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ABSTRACT. For 0 < s < 1, we characterize those compact

[e]
sets X with the property that each function harmonic in X
and satisfying a little o Lipschitz condition of order s is the
limit in the Lipschitz norm of order s of functions harmonic
on neighbourhoods of X. As an application of the methods we
give a spectral synthesis result in the space of locally integrable
functions whose laplacian belongs to BP(R?), the containing
Banach space of the Hardy space HP(R?).

0. Introduction. Let X be a compact subset of R% and let A*(X),0 < s < 1,
be the usual Banach space of Lipschitz functions of order s on X. That is,
f € A*(X) if and only if

I£lls = sup{|f(z) = fF@W)| le—y|™* : @, y € X, z# y} < oo.

If|| |loo is the supremum norm on X, || f|lec + || f|ls is a Banach space norm
on A*(X). An important role in what follows will be played by the space A*(X)
which is the set of functions f in A*(X) satisfying |f(z) — f(¥)| = o(|z — y|®) as
|z —y| — 0. Alternatively A*(X) can be described as the closure in A*(X) of
C>(R%) x-

We are interested in the problem of understanding the space H*(X), the
closure in A*(X) of {fjx : f is harmonic on some neighbourhood of X}. There

are two obvious necessary conditions for f € H*(X): f must be harmonic on )0( ,
and f must belong to A*(X). If we set
R(X)=2(X)N{f: Af=00n X}

we then have H*(X) C h®*(X) and it turns out that the above inclusion can be
strict. Thus the problem arises of characterizing those X for which H*(X) =
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h*(X). A complete solution to the above problem is provided by our main result.
We denote by M* and M2 the a-dimensional and lower a-dimensional Hausdorff
contents respectively (see Section 1 for precise definitions).

Theorem 1. Let X C R?% be compact. Then the following are equivalent.
(1) H3(X) = h*(X).

(2) M2-2+3(B\ )o() < CM32+3(B\ X) for all open balls B and some positive
constant C.

Md—2+s B
(3) limsup g_;f;r)\x) >0, M3~2*5—qg.e. on 8X.
T

r—0

For 1 < s < 2 the equivalence between (1) and (2) was proved in [22], in
which one can also find a more general result including O’Farrell’s Theorem on
Lipschitz analytic approximation [15] and a complete discussion of the case s > 2.
A slight variant of the techniques used there takes care of the the Zygmund class
case (s = 1, see Section 4 below). However, they are not powerful enough to
cover the case 0 < s < 1. The main contribution of this paper is to show how
one can exploit the new ideas presented in [13] to prove Theorem 1. For s =1
it is also natural to replace the Zygmund class by C!. The problem one gets is
not covered by our methods because C! is not invariant by singular integrals. A
complete solution of the C* problem has been found very recently by Paramanov
[18].

As in [13] our technique is a combination of constructive and duality argu-
ments. The constructive part uses Vitushkin’s localization and matching coeffi-
cients method, while the duality argument involves a differentiation theorem for
Riesz potentials of BP distributions and some geometric measure theory. The
space BP, s = d(] — 1), is the dual of A§(R?), the subspace of A*(R?) consisting
of functions vanishing at co. It can also be described either as a space of distri-
butions with some specific atomic descomposition or as the containing Banach
space for HP(R?), the usual Fefferman-Stein Hardy space (see Section 1 for more
details about these facts). The equivalence of (2) and (3) is a geometric result
independent of the approximation problem. However, we don’t know if there
exists a proof of (3) = (2) which uses only geometric measure theory. We will
give a direct proof of (3) => (2) (without going through (1)) which involves the
solution of a very particular approximation problem.

It is worthwhile mentioning that combining the machinery developed in [22]
with ours one can prove a version of Theorem 1 which applies to homogeneous
elliptic operators with constant coefficients. If the operator is L and its order is r
one is then approximating solutions of the equation Lf = 0in A*(X),r—2< s <
r — 1, and the characterizing conditions involve (d — r + s)-dimensional Hausdorff
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contents. New ideas seem to be required to obtain a complete solution for the
case 0 < s <r—2.

As an application of the ideas in the proof of Theorem 1 we obtain some
results in spectral synthesis in the spirit of the Hedberg-Wolff theorem for the
Sobolev spaces W,f ,1<p<oo,0<k€Z[9]. For k=1 this theorem follows
readily from the truncation properties of W? (see [2]), but for k£ > 1 it is a deep
achievement, both from the technical and conceptual points of view.

Our spectral synthesis results arise when we consider the problem of extend-
ing the Hedberg-Wolff theorem to indexes p with 0 < p < 1. As it is well known
in harmonic analysis, the space LP, 0 < p < 1, must often be replaced by H? to
get positive results. Since our approach to spectral synthesis is based on duality
arguments, unlike in the classical Sobolev space setting, H? is not an adequate
substitute for LP?, 0 < p < 1. This is so because HP? is not a Banach space in this
case, and thus its duality theory is not satisfactory. It turns out that the family
of spaces BP, 0 < p < 1, enjoys good duality properties and still is a natural
extension of the LP spaces to indexes p less than one.

The Sobolev type space to be considered in this context would be obtained
by requiring that all derivatives up to some fixed order belong to B?, but it will
be more convenient to work with the essentially equivalent potential spaces

IaBp={f: f=Ia*g, gEBp}a

0 < a < d, where I,(z) = |z|*~? (= log|z| if a = d). A Banach space norm
on I,B? is ||f|| = llgllBr, f = Ia*g, g € BP. By the Fractional Integration
Theorem, distributions in I, B? are L4 functions, % = 2—1) — 2 with p in the range

d?
(H_La < p < 1. They are shown to satisfy the inequality

MP({z: Mf(z)>A}) <CAf, fel1,Br,

where Mf is the Hardy-Littlewood maximal function and 8 = d(z—l) -2). Asa

consequence, a function f in I, BP can be strictly defined M?-almost everywhere,
in the sense that

f(z) = lim L

T fly)dy
M B Joen’ Y

exists for MP-almost all z € R*. When so defined f turns out to be MP#-
quasicontinuous, which means that given any € > 0 there is an open set G with
MP(G) < e such that the restriction of f to R?\ G is continuous there.

