On the Peak Sets for Holomorphic
Lipschitz Functions

JOAQUIM BRUNA

I. Introduction and notations. Let D denote the open unit disc in the com-
plex plane and let T be its boundary. For 0 < a =< 1, Lip a will denote the algebra
of complex-valued functions f analytic on D, continuous on D and satisfying a
Lipschitz condition of order o on D:

lf@ -fWI=Klz-wl*, 2z w€&D.

A closed set E C T is said to be a peak set for Lip o if there exists f € Lip o
such that f = 1 on E and |f| < 1 on D\E (and in this case we say that f peaks
on E).

In [9], W. P. Novinger and D. M. Oberlin studied the peak sets for Lip a.
They showed that the peak sets for Lip 1 are just the finite sets. Moreover, if (g,)
is the sequence of lengths of the complementary intervals of E in T, they proved
that

(1) El=0, X ef™/0m < o,
is a sufficient condition and that
) E[=0, D ellloge,|®<+», 8>1

is a necessary condition for E being a peak set for Lip a. They also conjectured
that

3) E[=0, Sel<+wm

is a necessary and sufficient condition. If p(z) denotes the Euclidean distance
from z to E, we note that (3) means that p~* € L'(T), whereas (1) means that
p—2/(3—a) eIl (T).

In this paper we continue this study and we offer some necessary conditions
and some sufficient conditions which are very close to the conjecture. In partic-
ular, we show (Theorem 2.7) that p~® € L'**(T) for some 8 > 0 is a sufficient
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condition and that p~* € weak L'(T) is a necessary one (Theorem 3.2). Thus we
do not reach the complete characterization. Nevertheless, observe that these re-
sults imply the following: a closed set is a peak set for some Lip  with § > «
if and only if p™® € L'(T) for some B > a. That is, the ‘‘union’’ of the conjec-
tures for B > « is true. These results are obtained in Sections II and III.

We are also interested in this paper in the relation between the study of this
kind of problems in Lip a and in the a priori nonrelated Gevrey analytic class
G,. This is defined as the class of holomorphic functions in D, C* in D, such
that for some constants C, Q

lf®@)| =cQ"(n)'**, n=0,1,...,zED.

This relation was first remarked by Dyn’kin in [3], where he notes that a closed
set E C T is an interpolation set for the holomorphic Lipschitz classes (these are
the K-sets, see [3], and are common to all regular classes) if and only if it is an
interpolation set for some G, (see [4]).

By introducing a (natural) special class of peak sets for Lip o, which we call
the strong peak sets, we are able to present another aspect of this relation. Namely,
it turns out that the interpolation sets for G, and the strong peak sets for Lip o
are the same, with the same a. In particular every interpolation set for Lip o is
a peak set for some Lip B, but not necessarily B = a as is shown by an example.
Another example shows that conversely, not every peak set in Lip « is an inter-
polation set, unlike the disc algebra case. Section IV is devoted to proving these
results.

As in [1], [3], [5], some of the notations and techniques we use are from real
variable theory (BMO, Muckenhoupt’s weights, maximal function). But to some
extent (necessity of equilibrium conditions) we think that the role of these con-
cepts is more than technical. In the last section we discuss this and we close by
posing some open questions.

Now we collect some notations:

As above, E will always denote a closed set of Lebesgue measure zero and p(z)
the Euclidean distance from z to E. In case z € T, we shall not distinguish between
p(z) and the distance measured along the arc, so that we shall often proceed as
if we were on the real line. The sequence of complementary intervals of E in T
is denoted {(a,,b,)} and we set €, = b, — a,.

If I is an arc in T we denote by |I| its length, x; its center and by 2"/ the arc
which has the same center as I and 2" times its length. We say that an arc / C
T and a point z € D are related if z/|z| is the center of / and |I| = 1 — |z|.

For x € T\E, I, stands for the complementary interval of E in T containing x
and we set J, = {e":|e” — x| = p(x)/4}.

