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Monte Carlo Analysis of the SO(3) Lattice Gauge Theory
and the Critical Dimensionality of Space- Time
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The analysis of the phase structure of the SO(3) =SU(2)/Z(2) lattice gauge theory in different
space-time dimensionalities is presented. With use of Monte Carlo simulations the absence of
phase transitions is shown for both d = 2 and d = 3. In the five-dimensional case I observe the per-
sistence of the first-order phase transition previously seen at d =4. A monopole condensation
mechanism is suggests as responsible for this transition.
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The lattice gauge theories introduced by Wegner'
for the Abelian Z(2) gauge group and extended by
Wilson2 to the non-Abelian case are one of the most
important ways to study nonperturbative properties of
the quantum chromodynamics theory, such as confine-
ment and hadron mass generation. Indeed, confine-
ment appears as a general property of the strong-
coupling regime of all lattice gauge theories. In lattice
QCD the weak-coupling region connects with the con-
tinuum theory, occurring at g (coupling) and a (lattice
spacing) equal to zero, the critical point representing
asymptotic-freedom behavior. Near this point the
theory scales according to the renormalization-group
predictions. The transition region from strong cou-
pling to weak coupling has received much attention.
The reason is that the presence of a phase transition in
this region may separate confinement from asymptotic
freedom. One of the methods used to investigate this
intermediate region is to look for phase transitions in
Monte Carlo simulations. The absence of a phase
transition in the four-dimensional SU(2) theory to-
gether with the existence of a second-order transition
in the compact U (1) case (electrodynamics) gives
strong support to the above picture.

On the other hand, it has been recognized that there
is a critical character of the space-time dimensionality
in the presence of phase transitions. Indeed, Monte
Carlo results suggest the presence of a first-order
phase transition in the five-dimensional SU(2) theory
and the absence of phase transitions in the three-
dimensional U(1) case. In consequence, d =4 can be
considered as a critical dimensionality for the SU(2)
lattice gauge theory while for the U(1) case it is d = 3.
In a general way, mean-field analysis predicts the pres-
ence of a first-order phase transition for all lattice
gauge theories when the space-time dimensionality is
high enough.

Although the four-dimensional SU(2) theory shows
no phase transitions, there is a sharp peak in the
specific heat precisely where the string tension shows a
rapid crossover connecting the strong- and weak-
coupling regimes. The dynamics of this intermediate
region has received much attention. It is related to

such topological configurations on the lattice as vor-
tices and magnetic monopoles. In turn, these are re-
lated to the Z(2) center of the SU(2) gauge group.
For this reason, the SO(3) = SU(2)/Z(2) theory that
manifests Z(2) invariance has been investigated.
Monte Carlo analysis shows the presence of a first-
order phase transition. In addition, Bhanot and
Creutz, working on a mixed SU(2)-SO(3) action, cor-
responding to mixed fundamental-adjoint representa-
tions, presented the complete phase diagram of the
theory.

In this Letter the analysis of the phase structure of
the SO(3) lattice gauge theory at different space-time
dimensionalities is presented. Monte Carlo simula-
tions and low-order strong- and weak-coupling devel-
opments have been used. The main results of the
study are to show the absence of phase transitions for
both d = 2 and d = 3 and the persistence at d = 5 of the
first-order phase transition previously seen at d = 4.

The SO(3) lattice gauge theory can be expressed in
terms of the SU(2) matrices since it corresponds to the
adjoint representation of the SU(2) group. The action
is then

S = —,
' P(Tr„U„)= 3/3(ITrUp 12 —1),

where Tr Up means the trace of the ordered product of
SU(2) matrices in the fundamental representation
along an elementary square of the lattice. The numeri-
cal manipulations have been performed by use of the
modified Metropolis algorithm with eight attempts per
link. The extra phase transition due to the discrete-
ness of the icosahedral approximation is close to the
interesting region in the SO(3) theory and for this
reason I have used the complete SU(2) group in all the
computations.

Thermal cycles have been done at d = 2, 3, and 5 in
order to detect hysteresis loops denoting the existence
of phase transitions. The quantity measured has been
the plaquette energy

(2)

I have used the lattice sizes 16, 10, and 3 except for
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FIG. 1. Thermal cycle for the two-dimensional SO(3) lat-
tice gauge theory. The continuous line represents the exact
solu tion.
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FIG. 2. Thermal cycle for the three-dimensional SO(3)
lattice gauge theory.

E = 1 —p/9 —p /58+ p /1458, (3)

valid for all dimensionalities. The lowest-order weak-
coupling expansion is, in turn,

the intermediate region ~here additional sizes have
also been used. Each point of the cycles represents an
average over 20—30 configurations after some twenty
equilibrating iterations, starting on the final state of
the previous point.