The spectral synthesis theorem referred to above reads as follows.
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Theorem 2. Let F C R? be closed and let f € I,BP, d_;_La <p<

min(1, 7z%—), be MP-quasicontinuous, 8 = d(% —2). Then the following are
equivalent.

(i) f =0 on F, MP-almost everywhere.
(i) There exists a sequence (¢n), ¢n € C°(F°), such that ¢, — f in IoBP.

Some comments on the restriction on p in the above statement are in order.
As we said before, the condition ﬁ; < p tells us that distributions in I,BP
are functions, and thus we can formulate the spectral synthesis problem in the
classical way. The upper bound on p is due to the fact that, in the setting of
Theorem 1, our technique for the approximation of A® functions applies only
when r — 2 < s, where r is the order of the operator under consideration.

A remarkable fact about Theorem 2 is that, unlike the previously known
similar results [9], [13], no assumption is needed on the vanishing of Vf on F
even in the case a > 1. It turns out that Vf vanishes on F' in the appropiate
sense whenever (i) holds and a > 1. To understand this phenomenon and the
role of the condition p < 1 consider the case a = 2. If f € I, BP is good enough
then {f = 0 and Vf # 0} is a set of dimension d — 1, but the gradient of f need
be considered only on sets of dimension d(% — 1) (because V f € I; BP), which is
larger than d — 1.

We point out that nothing is known so far for the potential spaces I, HP,
0 < p<1,except for 0 < @ < 1 (one can then use truncation). For p = 1 see
(13], [17].

In Section 1 we collect some background information and establish some
notation. The constructive part of the proof of Theorem 1 can be found in Section
2, and its completion in Section 3. In Section 4 we briefly discuss Theorem 1 in
the limiting case s = 1 (s = 0 was dealt with in [13]). Finally, Section 5 contains
the spectral synthesis results.

1. Definitions and basic results.

1.1 HausdorfT content. A measure function is a non-decreasing function

h(t), t > 0, such that lim;_,oh(t) = 0. If h is a measure function and F C R? we
set

M"F) =inf Y h(§;),
J

where the infimum is taken over all countable coverings of F' by cubes with
sides of length §; and parallel to the coordinate axes. When h(t) = t*, a > 0,

M"(F) = M%(F) is called the a-dimensional Hausdorff content of F'. The lower
a-dimensional Hausdorff content of F' is defined by

MY (F) = sup M™(F),
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the supremum being taken over all measure functions h which satisfy h(t) < t*
and lim; o h(t)t~* = 0.

One has M® < M® but it can happen that M(F) = 0 < M*(F). For
instance, if F' is the segment [0,1] in the plane, then M!(F) = 0 but M(F) =
1. An old result of Sion and Sjerve [19] in geometric measure theory asserts
that M2(F) = 0 if and only if F' is a countable union of sets with finite a-
dimensional Hausdorff measure. For a ball B, M®(B) = M%(B) and for open
sets U, M¥(U) ~ M*(U).

1.2. In [1] it is shown that
(1.1) M**({z e R*: Mf(z) > A}) < CA7Hhl|m,

where f = I, xh, 0 < s < d, h € H'(R?%), and M is the Hardy-Littlewood
maximal operator. It follows readily that any f € I, H! has a (essentially unique)
M?—3_quasicontinuous representative.

1.3. Lipschitz spaces. Given 0 < s < 1 the space A*(R?) consists of
those functions f such that

lflls = sup{ws(f,6) : 6§ >0} < oo,

where w,(f,68) = sup{|f(z) = f(¥)| |z —y|7* : |z —y| < 6}
Let s > 1 be non-integer. The space A*(R?) consists of those functions f in
Cl*l(R?) such that 8% f € A*~IsI(R?) for |B] = [s].

The space A'(R%), the Zygmund class, consists those continuous functions
such that

I£]l1 = sup{w1i(f,6) : 6§ > 0} < oo,
where wy(f,8) = sup{|f(z+h) + f(z — h) —2f(z)| |h|™* : h € R?}.
If s > 1 is an integer, we define A®*(R%) as the functions in C*~!(R?) such
that 8% f € AY(R?) for all |3 = s—1.
A function f € A*(R?) if and only if f € C*~"(R?) and w,(V*~"f,6) — 0 as
8 — 0, where 7 = 1 if s € N and r = s — [s] otherwise.
To each compact subset X of R? one associates the restriction spaces

A*(X) = A°(R%)x =~ A*(RY)/I,(X)
X(X) = ¥R x =1 (RY)/J(X),
where
L(X)={feARY): f=0 on X}
Jo(X)={feNRY: f=0 on X}.

We refer the reader to [11, III, 1 and 2] for intrinsic descriptions of the
functions in A*(X), involving the Whitney Extension Theorem.
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1.4 The containing Banach space of HP. Let HP(R?) be the usual
Fefferman-Stein Hardy space, 0 < p < 1. One can characterize HP as the space
of distributions of the form

o0
(1.2) F=> e, D NP <o,
j=0 J

where the a; are p-atoms. Recall that one says that a is a p-atom if:

(i) spt a C B where B is a ball,
(ii) llalleo < |B|7*/7 and
(iii) fa(z)zPdz = 0 for |B] < [d(1—17 —1)], where the brackets mean integer
part.
The quantity

£ e = if (Y IglP) 2,
i

the infimum being taken over all possible expressions (1.2), is a quasi-norm for
0 <p <1 and anorm only for p = 1.

When 0 < p < 1 HP is not a normed space. However, it is known that the
dual of H?(R?) is A*(R?), s = d(; —1). Since A® separates elements of H?, we
may regard HP as being embedded in its bidual. We define BP as the weak-x

closure of H? in (HP)**. It is a consequence of the following general result that
HP? and BP have the same dual.

Lemma. If X is a Banach space and T : HP — X a continuous linear
map, then T extends continuously from BP to X.