For u € L"(T) we denote by I(u) the mean of u over /

1
I(u) = = | udm, dm = Lebesgue measure on 7.
) J;

The notation u* stands for the Hardy-Littlewood maximal function of u:
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u* (x) = sup{l(|ju|),I centered at x}.
BMO is the subspace of L'(T) of all u € L'(T) such that
llullemo = Slllp I(u = I(w)]) <o,
that is, u has bounded mean oscillation. The complex version of BMO is the space

BMOA of all # € H' whose boundary values belong to BMO. BMOA is con-
tained in the Block space, i.e. for all A € BMOA

@) W @) =00 -z)"" zeD.

The Muckenhoupt weights (A,), (A,) and (B,) are respectively defined by the
conditions

(A) w*(x) = const w(x), a.e.
(A,) Iw)I(w™") < const, VICT
w(t)
(B,) 1| dt = const I(w), VICT.

rult = x|

Recall (see [6]) that (A)) > (A,) = (B,).

Finally, for two variable quantities a, b, the notation a ~ b will mean that they
are of the same order, in the sense that there exist some constants m, M = 0 such
that m < a/b < M.

II. Sufficient conditions. Observe that the existence of a peaking function
for E is equivalent to the existence of a function f € Lip a, such that f = 0 on
E and Re f(z) > 0 on D\E (use the operations f— 1 — fand f — e ).

2.1 Lemma. If g is a holomorphic function on D with positive real part, then
g is an outer function, log |g| € BMO and

©) lg’ (z)| = const |g()|(1 — |z)7", z€D.

Proof. g is an outer function, i.e., of the form

2
( ) = c€X '—1 ¢
z C N
g p 2 o it

because both g and g~' belong to H” with p < 1. That log|g| € BMO follows
from the fact that it is the conjugate of the bounded function Arg g. Then h =
log g € BMOA, and so satisfies (4), from which (5) follows. O

z .
log|g(e™)|dt, z€D,|c|=1
z

The following simple but useful lemma is proved in [1] and will be used often,
so we state it explicitly. The important point in it, as will become clear later, is
that the estimate does not depend on the distance 1 — |z| from z to T, but on
the length of J, the distance from z to the endpoints of J and the derivatives of
Y on J.
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2.2 Lemma. Let s be of class C™' in some arc J = [a,b] of T, let ¢ =
(a + b)/2 be the middle point of J and let A(z) be defined by

b it
A(z)=f — % ye"d:, zE€D.
a (el! — Z)n

Put ° = ¢, ¥®¥(e") = e"(d/d)y* " ("), k =1, ..., n + 1, and M, =
max{|y® (¢")|,a <t < b}. Then, forz = re*, 0 <r < 1,

n—1
M
A@)| = const| > ——— + M, + |J|M,., |.
| 7
k=0 |Z_ emln

We shall need in the following a modification p(#) of p(¢#) on T, such that
p~pand pis C” in T\E. For instance,
t—a,)b,—t
6(t) = L—u, te (ambn)
b, — a,
is such a function.

We now give a first sufficient condition. Though it will be later generalized,
we prefer to present it as a preliminary step in the proof of the main result of this
section (see first point in the proof of Theorem 2.6).

In the statement that follows, recall that J, = {e":|e" — x| = p(x)/4}.

2.3 Theorem. Suppose that p~® € L'(T) and that the following holds:

p(e")

6) FA 5 dt < const J,(p™), xET\E.

T\Jy

Then E is a peak set for Lip a (0 < o < 1).
Proof. We define

e — x|

1 e"+z_
gz =— - p~*(e™)dt, zED.
2w ), e"—z

Re g is the Poisson integral of p~®. First we shall prove
)] Re g(z) = const p(z) %, zED.
Take I related to z; for e €1, P,(e") ~ |I| ™" and
p(e") = p(2) + |z — e"| = p(z) + const(l — |z|) =< const p(z).
Hence,

Re g(z) = sz(e")ﬁ_“(e")dt?—sz(ei')ﬁ_“(ei')dt~1(f)—°‘)
T

1

= const p(z)~“.
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The proof of the theorem will be finished if we show that f = g™' is in Lip a.
By the Hardy-Littlewood theorem [2, page 74], this is equivalent to |f'(z)| =
01 = [z)*7, ie.,

8) 8 @) = const(1 — |z])*7".

lg@)?
(In fact, it is shown in [2] that this is equivalent to f € A, the disc algebra, and
f(e") € Lip(a,T). But it is an old result that this is in turn equivalent to f €
Lip a.)

