Invariant Manifolds Associated to
Homothetic Orbits in the n-body Problem
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1. Introduction. Our main goal in this paper is to study the global behavior
of the homothetic solutions of the planar and spatial n-body problem which begin
and end in a simultaneous collision of all the particles. A similar study for the
collinear n-body problem has been made by Devaney [2]. Following Devaney we
consider the homothetic solutions as heteroclinic orbits of a dynamical system
connecting two hyperbolic fixed points. This system is obtained regularizing the
n-body problem using a technique of McGehee [4] where the singularity of total
collision is blown up and in its place is glued an invariant total collision manifold.
Furthermore, scaling the time, the solutions which previously reached total col-
lision in finite time are made to tend asymptotically toward hyperbolic equilibrium
points for the flow on the total collision manifold. We summarize the changes of
variable and resulting equations (see [4], [8], [2]).

Let ¢ = (qy,..-,9,)> P = (Py»...,p,) Where g;, p, € R* are the position and
momentum of the body with mass m,. Let

M = diag (|m"' . .,mll,. . .,/|n,,,. ...m,),
k k|

B = dlag (Ik" . ~’Ik),
l n |
A =BM,

1
I(p) = > pP'M~'p  (kinetic energy),

Ug) = Z Rl (potential energy),

1=i<j=n lqi-qj!

where I, is the identity matrix in R*. The equations of motion are

G=M"p,
p =VU(g),
with the first integrals:
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Ag = 0 (center of mass),
Bp = 0 (linear momentum),

c= E q; /\ p; (angular momentum) and

1=i=n

h=T(p) — U(g) (total energy).

From now on we fix the center of mass and the linear momentum at the origin.
The changes

r= (qqu)l/Z’
s=gq/r,
y = qtp/rl/z’

u=M"'pr'* —vs,
dt = r**dr,
put the equations of motion in the form

r=rv,

1 2 t
v = Ev + u'Mu — V(s),
(1.1

s’ =u,

1
u = - Evu — W'Mu)s + VV(s),

where ' = d/dr and V is the restriction of the potential U to the ellipsoid S given
by s'Ms = 1. The energy integral becomes

lu'Mu +1v2 - V(s) —rh=0.
2 2

Let A be the set of partial collisions, i.e. A = {s € S : 5, = s, for some i # j}.
Then the flow given by the system (1.1) may be regarded as a real analytic vector
field without singularities on (r,v,s,u) € [0,0) X R X T(S — A) = M, where
T(S — A) denotes the tangent bundle of S — A. In particular, this flow leaves
invariant the boundary r = 0, the so-called total collision manifold.

The following proposition is due to McGehee [4] and Devaney [2] for the col-
linear n-body problem and in the general case to Simé [8].

Proposition 1. The vector field (1.1) is of gradient type on the total collision
manifold. The equilibrium points of (1.1) are on the total collision manifold and
for themu = 0, s = s, and v = +=(2V(s.))""?, where s, is a central configuration
(see [13]) or, equivalently, a critical point of V (see [10]). The + sign in v being
associated to total ejections and the — sign to total collisions.

Thus, to each central configuration s, we may associate a pair of equilibrium
points, which we denote by s, and s, . For each h < 0O there is a homothetic orbit
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(which is the unique homographic orbit) connecting s; to s_ (see [2] and [13]).
We denote this homothetic orbit by vy,(s.). Such orbits v,(s,) begin in a total ejec-
tion, i.e. there is some time ¢, such that for ¢ | ¢, all the bodies tend to the same
point. They end in a total collision: for some time 7, > ¢, we have that for all
t 1 1, all the bodies tend to the same point. Since the equilibrium points s} and
s, are hyperbolic (see next section), the orbit ,(s.) can be seen as a heteroclinic
orbit. We denote by W*(s.) and W'(s.) the unstable and stable invariant manifold
of the hyperbolic point s, , respectively.

We consider the planar or spatial n-body problem as a mechanical system with
symmetry (see [10]) given by the Lie group G = S' or G = SO(3) acting diag-
onally, respectively.