Proof. We have to show that ||Tf||x < C||f||sr for all f € HP. We know
that || Tf|lx = sup{|le(Tf)| : llellx» < 1}. Since ¢ = (poT) € (HP)* we have

ITfllx < sup{[$(f)]: ¢ € (HP)* and [|9]| < ||T}
<NTN N F 1B m]

By the Fractional Integration Theorem (e.g. [12]) and the above lemma
the Riesz potential of order s, I,, maps BP in H!, when s = d(% —1). There-
fore, inequality (1.1) tell us that functions in I,BP are M(¢/p)—a = ppd—o+ts_
quasicontinuous.

We also consider B? (atomic BP), the space of distributions of the form
f = %;Aja; where a; are p-atoms and };|A;j| < oo. The norm of f in Bf is
defined as the infimum of all sums 3, |A;].
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It is clear that HP C Bf C BP continuously because ||al||g» < |la|lg» < C,
where C is a constant not depending on a. Using the lemma and the fact that
B? is a Banach space we get B = BP.

Let A$(R?) be the closure in A®(R%) of C§°(R?), the space of indefinitely
differentiable functions with compact support. Using the arguments of [4, p.638-
642] one can prove the following.

Theorem. BP is the dual of A3(R%) (s = d(% —1)). More precisely, given
0 P

any continuous linear functional ¢ on \3(R?) one can find f € BP such that
(1.3) e(v) = (f,v), v € C§°(RY),

where the bracket means the action of the distribution f on the test function
v. Moreover, ||f||Br is equivalent to the linear functional norm. Conversely, if

f € BP and ¢ is defined by (1.3) then ¢ extends to a linear continuous functional
on AJ(R?).

We refer the reader to [5], [6] for an exhaustive information about H?.

1.5. A family (E;) of subsets of R? is said to be almost disjoint with con-
stant N whenever each z € R? belongs to at most N sets E;.

The letter C' will denote a constant, which may be different at each occurence
and which is independent of the relevant variables under consideration.

2. Approximation by potentials of measures. Our first lemma is a general-
ization in R? of [13, 1.1].

2.1 Lemma. Let (Bj) be a finite family of open balls such that for some
A > 1, (AB;) is almost disjoint with constant N. Let hj € A*(R?), 0 < s < 1, be
harmonic outside a compact subset of B; and assume that

hj(z) = O(|z|~%) as T — 0o.

Then

13 Ayl < Cmax .
J

for some positive constant C = C(\,d,N).
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Proof. We start by remarking that the lemma is obviously true when each
h; is supported in ABj, because the family (AB;) is almost disjoint. We will
now show how the general case can be reduced to this particular case. The key
fact in the argument below is the invariance of Lipschitz spaces under Calderén-
Zygmund operators.

The main idea is to write each h; in the form
(2].) hj = Xj + bj,
with spt b; C ABj, |Ibjlls < Clh;|ls and

X = Z OPE x HY,
18]=2

where E is the fundamental solution for the laplacian and spt Hf, C ABj,

||Hé|l8 < C||hj|ls. Since OPE is the kernel of a Calderén-Zygmund operator
[20, IT], we then have

> nall, < o N10°E 3 Hall, + 13 will,
J J

|81=2 i

<Oy I HAL+IDobill,
Bl=2 4 J

< C ) max||Hj||s + max||b;],
1Bl=2 ’ !

< Cmax||hjls,

where in the next to the last inequality we applied the initial remark.

Let’s now turn to the proof of (2.1). Fix j and set h = h; and B = B, to
simplify notation. Assume that B is a ball centered at the origin with radius 4.
The expansion of h at infinity is

h(z)= Y C*0E(z) if |z] > 6,

|l >2

where C = ((—1)l*l/a!)(Ah,y*).
Consider A; and Az such that 1 < A; < Ay < A. Let ¥ € C§°(A\1B) such
that ¢ = 1 on B and |8%%| < C(A\16)71%, 0 < |a| £ 2. Then

|1C2| = [(Ah, %) = [(A(h = h(0)), y°)|
< / Ih(y) - h(O)] |A((x)y®)] dy,
A1 B
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and since

aal...aad 1/2
o) __ 1 d
max|y”| ( e ) ’

where we have set o =1 if a; = 0, one obtains

a®...q%\1/2
(2'2) |a!0a| < C”h”s|a’|2(/\16)d+‘a|—2+8 ( 1| l|a| d_) »
(67

where C' is a constant that depends only on d.
Take ¢ € C*®°(R?) such that ¢ = 0 on A\2B, ¢ = 1 on (AB)° and |8%¢p| <
C(A6)71e, 0< || <3

Given a = (ay,...,a4), |@| > 2, choose any two multiindexes

(23 v =7(a) and 8 = B(a) such that a = v+ and |8 = 2.

It is clear that
P(@)0"E(@) = [ B@- AW EW) du
and so
OB() = [ Bw-1)A(pw)0"EW) dy on (AB)®.
Differentiating this identity, we obtain
0°E(z) = 0P07E(z) = / PE( —y)A(oy)d"E(y)) dy, © € (\B),

and consequently on (AB)¢,

C*9°E = 3PEx C*A(pd"E)
=0PExC@",

where the last identity is a definition of G7.
We want an estimate for ||G7||,. Since

d
A(pd"E) = Apd"E+2) 0'00'0"E

i=1
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we get
VG |loo < C(673 max |0"E| + 6% max |VO"E|++6~" max |V E|)
ly|=A26 lyl=X26 lyl=A26
= C(\6)~¢"M-Y(A, + B, +D,),
where

A, =sup{|0"E(z)| : |z| =1}
B, = sup{|VO"E(z)| : |z| = 1}
D, = sup{|V?0"E(z)| : |z| = 1}.

To control the s norm of G7 it is enough to estimate first differences for
couples of points z,y € AB, because the support of G7 is in AB. For such z and
y we have

(24) 1G7(@)-G"(Y)| [z —y|7* < CIVG||ob"

< C(A8)~4M161=2(A, + B, + D,).