If p(z) = 4(1 — |z|), (8) follows from (5) and (7).

For p(z) = 4(1 — |z|) we shall obtain the estimate

) g’ (2)] = const p(z) ™"
from which, using (7), (8) follows again. Now,
1 (" e .
g'(2) = ;fo el *(e™")dt.

Let x = z/|z| and break this integral into two parts corresponding to J, and
T\J,. We claim the following:

(10) ple™) ~ p(2) for e"€J,.
(11) 7| ~ p(2)
(12) le* —z| ~|e"—x| for e" €&,

To prove (10), just observe that p(e”) ~ p(x) for e* € J, and that p(x) ~ p(2),
because |z — x| = 1 — |z| =< p(2)/4. (11) is trivial. Finally, (12) follows from
the triangle inequality and from the fact that [z — x| = 1 — |z| can be absorbed
in |e” — z| and in |e" — x| if e" € J,.

Using the hypothesis and (10), (11), (12), we find that the contribution of T\J,
satisfies an estimate like (9). To evaluate the contribution of J, we use Lemma
2.2, with J,, n = 1, and $(e”) = p~*(e”) (p is C” outside E). An easy compu-
tation shows that a k-derivative of p~ is of the same order as p~* *. This and
(10) imply, with the notations of Lemma 2.2, that M, =< const p(z)"* . Thus,

et

—a

< const (const + const p(z) """ + const p(z)""") = const p(z) *7.

|z — e®|
Here ¢” is an endpoint of J, and we have used (11) and the fact that |z — ™| ~
le” = x| = p(0)/4 ~ p(2), by (10), (12).

Thus the estimate (9) is completely proved. The proof is finished. O
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2.4 Corollary. If p~* satisfies Muckenhoupt's condition (B,), E is a peak set
for Lip a.

2.5 Remark. The above are not global conditions in the sense that they depend
on the repartition of the complementary intervals (a,,b,) and not just on their
lengths. But the same method gives that p~**/2 € L!(T) is a (global) sufficient
condition. Just observe that (7) is changed to

Re g(z) = const p(z) 1+, zZED

and that
|g’ (z)| = const p(z)7?, zZED

so that (8) is again obtained. Since (1 + «)/2 < 2/(3 — a), this condition is
already better than (1). ‘

Since p(e”) ~ p(x) for e € J, and |J,| ~ p(x), condition (6) is equivalent to

p (e’ i}
(13) p(x) —— dt = const p”*(x), x ET\E.
T\J, |€

n_xl

Now we will see that the existence of a majorant w of p™* satisfying this is
already sufficient for E to be a peak set.

2.6 Theorem. Suppose that there exists w € L' (T) such that

14) p~ % (x) = const w(x), xET\E
W(eit)
(15) px) — 7 dt = const w(x), x ET\E.
™, 1€ — x|

Then E is a peak set for Lip a.

Proof. We distinguish five steps.

1. In what follows we show why the method of Theorem 2.3 does not apply
directly and we indicate what will be the line of proof. Thus, the following con-
siderations are not rigorous and just pretend to motivate in a natural manner the
other points of this proof.

