% The proof of d) is reduced to checking whether
or not

(4] (¢]
m m, 1
—+ + = [mip] + m3 (1 = p3)°]
P3 l—p, 2
m? m;
>—+ + = [mlp} + my(p, — ']
P2 p,— 1 2
(0 (o]
m m 1
>— 4+ ——+ = [mpl + mi(1 +p,)’] .
Py l+p, 2
That is known to be true (see [6 page 142, property (5)]). O

We wish to point out that the first and second derivatives of the normalized
potential are bounded in 77 = T — (U, U U/ U UY), where U;, U/ are
the analogs of U, near Q and R. Using the implicit function theorem we
see that the only difficulty occurs with the lower bound of dr/dz|,_, where
z, is the positive solution of r(z) = 0. Descartes’ rule ensures that there

. . . 4 ’
are unique points z,z,, with 0 < z, < z, < z_ such that r’(z,) = 0, r'(z,,) = 0.
Therefore —r’ increases for every z > z,,. Hence

r( 3.3 '3
—Q >7 (——) > 0.677%"%,

Zq T

r(z,) — r(z,)

Zy 7 Zm

¥ (z,)l >

where v = 1 — max {m,} .

T
Let G be the sets of points in T’ — T’ N U belonging to a mesh
of step length h. From the boundedness of the derivatives we see that
there is some step length 4 and some difference & such that the complete
proof of ¥V, > V, > V, in T’ is reduced to checking (numerically! with
controlled error) whether or not ¥V, > ¥, > ¥, and

inf_ (|Vi(m) — Vy(m)| + |V, (m) — V,(m)]) > 3.

From what has been said we obtain the following result.
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Assertion.  The relations m, > m,> m,imply V(E, ;) > V(E ;) > V(E,,).
Note: The full computation has not actually been done.

From Theorem 2 and results of Iacob it follows that if m, = m, = m,
and h’c < — V*(E,,,) then I, _has three connected components. Similar results
cannot be established for the problem of n bodies, n > 3, because for all
the values of the masses, energy and momentum /,, has only one connected
component (see [4]).
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