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Thermodynamic aspects of nonequilibrium current fluctuations
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Starting from a macroscopic nonequilibrium entropy, we obtain an expression for the

nonequilibrium fluctuations of the electric current in a metallic resistor. Our method

goes further than previous theories of irreversible thermodynamics and, as well as micro-

scopic entropies, it leads to results of the same order of magnitude but not completely

coincident with the full nonequilibrium corrections obtained from kinetic methods by

Tremblay et al.

I. INTRODUCTION matic perturbation theory, and by kinetic argu-
ments.

In the last years, great attention has been devot-
ed to the problem of nonequilibrium fluctuations
of thermodynamic systems, ' since this analysis is
directly related to experiments (for instance, light
scattering, neutron scattering, computer simulation)
and since it allows a deeper insight into the prob-
lems of nonequilibrium statistical mechanics. Re-
cently, we have analyzed the problem of equilibri-
um fluctuations of dissipative fluxes in the frame-
work of the so-called extended irreversible thermo-
dynamics, ' where, starting from a generalized
Gibbs equation and the Einstein hypothesis for the
probability of the fluctuations, we have obtained
expressions for the second moments of the fluctua-
tions of heat flux, electric current, and the hydro-
dynamic dissipative fluxes, in equilibrium. On the
one hand, our theory unifies the usual expressions
of the fluctuation-dissipation formulas for the fluc-
tuations of the dissipative fluxes. On the other
hand, it places some restrictions on the possible
nonequilibrium generalizations of the Gibbs equa-
tion, which had not been taken into account up to
now.

Recently, we have extended our method to the

analysis of nonequilibrium fluctuations of the heat

flux in some rigid heat conductors, and we have

evaluated the nonequilibrium corrections to the

classical Landau-Lifshitz formulas for dielectric

solids and metallic conductors. The purpose of
this paper is to apply our method to obtain some

information in the influence of an external electric

field on the current fluctuations, and to compare

our results with the expressions calculated by

Tremblay et al. ' by a nonequilibrium diagram-

D. NONEQUILIBRIUM GIBBS EQUATION

Extended irreversible thermodynamics is, essen-

tially, a mesoscopic description of thermodynamic
systems. While in the usual macroscopic theory
the state of a rigid electrical conductor is described

by u, the specific internal energy per unit mass,
and c„the electron density, in the formalism of
extended irreversible thermodynamics one takes as

supplementary, independent variables the dissipa-
tive fluxes, in order to obtain a more detailed
description than the usual one. In the present

problem, we take as an independent variable the
electric current J. In order to achieve a maximum

simplicity, we assume that the electron density c,
is uniform and constant, and we do not consider
the effects of the heat flux. In this paper we do
not give a complete description of the method used

by the extended irreversible thermodynamics,
which has been given already in the literature. '

The evolution equation for the internal energy u

is given by the well-known balance equation

pi = J.E,
which expresses that the time derivative of the
internal energy is equal to the Joule heating. In
order to obtain an evolution equation for J one
can start from a microscopic model (a Boltzmann
equation for the electrons, for instance) or one can
proceed in a macroscopic way starting from
phenomenological hypotheses. We take this latter
point of view and try to obtain an evolution equa-
tion for J by following a procedure parallel to that
of irreversible thermodynamics. " The difference
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with the latter formalism is that, in our case, J is
included as a variable in the generalized nonequili-

brium entropy in order to obtain some information
about its evolution equation from a suitable formu-

lation of the second law. If one assumes that the
nonequilibrium entropy s is differentiable enough,
the corresponding generalized Gibbs equation is

given by

ds =6 'du —a J.d 3,
where a can be shown to be '

and 6 is a generalized nonequilibrium absolute
temperature given by the following equation of
state:

III. NONEQUILIBRIUM FLUCTUATIONS
OF THE ELECTRlC CURRENT

As in the classical theory, we assume that the
probability of thc fluctuations at constant tempera-
ture and constant electric field is given by (see Ref.
12, Chap. 15)

P7 J S{~J )
k ' ' oZ

TV
Jpo'T

where u and J alc thc instantaneous values of u

and J, while 6p ' and (m jo.T) Jp ——{m/T)E, are
the fixed values of the corresponding parameters
8 '=As/Bu and (~/o T) J = —Bs/8 J. On the
other hand, S[8O ', (rU/o T—) Jo] is the corre-
sponding I egendre transform of S, given by

6—1

3u
S 6p', — —1Jp ——S —6p uo'T

In these expressions, T is the local equilibrium ab-
solute temperature, o the electrical conductivity, s
the relaxation time of the electric current, and u

the specific volume per unit mass. The equation
of state (3) may be obtained by comparing the
constitutive equation for the electric current