Now we need upper bounds for A, B, and D,. The fundamental solution
of the laplacian E is a real analytic function on R?\ {0}. Fix y € R, |y| = 1, so
that E(z—y) = Z|a|20aa(x—y)a for |z —y| < 1, where ay = (a!)"10%E(y),
and the convergence of the above series is uniform on |z — y| < k™!, for any fixed
k > 1. Given a multiindex v consider the polydisc {(z1,...,24) € C% : |z; —y;| <

k=1v/7|v|~1}. Since E(z—y) = Y aq(z—y)* is holomorphic in this polydisc,
Cauchy inequalities give the estimate

7l /2
|07E(y)| < C(k)k"y! (#ﬂ—ﬁ‘;) ) ly| =1,

where C(k) is a constant depending only on k. Therefore

1/2
A, < C(k)k'""’y' ———h‘hl
7= : ’YI“ .“’y(’iy‘i

1/2
(2:5) B, < C(REMY(7] +1) (M)

Y Yd
711 ’yd

1/2
+2 |7|+2
Dy < C(k)EMAy1(|y] +1)? (ﬂgiﬁr—)—w— :

..ryd
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Combining (2.2), (2.4) and (2.5), we get
Ak d—2+|a|
(2:6) lee6l <o (32) a2l
On the other hand, given |3| = 2 we define
I(B) ={a:a =B+~ in the representation (2.3)}.

Set
Hg= Y C*G? and X= ) 0°ExHp.
a€l(p) 18]=2
Hence spt Hg C AB and

Ak 42
IHglls < S 1IC*Gs < CE)IIRNs S laf /2 (/\;2>

|| >2 || >2
> MEN" (m+d-1
< /2 ( 21
scwinl S m (35) (")
< C|lhlls,

where the second inequality follows from (2.6) and in the last we choosed k > 1
such that A1k < Ag.

Finally, set b = h— X. Then ||b||s < C||h||s and spt b C AB, because X was

defined so that h = X on (AB)°. O
The next lemma is a variant of 2.1, in which we require less decay of h; at
the infinity but we have a packing condition on the family of balls B;.
2.2 Lemma. Let w(t), t > 0, a non-decreasing function satisfying w(2t)
< Cw(t), t > 0. Let (Bj) be a finite family of open balls of radii §; satisfying

(i) (ABj) is an almost disjoint family for some A > 1,
(ii) For any ball B of radius 8,

D 61w (8;) < CHTIFRW(6).
Bj CB

Let hj € A*(R?) be harmonic outside a compact subset of Bj, ||hjlls < w(6;)
and hj(z) = O(|z|*~%) as z — oo.
Then

I hjlls < Cw(L),
i

L being the diameter of UB;.
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Proof. We will perform a reduction to 2.1. Write the expansion of h; at co

d
hi(z) =Y Cio'E(z) + O(jz|™%),

=1

and notice that by (2.2)

(Gl < CoE1* g, < OBF+u()).

Set )
i = C;|§Bj|—1X(1/2)Bj
and
d . .
P =Y ue0E,
i=1
so that
hj — P; = O(|z|™%).
Since

IS0, < ISR - Bl + 125,

by 2.1 it is clearly enough to show that
(2.7) IPjlls < Clihslls

(2.8) 1Y Pi|, < Cw(L).
i

Now, (2.7) is a consequence of the well known inequality (e.g.[3, p.91])
(2.9) lu* 0 E||s < Csup {|ul(B(z,r))r~**1=% .z € R4, r > 0},

1 being any locally finite measure, and (2.8) follows also from (2.9) provided we
ascertain that for each ball B(z,r)

H(B(z,r)) < w(L)ri 1*e i=1,..,d.
>l :

J
This can be done as follows.

YIIB@r) =D+

r<&; r>6;

<Cw(@) D r* UB(@r)NB;|+C Y 5 w(s))
r<é; B;CB(z,3r)

=I+1IL
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Clearly I < Cw(L)r?1*2, because the B; are almost disjoint. If r < L we

estimate II by Cr¢=1+3w(r) < Cré=1*+5w(L). Otherwise, given any z € |JB;, 11
can be estimated by

2631—1+sw(6j) < Z 5;1_1-‘_80.)(5") < CLd—H-sw(L)
i B;CB(z,L)

< Cri1tey(L). O

2.3 Covering Lemma. Let h(t) = t4~1*%w(t) be a measure function
with w non-decreasing and satisfying w(2t) < Cw(t). Then for any compact set
K C R? there exists a finite family of balls B; of radii §; with the following
properties.

(a) K C UBj.

(b) (2B;) is an almost disjoint family with constant independent of K.
(c) 22;h(685) < CM"(K), where C is independent of K.

(d) For each ball B of radius é

> h(s;) < Ch(s),

B;CB

where C is independent of K.

Remark. If M"(K) = 0 (c) should be replaced by > h(6;) < e, where
€ > 0 has been fixed in advance.

Proof. We start by proving that there exists a finite family of dyadic cubes
satisfying (a), (b), (c) and (d).
It is easy to find a finite family (D;) of dyadic cubes (with disjoint interiors)
of side length r; such that
(i) K C U i Dj.
(i) 5, h(r;) < CMM(K).
(iii) 3 p,cph(rs) < Ch(r), for each cube D of side length r.
To construct the family (D;) we consider a family (P;) of dyadic cubes of

side length o satisfying K C |J; Q; and }°;h(0;) < CM h(K). This family can
be easily modified so that in addition one has

(2.10) > k(o)) < h(o),

PjCP
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for each dyadic cube P of the side length o. In fact, if for such a P (2.10) fails
then we remove the P; contained in P from our family and we put P in it.

Our goal now is to modify the family (D;) so that the double cubes are
almost disjoint and properties (i)-(iii) are preserved.

Given a dyadic cube D of side length r we let Q; stand for the family of
cubes consisting of D and of those dyadic cubes of side length r/2 touching D
but not contained in D. For n > 2 the family @, is defined inductively as follows.
A cube is in Q,, if either it is in Q,_; or it is a dyadic cube of side length r2—™
touching some cube in Q,_; but not contained in any cube in Q,_;.

We define the halo of a dyadic cube D as halo(D) = Jp_, On.

L L L L I T T T T T T T T T T T T T T T

|ANEEEEEERSRREASASEEASEE

|SESESENNSEESEEENEREESENSNS SN NESESEREREREA]

IREENEGEREREREARE!

| B8 0 00 U O 6 0 O 0 0 O O 1 0 0 50 1 O

FIGURE

Let 7 be the maximal cubes in the family (J; halo(D;), and let H = {Q €

F :QNK # 0}. Observe that the family H is finite because it contains at most
as many cubes as the original family (D).