We consider again the proof of Theorem 2.3, with the same notations, but
with g defined with w instead of p™®. As before, the important case is p(z) =
4(1 — |z|]), i.e., z is closer to T than to E. In this case, (15) implies that the
contribution of T\J, in |g'(z)| is bounded by some constant times p(x)~'w(x).
But for the contribution of J,, we can just obtain

e . 1
—— wi(e")dt S—————f w
J,, (e" — z) (1= 1zp*J,,

which is not good, because of the presence of 1 — |z|. Lemma 2.2 improves this
estimate when one has some differentiability assumptions on w.
But observe that this difficulty would not appear if a function wg is assumed
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to exist and satisfy a relation like (15) but on the boundary dG of a domain G
such that p(z,dG) ~ p(z,E) for z € D, as for instance the domain G = {z,|z| —
1 < ep(z)} (this comes from [3, page 111]). With the same construction, the
contribution of dG\J, (now J, C dG) would be bounded by p (x) ' ws(x) whereas
that of J, would be changed to

f WG(C)ZdC\ = P(Z,BG)—ZJ WG’VP(Z)—ZI WG"’P(X)_zf we
J. € -2 T I T

in which the ‘‘bad’’ quantity 1 — |z| does not appear.

The problem is that the required domain G is just a Lipschitz domain so that
we do not have at our disposal a good Poisson kernel theory for G to carry over
the other points in the proof of Theorem 2.3. For instance, an estimate of the
Poisson kernel P;(z,{) for G of the type

p(z,0G)
lz —¢*’

(16) Ps(z,0) ~ z€G,{€IG
is not known.

In spite of this, these considerations suggest that we substitute for w on T a
function u on T which essentially is P;wg restricted to T and then apply to u the
procedure of Theorem 2.3. This is the central idea and the rest of the proof is
devoted to showing that it works. Thus, given w, the next step of the proof will
be to find a wg and to ‘‘guess’’ u. In doing so, we shall proceed as if the Poisson
kernel P; would be given by (16).

2. The shape of the domain G is sketched in the following figure where we
draw three complementary intervals of E and the part of G over them (the same
construction has been used in another context in [8]).

For z € T\E, we denote by z the point of G over z. By the correspondence
z = z; the Lebesgue measures of T and G map one into the other up to a
constant. Since p(x) ~ p(xg) and |z — x| ~ |zg — x|, this shows that the function
w defined by

we(zg) = w(2), z € dG\E

satisfies a relation like (15) on 4G.
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Now, for x € T\E and z; € 0G\E,

P, 9G) p(x)

e —zgl” x—zP+p@)"

So, according to the planning of point 1, we should consider the function

(17) (ie_f ()J'__Lv_(z)—d
u(-x) =px Tlx_Z|2+ p(z)2 z

Pg(x,z6) ~

~ J' Ps(x,z6)wes(zg) dzg.
aG

For further use, we estimate now the function u in terms of w. Note that
|x — z|* + p(z)* ~ p(x)* for z € J, (since p(z) ~ p(x) and |x — z| = p(x)/4) and
that |x — z|* + p(z)* ~ |x — z|* for z € T\J, (since p(z) = p(x) + |x — z| =
5|x — z|). Hence we get

1 I w(z)
(18) ux)~—— | w+pk) 5 dz, xE€T\E.
p(x) Jy, VA xl
Therefore, by (15),
(19) u(x) = const (—L f w+ w(x)), xE€T\E.
p(x) 7.

3. Now we will show that the relations (14) and (15) remain true for the func-
tion u:

(20) p(x)™® = const u(x), xET\E
u(y)
21) p(x) 5 dy = const u(x), x €T\E.
[AVAD x‘

To prove (20), note that p(z) = |x — z| for z € T\I, and so, by (14) and just
using the second term in (18),

u(x) = p(x) f |x — z|7*2dz = const p(x)~°.