&-'( J —oE),
8t

with E being the electric field. The equation of
state (4} is obtained from the equality of the
second-order mixed derivatives of (2). From (2)
and (3) it may be seen that a nonvanishing relaxa-
tion time ~ in (5) has some repercussions in the en-

tropy and in the temperature, so that it is not
coherent to retain the usual local-equilibrium en-

tropy if one uses the generahzed Ohm's law (5).
Starting from {2},for the second differential of the
generalized entropy, one obtains

Bu

— dJdJ-2 " J.-d Jdu,
Bu

where e is the specific heat per unit mass and Jp is
the mean nonequilibrium value of J given by
J p ——o.E.

+ Jp. J .0'T

Expanding s(u, J ) around the mean value
s (up, Jp) in powers of the deviations 5u, 5J, and
neglecting higher-order terms, it is easily found
that (7) may be approximated by (Ref. 12, Chap.
15)

5s
g -exp

2k
(9)

which predicts the second moments correctly al-
though it is not accurate in the prediction of the
higher-order moments. %'e have shown that in
equilibrium, {9)leads in a direct way to the classi-
cal Nyquist expression for the current Auctuations.
The use of (9) with the local-equilibrium entropy
has been criticized by some authors' who have
used an expression similar to (9) as a basis for ihe
construction of nonequilibrium thermodynamic po-
tentials from the knowledge of the Auctuations ob-
tained, for instance, from a master equation. Here,
in order to establish a connection with these at-
tempts to extend classical thermodynamics to
nonequilibrium steady states, we study the conse-
quences of hypothesis (9) with the generalized en-
tropy (2), which contains the dissipative fluxes and
can therefore account for some noncquilibrium
features.

From (6) and (9) we obtain for the second mo-
ments of the fluctuations the following expressions:
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(5u5u ) =kcT2(i+A Jo)

(5u5J;) =— J (1+AI )-'

(5J;5JI ) = T2kcT
( 1 P J7) ) g

cT 8 a
BQ

Jo JOJ. (12)

with

cT
2

'2
Ba
BQ

I

account the evolution for the fluctuations (5), we

get for the spectral distribution of the time-
correlation function

(55 )
2kT ~ eEI
R

+"
kT

(5J(0)5J(0))= 1+(&T /a) Jo

Here, we are mainly interested in the current-
current fluctuations. Assuming that the applied
electric field is low, we can develop (1+4Jo) ' in

(12) obtaining for the one time correlation

X(1+co r ) (16)

where 8 =I./oA is the electrical resistance. For
low frequencies such that cov « 1, (16) reduces to

T

(5I5I )„= I+~-' . (l78 + kT

(13)

Now, taking into account the equation of state (3)
and the well-known relation' o.=(ne /m)~ (with

n, e, and m the electron density, the electron
charge, and the electron mass, respectively) we get

(5J(0)5J(0))= koT 1+ v
ne T Ew

'TU mc T

(5J{0}5J(0))=
2

koT
1

2 eE/
kT

~ (15)

It can be shown" that the relaxation time ap-
pearing in the electrical conductivity is indeed the
same as that appearing in (5). This relaxation time
~ is related to the mean-free path I by ~= IvF

'

=lm (k~A) ' with k~ being the Fermi wave vector
of the system. Keeping in mind that the specific
heat per unit mass for the electron gas is given
by14

c=(n /2)(k T/ezm),

with e~ the Fermi energy given by eF ——(fikF) /2m,
we obtain from (14),

This expression gives the second moments of the
fluctuations of the electric current near the con-

stant value Jo——oE. However, due to the Joule
heating, the system is not a stationary state, and
the temperature gradually rises, according to (1).
Since the dominant term in (17) is proportional to
T it will diverge at long times. In order to elim-

inate this divergence, one would have to cool the
system. It can be easily sho~n that the inclusion
of a heat flux perpendicular to the electric current
leaves (17) unchanged, so that in a true steady state
(when the heat generated by the electric field and
the thermal energy flux produced by a thermal
gradient balance each other) the electric current
Auctuations are also given by (17) with a constant
T.