We are going to see that the family H satisfies properties (a), (b), (c) and
(d).
Property (a) is clearly satisfied.
To show that (b) holds just remark that, because of maximality, a cube
Q € 'H of side length r can only touch cubes of H of side lengths %, r or 2r.
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Let’s turn to (c). Given a dyadic cube D of side length r let N, (D) be
the number of cubes of side length 727" which belong to halo(D). A simple
computation shows that N, (D) < 39-14227(4-1) We then have

oo
(2.11) Z h(side length of Q) < CZw(r2_")(r2‘")d‘1+32"(d‘1)
Q€ halo(D) n=0
< Cw(,’.),r.d—1+s
= Ch(side length of D).

Let’s mention in passing that (2.11) holds because s > 0, and that if s = 0 the
left hand side may be infinity.

Set H = {Q;} and let §; be the side length of the cube Q;. Then by (2.11)
and property (ii) of (D;) we have

DRG] D h(B) SCYh(r) < CMMEK).
i J Qi€halo(Dj) J
It is clearly enough to prove (d) with the test ball B replaced by a dyadic
cube. Let’s then fix a dyadic cube @ of side length §. We define the index sets
I={i:Q;i CQ and Q; € halo(D;) for some D; C Q}.
J={i:Qi CQ and Q; ¢ halo(D;) for all D; C Q}.

Therefore
PIRICOEDIICHEDPRICH

Q:iCcQ i€l i€
and by (2.11) and property (iii) of (D;) it follows that

D)<Y, Y ME)SC Y h(ry) < Ch(s).

i€l D;CQ Qi€halo(Dj) D;CQ

Let F(Q) = {R € F: RNAQ # 0 and R C Q}. By construction, for each
Qi, i € J, there is a cube R € F(Q) such that Q; € halo(R). Let r be the side
length of R. Because of (2.11)

doh)<C Y h(r),
i€J ReF(Q)
and now, since the (disjoint) family F(Q) lies on the faces of @ we get
D h(8:) < Ch(s),
ieJ
which completes the proof of (d).

Finally, the lemma follows replacing the dyadic cubes @; by their respective
circumscribed balls. O



718 J. MATEU & J. OROBITG

Given a function ¢ € C$°(R?) one associates to it the Vitushkin localization
operator (see [22, p. 168])
Vof = ¢Af *E,
where E is the fundamental solution of the laplacian and f is any distribution
in R%. Next lemma will allow us to use the Vitushkin’s localization technique.

2.4 Lemma. Let ¢ € C§°(B), B being a ball of center a and radius §.
Then for any function f € A*(R%), 0 < s < 1, we have

ws(thfar) < C(p)ws (f, min(&,r)),

where C(p) =C Z 81%116%¢0]| 0o

|a|<3
In particular, ||V, f|ls < C(p)ws(f,6).

Proof. Without loss of generality we can assume a to be the origin. Put
F(z) = f(z)— f(0). Thus

Vof = pAF xE = pF —=2(VoVf)xE— (FAg)+E.

Since Z?=1 0'(Fotp) = FAp+ VfVp, we get an useful expression for V,, f,
namely

d
Vof = F + (FAQ)xE—2) Fo'px0'E
i=1

=1+ 1T+ 1III.

We are going to estimate w, for the three terms separately. Set |z —y| =r.

For the first term we can suppose that z, y € B and so r < 26. If |y| <7
then obviously |F(y)| < ws(f,r)r® and if |y| > r then |F(y)| = |f(y) — f(0)| <
2|y|r~tws(f,r)r®. Thus

[(eF)(2) = (¢F)(@)] < lllloo (@) = FW+IF )] IVello [z —yl,

and so
ws(Iar) < C(‘p)WS(fa min(ra 6))

On the other hand, since ||FAp * E||o < C(p)ws(f,6)8° we have w,s(1I,7) <
C(p)ws(f,6) if r > 6. Whenr < 6

|(FAp* E)(z) - (FAp « E)(y)|

[(FAQ)(z —2) = (FAp)(y — 2)|
S/Bws) |2|%-2 &
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If one distinguishes as above the cases |z — z| < r and |z — 2| > r one gets

|((FAp)(z —2) — (FAp)(y — 2)|
<|Ap(y—2)| |F(z—2) = F(y —2)| + |F(z - 2)| |Ap(z — 2) — Ap(y — 2)|
< C(p)ws(f,r)r*62,

and therefore
ws(IL,r) < C(p)ws(f, min(r,8)).

One proves the analagous estimate for III in a similar way. O

Given a compact set X of R%, let P*(X) be the linear span in A*(X) of the
functions of the type ux E and v * 8*E, where u and v are Borel measures with

o
compact support disjoint from X satisfying

|ul(B(=,r)) < ex(r)rd=2+e z €R?, r >0,

[V|(B(z,r)) < ea(r)rd=1+e TR, r>0,

for some ¢;(r) > 0 asr — 0.

The potentials E x u and 0*E * v belong to A*(R?) because of the required
growth conditions on y and v. Consequently P*(X) is a subspace of h*(X).

Theorem 2.5.  For each compact set X C R?, P*(X) is dense in h*(X).

Proof. Let f € h®(X). Applying the Whitney Extension Theorem for Lip-
schitz functions (see [20, p. 175]) and using a cut-off function identically equal
to 1 on a neighbourhood of X, we can assume without loss of generality that
f € X*(R%) and has compact support.

Fix 6 > 0 and let (B, ¢k, fr) a 6-Vitushkin scheme for the approximation
of f. This means (see [22, p. 168]) that the following holds.

(1) (By) is an almost disjoint family of open balls of radii § covering R9.
(2) or € CP(B), S =1 on R? and |8%px| < €610 0 < |a| < 3.
(3) fx = pxAfxE, and so f =3 fi.

Notice that fr = 0 whenever By Nspt f = @, and thus only finitely many
fx do not vanish identically.

Fix a point zx € By, and expand fi at oo

d
fi(z) = axE(z — k) +Zb;;aiE(x—mk) +O0(|z|~%).