The strong-coupling expansion used is

these fluctuations do not correspond to a first-order
transition. I feel that there are no phase transitions of
higher order at this point. The convergence is too ra-
pid for a second-order transition. Indeed, this
behavior is similar to that observed in the four-
dimensional SU(2) theory and it can be interpreted as
the "shadow" of the transition present in more
dimensions. To support this conclusion I have looked
at the specific heat using direct numerical derivation of
the energy,

E =3/pd, (4) c = p dE/d p. (7)

I I2(2p/3) —I, (2p/3)
3 Io(2P/3) —It (2P/3)

(6)

where I„arethe usual modified Bessel functions. This
exact solution is also plotted in Fig. 1. The agreement
with the Monte Carlo results is complete. This may be
considered as a valuable test of the Monte Carlo accu-
racy.

The three-dimensional case shows an instability in
the intermediate region. Figure 2 shows a thermal cy-
cle using twenty iterations at each step. However, this
hysteresis loop disappears when more iterations are
performed at each step. Figure 3 displays the behavior
of two long runs taking p= 3.3, a value inside the hys-
teresis loop, with starting configurations cold and hot.
Since the values after some fifty iterations coincide,

where d is the space-time dimensionality.
The thermal cycle for d =2 is plotted in Fig. 1. For

this two-ditnensional (2D) case I do not find any evi-
dence denoting the existence of phase transitions.
Note that there is a very smooth transition between
the strong- and weak-coupling phases. On the other
hand, the 2D SO(3) lattice gauge theory is exactly
solvable. In a similar way as in SU(N) or U(N)
theories, it is possible to define a one-link integral for
the partition function,

Z (p) = Jf dU exp( —,
'

p Tr~ U)

Introducing in this expression the usual representation
of the SU(2) matrices I obtain the following expres-
sion for the plaquette energy:
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FIG. 3. Monte Carlo runs for the 3D SO(3) lattice gauge
theory at P = 3.3 with ordered and disordered starting points.

Although there are large errors present when using
this method of evaluation, I have no evidence for a
peak increasing with the lattice size from 6 and 12
lattices. A second-order phase transition seems, then,
to be excluded. Nevertheless, a high-order strong-
coupling analysis of the fluctuations is in progress.

Figure 4 shows the results for the 5D case. Here I
find a clear hysteresis loop near p= 2. This suggests
the existence of a phase transition. To study the order
and precise location of this transition, I have done
some Monte Carlo runs using a mixed ordered-
disordered starting configuration. The results of these
runs are collected in Fig. 5. This graph confirms that
the transition is of first order and gives a value for the
critical point of p, =2.08+ 0.01. This value is very
close to the modified mean-field prediction of Alberty,
Flyvbjerg, and Lautrup' which is p, = 1.97 + 0.06.

Finally, in order to determine the nature of the
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FIG. 4. Thermal cycle for the five-dimensional SO(3) lat-

tice gauge theory.
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FIG. 5. Monte Carlo runs for the 5D SO(3) lattice gauge
theory with a mixed ordered-disordered starting configura-
tion. The step between P values is 0.02.

phase transition seen at d = 5, the monopole density is
studied. Indeed, the first-order phase transition pre-
sent at d = 4 seems to originate from a monopole con-
densation. Explicit computations of the monopole
density carried out by Haliday and Schwimmer using
Villain's form of the action and by Mack and Pietar-
inen" using the standard Wilson action showed a rapid
decrease of the monopole density precisely at the
phase transition point. A hysteresis cycle also ap-
peared. Following Ref. 11 I define the parameter

p, (U) = Q sgn TrU(Bp) = + 16Z(2),
p Ggc

i.e., the product of the signs of traces of the six pla-
quettes (Bp) belonging to a three-dimensional ele-
mentary cube (t)c). Cubes with p, (U) = —1 denote
the presence of a monopole in their interior. Note that
the Z(2) invariance of the SO(3) action implies that
the average of negative-sign plaquettes is always equal
to 0.5. Figure 6 shows the result of a Monte Carlo
thermal cycle on a 3 lattice, measuring the monopole
density. A very clear condensation phenomenon ap-
pears in the transition region (P, = 2.08). This result
suggests that, as in the four-dimensional case, the
first-order phase transition seen in the five-dimen-

FIG. 6. Monte Carlo determination of the monopole den-
sity in the 5D SO(3) lattice gauge theory. The continuous
lines are only for guiding the eye.

sional SO(3) lattice gauge theory originates from a
monopole condensation mechanism.

In conclusion, I have determined, using Monte Car-
lo simulations, the absence of phase transitions, at
least of first order, for both d = 2 and d = 3, and the
persistence at d = 5 of the first-order phase transition
previously seen at d = 4, with a critical p,
= 2.08+ 0.01. These results agree with the mean-field
predictions of Ref. 10. A monopole condensation
mechanism is suggested as responsible for this phase
transition.
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