T\I,

By (19), (21) will follow from

RS

|75
22) p(x) P w(z) dz = const u(x)
T\J; Jy

and

w(y)
p(x) 5 dy = const u(x), xXET\E.
VD B x|

This last relation is implied by (18). In (22), z € J, implies |y — z| = p(2)/3,
p(y) ~ p(x) and so, by Fubini’s theorem, the left member of (22) is less than
some constant times
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o 55 52

where the set A is defined by the inequalities |y — x| = p(x)/4 and |y — z| <
p(z)/3. If p(z) = 2|z — x|, |y — z| = (2/3)|z — x| implies |z — x| ~ |x — y| and
so the interior integral ~ p(z)|z — x| 7%. If p(z) = 2|z — x|, one has p(x) ~ p(z)
and then the interior integral is bounded by some constant times p(z)~'. So in any
case,

1
= const ———————.
p(Z)J ly = x> |z = x|+ p(2)?
Hence the left member of (22) is bounded by

t()f ) e = constutx)
const p(x) | ——5————; dz = const u(x).
T |Z - x|2 + p(Z)2
This proves (22) and hence (21).

4. Now we will see what is the gain after the change of w by u. By the formula
(17) defining u(x) we see that u is infinitely differentiable in T\E. We are going
to show that for y = ¢” € J, one has

(23) u(y) ~ u(x)
(24) dute’) = const i(x—)
dr p(x)
d*u(e") u(x)
2 = .
(25) P const o0y

To prove (23) it is enough to show that |x — z|> + p(z)> ~ |y — z|* + p(2)* for
all z, y € J,, because p(y) ~ p(x). If |z — x| = p(x)/2, then p(z) ~ p(x) and
|z — y| = 3p(x)/4 and so both quantities are ~p(x)*. If |z — x| = p(x) /2, then
|z = y| = p(x)/4 and p(z) < 3|z — x|, which give that both terms are ~|z — x|*.

From the definition (17), we obtain (y = e”

du(e™) w(z) w(z2)|y — z| )
" = const(fr—————ly 2+ o) dz + p(y) L(ly it p(z)z)zdz :

Taking into account that p(y) ~ p(x) for y € J, and (23), to get (24) it is enough
to bound this by u(y)p(y)~'. This is immediate for the first term on the right.
To obtain the same estimate for the second one it is clearly sufficient to show

|z -yl _ const
lz =y +p@"  p()

To see this, we distinguish two cases: if [z — y| = p(y)/2, we use that the left
member is bounded by |z — y|™". In case |z — y| = p(y)/2, we use the bound
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p(¥)p(z)”? and the fact that p(y) ~ p(z). Hence (24) is proved.
The proof of (25) is similar and is left to the reader.
5. At this point we are in position to finish the proof of the theorem by applying
the argument from the proof of Theorem 2.3. We just sketch it. Put
1 [Tet+2

8(2)=£ i

u(e")dt, z €D.

The estimate (7) is obtained as before, by (20), and so it is enough to show the
estimate (8). The case p(z) < 4(1 — |z|) is proved as in Theorem 2.3 using (5)
in Lemma 2.1. In case p(z) = 4(1 — |z|), and using the same notations, we will
prove

(26) |g’ (z)| = const #&x)
p(x)
27 Re g(z) = const u(x)

which, with (20), give |g' (2)|/|g(2)|* =< const p(x)*~". Then p(x) ~ p(z) = 1 —
|z| shows that (8) holds.

To evaluate | g’ (z)|, we again break the integral defining it into two parts, cor-
responding to J, and T\J,. It follows from (12) and (21) that the contribution of
T\J, satisfies an estimate like (26). In the contribution of J, we use Lemma 2.2,
(11), (23), (24) and (25) to obtain the same result.

Now it remains to prove (27) for p(z) = 4(1 — |z|). If I is related to z, we have
I C J, and so, by (23),

Re g(z) = sz(y)u(y) dy ~ I(u) ~ u(x).

1

Thus, the proof of Theorem 2.6 is completely finished. O
2.7 Theorem. If p* € L'**(T) for some & > 0, i.e., if

E[=0, D el™?<+x, 3>0,

then E is a peak set for Lip a.
Proof. We recall first the well-known inequality
w ( e it)

T\Ileit"xl|2

1] dt < const w*(x;), ICT,weLYT).