=1
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We now show that we have the estimates
(2.12) lax] < CM" (Bi\ X)
(2.13) || < C6MM (Bp\ X), i=1,..,d,
where hy(t) =t 23w (t) and w,(t) = ws(f,min(t,6)).

Consider a family of open balls D;, with centers c; and radii §;, which covers
Bi\ X. Let ¢; € C5°(2D;) with |9°¢,] < C8;'*, 0 < || < 2, and Y ; = 1 on
UD;. Since Afi = prAf has support contained in By \;(,

lak| < [(Afe, ) = [(Afe, Y ¢5)] < YAk — frlcs))s 65)
J J
< z /2 V(@)= B |9 o) d

< CZ&;i‘““’ws(fk,éj) <CY h(6)).
7 i

Hence (2.12) follows, and similarly one obtains (2.13).
We would like to have a better estimate for b}, namely

Ibi| < CMM2 (B, \ X) where hy(t) = tha(?),

but unfortunately it can be shown that the above inequality is not always sat-
isfied. To get around this difficulty we will again localize each fi to exploit the
basic estimate (2.13) at a lower level, forcing in this way M"2 to enter the scene.

We know that fi is harmonic outside a compact K C By \X. Take a
covering of K} by open balls By;, with radii dx;, which satisfies the properties
of the Covering Lemma 2.3 with h = hq.

By a lemma of Harvey and Polking [8, 3.1, p. 43] we can construct func-
tions 9; € C§°(3By;) such that Yo = 1 on |, By, and |9%¢;] < €6/,
0 < |a| < 3. Let’s mention that the family (2By;) also satisfies the conclusions
of Lemma 2.3.

Let fr; = ¥;Afxx E, so that fi = Zj Frj-

Consider a positive Borel measure ; with spt px; C (3 By;) \)0( such that
(a) prj(B(z,m)) < hi(r), z € RE, 7 >0,
(b) lll 2 CM™ (3B \ X).



Lipschitz Approzimation by Harmonic Functions 721

It is clear that the function

Hkj
hij = apj—F *
T gl

where ay; is the first coefficient of the expansion at oo of fi;, satisfies fx; — hi; =
O(|z|*~¢) and moreover, using (2.9),

ak;
Mslle < A2l s s B, < Cona(£,805).
T |

Let Hy = 3 ;hgj, so that fy—Hy, = O(|z|'"%) as £ — oo. Applying
Lemmas 2.2 and 2.4

IHy = filla = IY frj — hiills < Cws(f,6),
J

and so ||Hills < [[Hk — fills + I fells < Cws(f,6).
Consider the expansions

d
fe(x) — Hy(z) = Y _bi0"E(z — zx) + O(Jz|~%)

i=1
Fij(x) — hij(z) = Zb 0'E(z — x;) + O(|z| %),
where zx; € By;j. Using (2.13) for b}cj

6] < ) 1bk;| < CY " ha(brs) < CMP2(Ky),
J J

where the last inequality follows from the properties of the family (2By;).

We can now match the coefficients b¢ by means of appropiate functions.  Let
Vi, a positive Borel measure with support contained in K such that

(a) vk(B(z,7)) < ha(r) z€RL r>0,
(b) llwll = CM™ 2 (K).

We define
= Hj, +Z(bk e *G‘E),

which belongs to P*(X) and satisfies || Px||s < Cw,(f,6) and fr, — Pr = O(|z|~%).
An application of Lemma 2.1 gives

1 =3 Bill, = 13- (e = P, < Cmaxifi = Pl
k k

< Cuws(f,6)—0 as § — 0,
and this completes the proof of the theorem. O
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3. Proof of Theorem 1. We start by the most difficult step in the proof of
Theorem 1, that is, that (3) is sufficient for the approximation.

Proof of (3) = (1). The argument at the beginning of the proof of the
Theorem 2.5 shows that
A*(X) = A§(RT) /K,y (X),

where K,(X) = {f € A§(R?) : f=0o0n X}.
Since (A§(R%))* = B, s = d(} —1), we have

(A*(X))" ={beBP:spt bC X}.

Let b € (A*(X))* and assume that b annihillates H*(X). We must show
that b annihillates h*(X), and in view of 2.5 it is in fact enough to ascertain that

b annihillates functions of the form y* E and v % 0*E, where u and v are Borel
measures satisfying

(3.1) lul(B(z,7)) < e1(r)r¥=2**  and spt p C (X)°,
(3.2) W|(B(z,7)) < ea(r)r®1**  and spt v C (X)°.

Since b annihillates H*(X) we have bx E = 0 on X°. We will show that
(3.3) b+ E =0, M2-2+s _ae. on (X)°
and
(3.4) V(b*E) = 0, M2-1+5 _ae. on (X).

Then, from (3.3) we get
(byuxE) = (bxE,u) = /b*Ed,u =0,

because, by the growth condition (3.1), u < MZ3~2+2 (that is, u(A) = 0 whenever
MZ-2+3(A) = 0).
Similarly (3.4) implies that

(b,v*d'E) = (9" (b* E),v) =0,

because v < M3~1+3 which follows from (3.2).

To prove (3.3) we need to introduce a new notion. We say that a function
f, which is defined M*-almost everywhere, is M*-pseudocontinuous at a point
agifforalle >0

g MO (@)~ ()] > e} N Blar) _

r—0 T

Also we set [|f(z)|dM(z) = [;° M*{z: |f(x)| > A} dA.

0.
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Lemma 3.1. Let f be a M9% t-quasicontinuous function in I,H?,
0 <t<d. Then f is M%t-pseudocontinuous, M3 *-almost everywhere.

Proof. We define

1

§f(z) = sup—— / Mf(y) dM(y),
r>0T B(z,r)

where Mf is the Hardy-Littlewood maximal function. We start by showing the
weak type estimate

(3.5) M {z: Sf(x) > A}) < CA Yl ae-

The set {z : Sf(z) > A} is contained in an union of balls B(z,r) satisfying
ri—t < /\‘lfB(z’r)M(Vf)(x)de‘t and by a well-known covering lemma (see
(20, p. 9]) we can select a disjoint sequence of balls B(z;,r;) such that each ball
B(z,r) is contained in |J B(z;,57;).