Let I, be the space of points (r,v,s,u) € M such that

1 t 12
-uMu+-v"—V(s)—rh=0,
2 2

i.e., the points of M with total energy equal k. Let I, . be the space of points of

I, such that
r'’? (Z m;s; /\ u,~> -c=0,

i.e., the points of M with total energy and angular momentum equal A4 and c,
respectively. Let I, , = I, ._,. It is clear that the spaces I, . are invariant under the
flow (1.1). Since for any value of c the isotropy group G, leaves I, . invariant,
we can define the quotient space I, . = I, ./G.. For ¢ = 0 we obtain immediately
G, = G. Therefore, going from I, to 1, , we reduce the number of parameters
by 1 or 3 in the planar or spatial n-body problem, respectively.

Let V be the restriction of V to S/G. Recall that a central configuration s, is
a critical point of V. If DZV(SC) is the Hessian of V, then a central configuration
s, is called degenerate (non-degenerate) when DZV(sC) is so (or not). We denote
by ind(s,) the index of the critical point s, i.e. the number of negative eigenvalues
of D*V(s,).

Our main results are the following theorems.

Theorem A. Let s, be a nondegenerate central configuration of the planar
(respectively spatial) n-body problem. Then the dimensions of W*(s)) and W*(s.)
are the same and equal to 2n — 3 — ind(s,) (respectively 3n — 6 — ind(s,)) in
I, . The dimensions of W*(s}) and W*(s_) are the same and equal to 2n — 4 +
ind(s,) (respectively 3n — 7 + ind(s,)) in the same space. The dimension of I, ,
is 4n — 7 (respectively 6n — 13).

We restrict our attention to the invariant space /, , because by Sundman’s theo-
rem [11] a necessary condition in order to have a total collision or ejection is that
the angular momentum is equal to zero.

Theorem A is a generalization to the planar and spatial n-body problem of a
similar theorem of Devaney [2] for the collinear n-body problem. Palmore in [5]
gives a bound of the index for a planar central configuration. This implies that
we have a bound of the dimensions of the invariant manifolds W**(s} ”) for the
‘planar n-body problem.
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Theorem B. Let s, be a collinear central configuration. Then the manifolds
WH(s!) and W*(s_) are the same for the collinear, planar and spatial n-body prob-
lem in I, . For the collinear n-body problem I, is equivalent to I, .

It is known, see [10], that there are precisely n! collinear central configurations
and that each one corresponds with a permutation of the n particles. Then using
Theorem B the following corollary is immediate.

Corollary C. For the collinear, planar and spatial n-body problem there are
not heteroclinic orbits connecting a total ejection with a total collision associated
to different central configurations when one of the central configurations is col-
linear.

In general, heteroclinic orbits connecting a total ejection with a total collision
associated to different central configurations are possible (see [9]).

Two submanifolds M, and M, of a manifold M are said to be transverse at x
ifx €M, N M, and if TM, + TM, = T.M, where T .M denotes the tangent
space to M at x. We say that M, meets M, transversally if either M, meets M,
transversally at x for all x € M, N M,, or M, N M, is empty.

Theorem D. In the collinear, planar or spatial n-body problem a necessary
condition in order to have a transversal homothetic solution v,(s.) in I,, with
h < 0 is that the function V be a nondegenerate minimum at the point s, associated
to the homothetic solution. For the collinear n-body problem I, is equivalent
to I,

That this condition is also sufficient has been proved recently by Simé and
Llibre [3]. See also Devaney [2] for the collinear n-body problem. The importance
of transversality has been discussed in [2].

In the appendix we give some examples of transversal homothetic orbits.

2. Proof of Theorem A. Recall that the stable manifold of an equilibrium
point p consists of all orbits which tend asymptotically toward p. We denote this
manifold by W*(p). The classical stable manifold theorem asserts that W*(p) is
a smooth immersed disk having dimension equal to the number of characteristic
exponents with negative real parts. Similarly, the unstable manifold, denoted by
W*(p), consists of orbits tending toward p in backward time and has dimension
equal to the number of characteristic exponents with positive real parts.