This is proved by the usual doubling technique, estimating the contribution of
I\, and adding on k, where I, = 2“1. Now, since |J,| ~ p(x) in (15), we see
that the existence of a majorant w of p~* satisfying Muckenhoupt’s condition (A,)
is a sufficient condition. But for a given measurable function u on T, such ma-
jorant exists if and only if u € L'*®(T) for some & > 0 [5, Theorem 9.1]. The
theorem follows. [
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2.8 Remark. The proof of Theorem 2.6 is also valid if (15) is replaced by

w(eit)
px) —— dt = constJ ,(w), x €ET\E.
T\Jx

u_xl

This leads to the following sufficient condition: there exists a majorant of p~*
which satisfies condition (B,). We do not know of any characterization of the
functions having such majorant. An answer to this question would surely improve
the result of Theorem 2.7 (the author thanks Carlos Kenig for this observation).

III. Necessary conditions. In the first result of this section we use an ar-
gument similar to that of the important Lemma 4.3 in [7], to see that a function
f € Lip a vanishing on E satisfies a sort of equilibrium condition. We can suppose
]l = 1 and define, for x € T\E,

4 = f “loglf e
T\I

‘eit _ x|2

We also consider the analogous function defined by log p (we can assume without
loss of generality that p = 1)

-1 it
b(x) = j L IC
T\I

it _x|2

Since |f| = p* and log|f| € L'(T), we see that
(28) const b(x) < as(x) < const p(x) >, xET\E.
From the fact that p(e”) < |e” — x| for e € T\I, it follows that

|log p (x)|

29) b(x) = const
p(x)
We can assume as well that a,(x) and b(x) are =1.

3.1 Theorem. Suppose f € Lip o vanishes on E (and so E is a Carleson set,
i.e., log p € L'(T)). Then, for x € T\E

(30) £ ()| = const (“)—gff@) .
a5 ()
In particular,
log b)" |log p<x>|>“
1 < < llog p[)
3D |f x| <const< ) ) const( b0

Proof. Weputz = rx, r < 1 and write

lfl=1f@l+a-n"
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Now, choosing 1 — r < p(x), we have |e" — z| < 2|e” — x| for " € T\I,, and
so taking into account that log |f| = 0
2w

1 1-r? ;
log | (] = o~ Wlog |fe™)

0 |

1- 1 i 1-
< rJ' el el _ 171, .
8w Jr, le" — x| 8
So we can write
. 1-r
(32) |f(x)| = inf {exp(— a,(x)) + (1 - r)“}.
0<1-r<p(x) 8w

If allog p(x)|/p(x) < a,(x)/8m, since |log t|/¢ is decreasing in [0,1], there
exists #(x), 0 < t(x) < p(x), such that a|log #(x)|/t(x) = a;(x)/87, and 1(x) ~
(log as(x))/a;(x). Then, choosing 1 — r = t(x) in (32) we obtain (30).

In case a|log p(x)|/p(x) = a;(x)/8w, one has p(x) = const log a,(x)/a,(x) and
then (30) follows from the trivial estimate | f| < p®. (31) follows from (30) and
(28). O

3.2 Theorem. Suppose that E is a peak set for Lip o. Then (b(x)/
llog p(x)))~™ € weak L' (T). In particular, p~* € weak L'(T).

Proof. We just observe that the boundary values of a holomorphic function
in D with positive real parts are in weak L' (T') (by Kolmogorov’s theorem), apply
this to 1/f and use (31), (29). O

3.3 Remark. Of course, p~* € weak L' (T) can be obtained without Theorem
3.1, by using the trivial estimate |f| =< const p*. We think that the assertion
concerning b(x)/|log p(x)| could be used to disprove the conjecture (see the last
section). On the other hand, from p~® € weak L'(T) one can obtain different
necessary conditions, by consideration of the functions y(p™*) where ¢ : (1,°) —
(0,) is such that s’ (s) is integrable (so that y(p™*) € L'(T)). The necessary
condition (2) corresponds to Y (s) = s(log $)7%.