By Melnikov’s Covering Lemma [16, p. 72] there exits a subfamily B(z;,
5t7;) satisfying

Mt (UB(2i,5m3)) < CZr;i_t

and the packing condition ) B,cB” d b < C§4t, for all balls B of radius é.
Then

M4t ({a e R?: Sf(a) > A}) < C’Zr]‘.i_t

<5 Z/B M(VFf)(z)dM3

(25,75)
C
<53 M@

where each u; is a positive Borel measure with compact support in B(z;,7;)
satisfying p;(B(z,6)) < §47t for all balls B of radius 6 [1, p. 118].

Set p = 3, pj. Given any ball B(z,6) the number of balls in the family
B(zj,r;) which intersect B(x,6) and have radius greater than § is less than a
constant C(d), because this family is disjoint. Therefore

w(B(x,0) = Y nj(B(z,6) + ) pj(B(z,0)
r; <6 r;>6

< > rtyostt <ottt
B(zj 7"‘]’)CB(3736)
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where the last inequality follows from the packing condition.
We finally obtain

Mt ({z €R? : Sf(a) > A}) < %/ M(Vf)(z)dp
Rd
< gl

where the last inequality is proved in [1, sec. 5].

Now, from (3.5) and the fact that f is strictly defined M%~* almost every-
where by

— 1
f(z) =Th—l'%l3(—$ﬂ‘)—| B(m’r)f(y)dy,

we deduce that, M%*-almost all a € R?,

r—0

(3.6) Jimn rt= /B M@= f@laMet) o

Since for all positive ¢ we have

M7 ({z : |f(z) - f(a)| > e}NB(a,r))

Td—t

1 _
<= [ @) - @Mt a),
r B(a,r)
the lemma follows from (3.6). O

We can now proceed to prove (3.3). Set f = Exb € I,BP C I,_,H". Recall
that f = 0 on X°. Let A be the set of points a € X such that f(a) is strictly
defined, f is M?%~2*+5-pseudocontinuous at a and f(a) # 0. Then ifa € A

M4***(B(a,r) \ X)

limsup
g Td_2+3

r—0

M2 ({z: |f(z) = f(a)| > |f(a)|/2} N B(a,r))

< limsup ~d+s =0,

r—0

because f is M4~2+5_pseudocontinuous at a. Condition (4) in Theorem 1 implies
that M3=2+3(A) = 0, and so (3.3) follows.

The proof of (3.4) requires a differentiability result for functions in the
potential space LH', 1 <t < d.
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Lemma 3.2. Let f € LH with 1 < t < d. Then M% 1t glmost all
a € R? satisfies

B(a,r)

=0 |z — al
Remark. When t = d one can get a better result, namely, ordinary differ-
entiability M!-a.e. (see [5]).

Proof. We set f = I;xg, where g € H'. To prove the lemma it is enough
to show that the maximal operator

(38)  Tf(@)=sup Td+11_t / f(@) = £(@) = Vi@ = )]y rasr-eyy

B(a,r) |$ - al
satisfies the weak type estimate
(3.9) M1t ({a € R? : Tf(a) > A}) < CA7H|g|lan,
because smooth functions obviously satisfy (3.7) and C*° NI, H! is dense in I; H?.
To estimate the integrand in (3.8) we assume first that f € C*°. In this
case if ¢t # a
|f(z) = f(a) = Vf(a)(z = a)| |z —a|™! < |f(2) ~ f(a)| |z —a|™* +|Vf(a)|
=I+IL

Clearly, II < M(Vf)(a). To estimate I we put § = |z —a|, B = B(z,6) and
fB= ﬁli,Tfo(y)dy. We have

|f(z) = fa)| < |f(z) - fBl +|fB = f(a)l

and

@)= fol < o7 [ 15@) = sl dy
_1 o) ot dt do
=51 ) 1@ S0t dedote
<l [ 9ot atante

)
<c /mzl /0 IV (2 +uf)| dudo (€)

—c / V1 (2 +2)] |21~ dz < COEM(VF)(z),
|z|<é
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where the last step follows from (20, III, 2.2].
Also similarly

5 — f()] < U;—I /B 1F@W) - £(a)]dy
1
< g /B NLORN (O

< C§M(Vf)(a).

Therefore, I < C(M(Vf)(a) + M(Vf)(z)).
Consequently when f € C*°(R?) and = # a we have

(3.10) |f () = f(a) - Vf(a)(z —a)| |z —a|™}
< C(M(VF)(z)+M(Vi(a)).
Using inequality (1.1) and a standard argument we can prove that given
f € LH" there exists a sequence (f;) in C®° NLH! such that f;(z) — f(z),

Vfi(z) = Vf(z) and M(Vf;)(z) - M(Vf)(z), M1 t-a.e.. Then for MI+1-
almost all a € R%, (3.10) holds for M%+!~* almost all z € R¢, and so

(3.11) Tf(a) < C(M(VS)(a)+Sf(a)) M tae,
where

Sf(a) = sup 74'-11_—7/3( )M(Vf)(x)de+1_t(x).

r>0T

Since 8'f € I;_1H', i = 1,... ,d, inequality (1.1) gives
(3.12) M=t ({a € R : M(Vf)(a) > A}) < CA7Y||g| .
On the other hand, as in the proof of Lemma 3.1 one can prove
(3.13) M1t ({a € R : Sf(a) > A}) < CA7|gl| g
Finally (3.9) follows from (3.11)-(3.13). 0

Lemma 3.3. Let feH,1<t<2andD={z€R: f(z)=0 and
Vf(z) #0}. Then M¥+1~*(D) = 0.
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Proof. Given a € D we can assume 0'f(a) =0, i = 2,..,d, and 8! f(a) = 1.
Therefore, by the above lemma, M9+1~t almost all a € D we have

. |61f(a)(x1 —ay)| d+1—t
0= lim —— dM
Tl_r'r(l) rd+i-t L(a,r)ﬁD |.’E - (ll (x)
€M1 (B(a,r) N D N S(a,8))
2 lim pari=t

where S(a,&) is the cone {zx €R?: ¢|lz —a| < |71 —a1|}, 0 < £ < 1.
On the other hand, using the density theorem for the Hausdorff content (see
(6, (2.10.19)(2)]), M+1~t almost all a € D