We begin computing the characteristic exponents for the flow (1.1) of the planar
(respectively spatial) n-body problem on M at s, which are given by the eigen-
values of the differential matrix of the vector field (1.1) at s, given by

vi 0 0 0
0 v —-sMV(s) O
c={0 0 0O I ,
1
0 0 DW(s) - Vil
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where v = (2V(s,))"?. Since V(s,) # 0, we have that two of the characteristic

exponents equal v[ # 0. Let A, \,, ..., \,,_, (respectively \,,_,) be the eigen-
values of D*V(s,), then

(2.1 {=vi £ () + 16)]77}/4,

i=1,...,2n — 3 (respectively 3n — 4), are eigenvalues of

0 1 .
D*V(s,) - viT .

The proof of (2.1) is identical to the proof for the collinear n-body problem, see
[2, page 397].

Due to the invariance of V under G we have that 1 (respectively 3) of the
eigenvalues of D?*V(s,) is zero. Then we assume that \,,_, = O (respectively
Ay, = N5,_s = Ay,_4 = 0). We also suppose explicitly that s_ is not a degenerate
critical point. Then it is easy to prove that eigenvalues of C are:

v:, associated to the variations of the total energy h,

v:, associated to the variations of r,

—v//2 (respectively -V: /2,—v; /2,—v!/2), associated to the variations of the
angular momentum,

0 (respectively 0,0,0), associated to the invariance under S’ (respectively SO(3))
and

{=vI = [(v))* + 16\]"*}/4 where \, is an eigenvalue of D*V(s,), i =1, ...,
2n — 4 (respectively 3n — 7).

Then the differential matrix of the vector field (1.1) at s: restricted to the tan-
gent space to I',,,0 has 2n — 3 — ind(s,) (respectively 3n — 6 — ind(s,)) eigenvalues
with positive real part and 2n — 4 + ind(s,) (respectively 3n — 7 + ind(s,)) with
negative real part. Switch dimensions at the total collision s_. Hence we have
proved Theorem A.

3. Proof of Theorem B. Recall that the collinear n-body problem has pre-
cisely n! central configurations. Moreover, see [10], each central configuration
s, is given by a nondegenerate minimum of V on § — A, i.e. ind(s,) = 0. The
reason that our count of central configurations differs from Smale’s [10] by a
factor of two is that Smale is interested in relative equilibria and hence identifies
a central configuration at s with its negative.

The following theorem is due to Devaney [2].

Theorem 2. Let s, be a central configuration of the collinear n-body problem.
Then the dimensions of W'(s)) and Wi(s.) are the same and equal to n — 1 in
I,. The dimensions of W*(s.) and W*(s_) are the same and equal to n — 2 in the
same space. The dimension of 1, is 2n — 3.

On the other hand, Palmore [5] has shown that the index of a collinear central
configuration s is n# — 2 in the planar n-body problem (note the change of sign
in the definition of the potential energy). Then, by Theorem A, the dimensions



468 J. CASASAYAS & J. LLIBRE

of W¥s_) and W'(s_) are n —1 in I'h,0 for the planar n-body problem.

Note that the collinear n-body problem is contained in the planar n-body prob-
lem and that the reductions to I, , do not affect the collinear n-body problem.
Then Theorem B follows for the collinear and planar n-body problem. By reasons
of symmetry Theorem B also follows for the spatial n-body problem.

4. Proof of Theorem D. Let v,(s,) be a transversal homothetic solution in I',w
with 2 < 0. Since Theorem D has been proved by Devaney [2] in the collinear
n-body problem, in what follows we consider the planar n-body problem. Then,
by Theorem A, both W*(s)) and W*(s) are (2n — 3 — ind(s,))-dimensional and
I,, is (4n — 7)-dimensional. Since v,(s,) lies in W*(s)) N W*(s)) and v,(s,) is
transversal we have that

dim I, , < dim W*(s}) + dim W*(s;) — 1.

”I_‘hat is, 4n — 7 = 4n — 7 — 2 ind(s,). Therefore, ind(s,) = O, i.e. the function
V has a nondegenerate minimum at s.. Hence Theorem D is proved for the planar
n-body problem. The proof for the spatial n-body problem is similar.