IV. Strong peak sets, Gevrey classes and interpolation sets. In [4] it is
proved that a closed set E C T is an interpolation set for the analytic Gevrey class
(see Section I) if and only if

(33) I(p™®) =< const |1|™* forevery ICT.
We note that this condition implies p™ € (A;). For if I N E # J, then

I(p*) =< |I|* and so I(p™)I(p*) < const. In the case I N E = &, I(p*) ~
(sup p)*, I(p™*) ~ (sup p)~* and condition (A,) follows again (this is essentially
1 1

the fact that x* is an A,-weight). In fact, (33) is equivalent to p* € (A,), I(p*) =
const |I|*, and implies p~* € (A,) [5, Proposition 9.1.1].
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Therefore, by Corollary 2.4, E is a peak set for Lip a. We shall see, in fact,
that they are characterized as peak sets of a special type:

We say that E is a strong peak set for Lip a if there exists f € Lip a such that
f=0onE and

34) Re f(z) = const p(z)°, 7z € D\E.

This amounts to saying, due to the estimate |f(z)| = const p(z)°®, that f takes
values in a sector of opening < and that Re f(z), | f(z)| and p(z)* are of the same
order.

4.1 Theorem. A closed set E is a strong peak set for Lip a if and only if (33)
holds, i.e., if and only if it is an interpolation set for G,.

Proof. We begin with the necessity. Suppose that E is a strong peak set and
let f be as before. By the Helson-Szego theorem (or also directly), every holo-
morphic function in D which takes values in a sector of opening <1 is an outer
function with boundary values in (A,). By the Poisson formula and condition
(B,), and if I is related to z, one has

|f@)| = const I (| f]).
But since the same applies to f ' and | f| € A,, we have that | f(z)| ~ I(|f]) and
|f@I™" ~1(fI™"). Hence,
I™) ~I(fIT) ~f@I ~p@ = —|zp™ = |1]™
and (33) is proved.

To prove the sufficiency, suppose (33) holds, and consider the functions g
and f constructed in Theorem 2.3. Since by (7) we already know that Re g(z) =
const p(z)~%; proving (34) is equivalent to proving
(35) |g(z)| = const p(z) "%, zE€D.

The function g differs from the Cauchy integral of ~* only by constants, and
hence we can assume in this paragraph that

g(Z)——-f (e )e
e 4

Consider first the case p(z) =< 4(1 — [z|]) and take I related to z. Then
le* —z|~1—|z| = |I| for e €I and |e” — z| ~ |e" — x| for e“ & I. So

lg(z)| = const(](ﬁ"") + f p; (e’) dt).

™ |e - x,|

Now we apply the usual doubling technique: let I, = 2*I for k=0, ...,N — 1
where N is the smallest integer such that 2V|I| = 2m. Let Iy = T. We have, since
le" — x;| = const 2*|1| outside I,_,, that the last integral is less than some constant
times
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N N
IG™)+ 2“"|I|f 7= D LG

k=1 I k=0

By (33), this is dominated by
2 27%|I1|7* = const(1 — |z|)™* = const p(z) ~°,
which is (35).
In case p(z) = 4(1 — |z|), we consider x and J, as in the proof of Theorem

2.3 and apply the same technique as before, but this time with J, instead of I.

The contribution of T\J, is evaluated exactly as before and we obtain a bound of
type const |J,| ™. By (10) and (11), this is of type (35). Now it remains to estimate

the contribution of J,
~—a eit eil
Iy (e"—2)

To do this we use Lemma 2.2. With the notation there, M, ~ p(z)™*, M; ~
p(z)™* " and |J,| ~ p(z). Thus (35) is again obtained. a

One more relation between these two classes of functions is furnished by the
following observation. Conditions (14) and (15) imply

w eit
(36) —,—(-Lz dr < const w(x)'*/*, xET\E.
€ —x|

This is called condition () in [5] and the existence of a majorant w of p~* sat-
isfying it turns out to be a necessary and sufficient condition for E to be a set of
nonuniqueness for G,, i.e. there exists f € G, vanishing on E together with all
its derivatives. So, all the known peak sets for Lip o are nonuniqueness sets for
G,. Similarly, a computation shows that condition (6) in Theorem 2.3 is equiv-
alent (only for p™*) to

p—ct(elt e
————dt = const p(x)™*", xET\E
YA e’ — x|2

(that is, the contribution of I,\J, always satisfies this). The above condition is
called condition (PS), in [5] and turns out to be necessary and sufficient for the
existence of an f € G, such that —log|f(x)| ~ p(x)™*.