%e may compare our phenomenological result

(17) with the autocorrelation function obtained by
Tremblay et al. by a cumbersome nonequilibrium
diagrammatic perturbation theory. They assume a
system of metallic electrons that interact only with
dilute, static, and isotropically scattering impuri-
ties. Their result is, after removing some diver-

gences arising from the Joule heating,

(5I5I) = 1+0.156 . {18
kT

In terms of the total intensity I =AJ, in a resistor
of cross section A and length I., and taking into

Recently, Tremblay and Vidal' have given a
simpler derivation of the nonequilibrium correction
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in (18) by means of kinetic arguments. For the
leading term, due to the second-order contribution

f to the stationary distribution function, they
found a value 0.100(eE//kT), while for the contri-
bution arising from electron collisions, due to
terms of the form f"'f'", with f"' the first-order
term in the stationary distribution function, they
calculate 0.056(eEI/kT) . As it may be seen, our
result is in good agreement with the leading correc-
tions of the microscopic calculations, but it does
not give the collision contribution. In fact, as
pointed out by Gantsevich et al. i5 and Lax, ' and as
commented on by Tremblay and Vidal, ' it may be
seen from detailed microscopic calculations that
entropy considerations are accurate only in the case
when the stationary distribution function satisfies
detailed balance, or when Boltzmann statistics are
obeyed. Since in the present problem these condi-
tions are not fulfilled, the disagreement between
both results is not surprising.

A different problem is that in nonequilibrium
the temperature of the metallic resistor, due to
Joule heating, is not the same as its equilibrium
temperature. In principle, Eq. (17) should be ap-
plied with the local value of the temperature deter-
mined by the Joule heating and the loss mechan-
ism.

deeper insight into the signification and the limits
of a nonequilibrium entropy. The method outlined
in this paper cannot account for corrections due to
particle-particle collisions. As we have pointed
out, this limitation was already known from micro-
scopic considerations for statistical entropies. "'
In spite of this shortcoming, its results for correc-
tions due to relaxational effects are in very good
agreement with the values obtained from micro-
scopic methods.

It must be noted that, in contrast with previous
work on this subject, no microscopic considerations
have entered into the definition of our nonequili-
brium entropy, which has been obtained from
purely macroscopic methods. This gives to the
present procedure its particular simplicity. Since it
has been obtained by comparison with relaxational
constitutive equations for the dissipative fluxes, a
possible way to improve the present results could
be a comparison with more elaborate models for
the evolution equations for the dissipative fluxes.
This would lead us too far away from our present
purpose: to recover from a phenomenological en-

tropy some results of nonequilibrium fluctuations
which are clearly beyond the scope of classical ir-
reversible thermodynamics.

IV. CONCLUSIONS
ACKNO%LEDG MENTS

Our aim in this paper was to explore the appli-

cability of a phenomenological generalized entropy
to nonequilibrium fluctuations, in order to obtain a

This work has been partially supported by the
Comision Asesora de Investigacion Cientifica y
Tecnica of the Spanish Government.

iM. Lax, Rev. Mod. Phys. 32, 25 (1960).
2Stochastic Processes in Eonequilibrium Systems, edited

by L. Garrido, P. Seglar, and P. Shepperd, Sitges In-
ternational School of Statistical Mechanics (Springer,
Berlin, 1978).

3J. Keizer, J. Chem. Phys. 69, 2609 (1978); I. Procaccia,
D. Ronis, and I. Oppenheim, Phys. Rev. A 20, 2533
(1979); D. Ronis, I. Procaccia, and J. Machta, ibid.
22, 714 (1980); A.-M.S. Tremblay, M. R. Arai, and E.
Siggia, ibid. 23, 1451 (1981).

~G. Lebon, D. Jou, and J. Casas-Vazquez, J. Phys. A
13, 275 (1980).

5J. Casas-Vazquez and D. Jou, J. Phys. A 14, 1225
(1981).

6D. Jou and J. E. Llebot, J. Phys. A 13, L47 (1980).
7D. Jou and J. Casas-Vazquez, J. Non-Equilib. Thermo-

dyn. 5, 91 (1980).

8D. Jou, J. E. Llebot, and J. Casas-Vazquez, Phys. Rev.
A 25, 508 (1982).

9A.-M. S. Tremblay, B. Patton, P. C. Martin, and P. F.
Maldague, Phys. Rev. A 19, 1721 (1979).

ioA. -M. S. Tremblay and F. Vidal, report (unpublished).
"P.Glansdorff and I. Prigogine, Structure, Stability and

Fluctuations (%'iley, New York, 1971).
i2H. B. Callen, Thermodynamics (%'iley, New York,

1960).
i3J, Keizer, in Pattern Formation by Dynamic Systems

and Pattern Recognition, edited by H. Haken

(Springer, Berlin, 1979), p. 266.
G. H. %'annier, Statistical Physics (%iley, New York,
1966).

i5S. V. Gantsevich, V. L. Gurevich, and R. Katilius,
Riv. Nuovo Cimento 2, 1 (1979).