Appendix. In this appendix we give some examples of transversal homothetic
orbits. Recall that, as we have said in the introduction, recently it has been proved
that the condition of Theorem D is also sufficient in order to have a transversal
homothetic solution.

As was stated by Devaney [2] all the homothetic solutions in the collinear n-
body problem are transversal in I, because associated central configurations are
nondegenerate minima of the function V on § — A.

In the planar 3-body problem the unique central configurations that are non-
degenerate minima of the function V are the Lagrange central configurations (see
[1] for details). Then the homothetic solutions associated to the Lagrange central
configurations are transversal in 7, ,. Using [1] and Theorem A we obtain the
following table.

TABLE I
number of
central relative

configuration equilibria index dim W*(s)) dim W*(s))
rectilinear

(Euler) 3 1 2 3
equilateral

(Lagrange) 2 0 3 2

The dimensions of the stable and unstable invariant manifolds for the Euler and
Lagrange central configurations in the planar 3-body problem can also be com-
puted using the Siegel exponents (see [8] and [12]). From [6, page 88] the Siegel
exponents at s are given by

2/3 associated to the variations of the total energy A,

—1 associated to the variations of the time ¢,
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—1/3 associated to the variations of the angular momentum,

0 associated to the invariance under S,

{=1 = [13 = 12pn]"?}/6 where p. € (0,1), for the Lagrange central configu-
ration and

{=1 = [25 + 16n]%}/6 and {—1 = [1 — 8u]”?}/6 where w € (0,7), for the
Euler central configuration.

On the other hand, we have computed the eigenvalues of the matrix C in the
proof of Theorem A. Since

{=vd £ [ + 16N]7}/4 = {=1 = [1 + 16N,/ ()T} (4/vS),

we obtain that seven of the Siegel exponents correspond (up to a constant equal
to (3/2)v)) to eigenvalues of the matrix C. The Siegel exponent —1 associated
to the variations of time corresponds to the eigenvalue v associated to the vari-
ations of r. This is due to the following. Siegel in [6, page 83] makes the fol-
lowing change of time

é.1 dt = —tdr.

Furthermore, if ¢ = 0 corresponds to a triple collision and I = 7* is the moment
of inertia, Siegel in [6, page 70] shows that the function II~"* = 2v approaches
a finite limit 8 = 0 as t — 0, and therefore I ~ x> as t — 0, with x =
((3/4)3)** > 0. Then r*’*> ~ (3/2)vt as t — 0. In this paper, we have made the
following change of time

dt = r*’dr,

that is,

dt~%vtd'r ast— 0.

This, according to (5.1) proves the above assertion.
All the central configurations of the planar 4-body problem with equal masses
are nondegenerate. They are given in the following table.

TaBLE 11
number of
central relative

configuration equilibria index dim W“(s:) dim W‘(s:)
rectilinear 12 2 3 6
square 0 5 4
equilateral 8 2 3 6
isosceles 24 1 4 5
scalene 48 1 4 5

48 0 5 4
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This table is obtained from [5] and [7]. Then, the central configurations as-
sociated to transversal homothetic solutions are the square and the scalene with
index equal to zero.

Using the results of [7] we can construct a table similar to Table II for the
general planar 4-body problem. Note, in this case, that for almost all the values
of the masses the unique central configuration which has index O is related (by
evolution of the masses) to square central configuration for equal masses.

In the planar 4-body problem there is a central configuration such that for some
values of the masses the associated homothetic solution is transversal and for other
ones it is not transversal. In fact, we consider three masses equal to unity on the
vertexes of an equilateral triangle and on its center a mass m. For each value of
the mass m this configuration, denoted by s.(m), is central for the planar 4-body
problem. Then, s (m) is a nondegenerate minimum of V if and only if m < m' =
2 + 3*?)/(18 — 5:3Y). If m > m’, then ind(s(m)) = 2 (for more details see
[5]). In short we have the following table.

TaBLE III
dim W“(sc(m)+) dim Ws(sc(m)“L)
m<m' 5 4
m>m 3 6
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