To finish this section, we wish to comment on the interpolation sets for Lip «,
that is, those sets E C T such that for every ¢ € Lip(a,E) there exists f €
Lip a such that f = ¢ on E. These sets are characterized by the so-called condition

(K) (see [3])
X) “YIC T, sup p(x) = const|I|”".
x€l

In particular, they do not depend on « and they are the interpolation sets for the
classes A” as well, with p an integer [1]. Also, it is known (see [1], [3]) that (K)
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holds if and only if (33) holds for some a. Hence every strong peak set for
Lip a is an interpolation set for Lip o and every interpolation set for Lip « is a
strong peak set for some Lip 8, with a possibly different 3.

In spite of this, it is not difficult to produce examples showing that there is no
relation between the class of peak sets and that of interpolation sets. For instance,
the set E = {exp i/n,n = 1} U {1} is a peak set for Lip a if a < 1/2 (this follows
from Corollary 2.7 because €, ~ 1/n*), and does not satisfy (K), and so it is not
interpolating. In the other direction, the Cantor perfect set (adjusted to T') satisfies
(K) and a computation shows that it is not a peak set for Lip a if « > 1 —
(log 2/log 3) (using that E gl™¥ < o for o’ < a is a necessary condition).

V. Conclusions and questions. In this concluding section we comment on
the difficulties of reaching a complete characterization of peak sets and we pose
three questions.

There seems to exist some reason for thinking that conjecture (3) is not true in
the sense that it is a global condition, not depending on the disposition of the
complementary intervals of E. That some more subtle condition should exist is
suggested by the relationship with exceptional sets for the Gevrey classes, char-
acterized by nonglobal conditions. Incidentally, concerning nonuniqueness sets
for G,, it was also conjectured that condition (3) is necessary and sufficient. It
was in the excellent paper [5] where the necessity of (36) was first shown (as well
as its sufficiency). Also in this direction, conditions like (6) or (15) appear to be
indispensable for the techniques developed here, and so we think that any attempt
to work with global conditions should use other constructions.

The important point, of course, is to find some necessary condition of a non-
global character. The possibility of this seems to be related to the following ques-
tion: we know that if u € Lg and ||u/|. < m/2, then exp # is a weight in (A,). If
|ull. = m/2, when can it be said that exp # still satisfies a kind of equilibrium
condition, or is it even integrable? (In general it is clearly not true.) In our opin-
ion, the answer to this question should determine whether conjecture (3) is ap-
propriate or not.

In conclusion we mention four questions:

1. Concerning the necessary condition found in Theorem 3.2, it is easy to see
that for every 8 > 0

b(x) )’“< . px)?
llog px)|/ |log p(x)|*

Here we see that, of course, p~® € L'"®(T) implies (b/|log p|)™® € L'(T) but not
that p™ € L'(T). Is it possible to produce an example so that p™ € L'(T) but
(b/|log p|)™ is not in weak L'(T)? This would prove that the conjecture is false.
2. Does there exist a direct relation for the good understanding of the equality
between strong peak sets for Lip a and interpolation sets for G,?
3. As was said before, every strong peak set is a peak interpolation set. Is the
converse true?

const p(x)™* = (
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4. After this paper was written, S. V. Hruscev brought to my attention that in
the Zapicki Nauchnykh Seminarov LOMI, 81 249-251, E. M. Dyn’kin proves in
fact using results from [5] that every nonuniqueness set for G, is a peak set for
Lip a. It seems reasonable to conjecture that the converse is also true.
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