M4+t (B(a,r)N D)

0 < ¢ < limsu
p FA+i—t

r—0

Md+1_t(B(a,'r) NnDN S(a,{))

< limsup prES e

r—0

Md+l—t(B(a,"") NnDN T(a,f))

+ limsup
pari=t

r—0

where T'(a,¢) = R?\ S(a,§).
Then for all 0 < £ < 1 one has

M*1=t(B(a,r)N D NT(a,£))

0 < ¢ <limsu
p pa+1=t

r—0
. MY B(a,r) N T(a,
< limsup ( (S_H_)t (2,8) =C(¢),
r—0 T
and it is easy to see that C(¢§) < C(tan€)?~t — 0 as £ — 0. Consequently
Md+1—t(D) =0. O

It is now clear that from (3.3) and the above lemma we even get a stronger
result than (3.4), namely,

o

V(b*E) =0, M3-1+3_3.e. on (X)°.
Proof of (1) = (2). For a compact set K C R? and 0 < s < 1 define
¥s(K) = sup (T, 1)|
as(K) = sup|(T,1)|,
where the first supremum is over those distributions 7' with compact support

contained in K, such that |T* E|ls < 1. In addition we require in the second
that w,(T * E,6) — 0 as § — 0.

For an arbritary set F' C R¢ we set
'Ys(F) = sup~, (K) and a,(F) = supa,(K),
both supremums being over the compact subsets of F'.

Next lemma is analogous to a result of Melnikov on removable sets for
Lipschitz holomorphic functions [14].
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Lemma 3.4. There exists a constant C > 1 such that

CTIMI243(F) < 7,(F) < OM4=2+3(F),
CTMI2+(F) < a,(F) < CME~**4(F),

for any o-compact F C RY.

Proof. See [22, p. 178]. O

Now, the argument for the proof of (1)==(2) in Theorem 1 is similar to
that presented in [22, p. 185]. We refer the reader there for more details.

Relationships between conditions (2) and (3). We begin by showing a
density result for the lower Hausdorff content, analogous to the density property
for the Hausdorff content.

Lemma 3.5. For all subset F of R¢ and 0 < o < d one has

(¢3
limsup M, (B(zo,tr) ALY >C M%-a.e. x € F,

r—0 T

where C is a constant which only depends on a and d.
Proof. Let h be a measure function such that h(t) < t* and lim;—o h(t)/t* =

0. We write h(t) = e(t)t*, where 0 < ¢(t) < 1 and &(t) —» 0 as t — 0. Given
0<n<1,if B(z,r)NF C |J;B(z;,r;) with r; < r we have

M"B(z,r)NF) <Y h(rj) <e™(r)>_e(r;)rs
and consequently
MM B(z,r)NF) < ' "(r)M2(B(z,r)N F),
which gives, by letting n — 0,
M"(B(z,r)NF) < e(r)M*(B(z,7) N F).
Then, by the density theorem for the Hausdorff content

a h
limsup M (B(:co,tr) NnF) > limsup M*(B(z,r)NF)
r—0 r r—0 h(T)

>C, Mhae. z€F,

where C' is independent of h and F'. This proves the lemma. O
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In view of 3.5 it becomes now clear that (2) implies (3).

We are going to see how condition (3) gives us condition (2), without going
through (1), solving a particular approximation problem. Let B be a ball. To
show (2) is sufficient to see that M2~2+3(BNJX) < CM*~2+3(B\ X).

We choose a measure function h(t) = e(t)t4~2+%, with 0 < e(t) < 1,e(t) = 0
as t — 0, and a positive Borel measure p supported on BNJX and satisfying
w(B(z,r)) < h(r), |ull > CMI~2**(BNIX).

If p=d/(d+s), B? is the dual space of A§. Consider T' € BP, such that T
annhillates functions of A§ with laplacian supported on B\ X. Then, ExT =0
on B\ X and from condition (3) we deduce as before that ExT =0 on BNoX,
Mi-2+s g

Then (T,E *pu) = (ExT,u) = 0 (because u < M22%%). Therefore there
exists a sequence {¢;} in C§° satisfying
(a) ¢; = E*p weak-+ in A®,

(b) spt Ap; C B\ X.
Since
(Apj,1) = (p,1) and [|Ag;|| < CM=**%(B\ X),
we obtain ||u|| < CM?~2+3(B\ X), which gives the desired inequality.

4. The case s = 1 : the Zygmund class. Theorem 2.5 and Theorem 1 are
also true for s = 1. In fact much simpler proofs can be given in this case. We
now present a brief account of them.

Given a compact set X C R? let P1(X) be the linear span in A'(X) of the
functions of the type u* E where p is a Borel measure with compact support

disjoint of X and |p|(B(z,r) < e(r)r?1, e(r) — 0 as r — 0. It then follows that
PY(X) c h}(X).

4.1 Theorem. For each compact X C R?, P1(X) is dense in h*(X).

The proof, like in Theorem 2.5, is based on the Vitushkin’s localization and
matching coefficients technique. But now as in the case A\*(X), 1 < s < 2, (see
[22]), we only have to match the first coefficient, because of the following result.

Lemma 4.2. Let (Bj) be a finite almost disjoint family of open balls of
radii § > 0. Let f; € AY(R?) be harmonic outside a compact set of B; and
fi(z) = O(|z|*~9). Then

132 Sills < Cmax | £l
J

Sketch of the proof. We reduce the problem to the case f; = O(|z|~¢)
and then we proceed as in [22, p. 179]. The reduction argument is based on the
fact that if u is a Borel measure satisfying |u|(B(z,6) < Cr?, that is, u = f(z)dz
with || fllee < C, then ||I; x pulj; < C. a
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It is now clear how to get (3) = (1) in Theorem 1 for s = 1 using the
above lemma. To prove (1) = (2) we just need to follow the argument in [22,
p. 185] using the version of the Whitney Extension Theorem for the Zygmund
class given in [10] or [11].

5. Spectral synthesis. Since 1,B? — I,_,H? (i) implies (ii) in Theorem 2
follows from a standard argument from inequality (1.1).

To show (ii) implies (i) in Theorem 2 we will first present a reduction argu-
ment to the case a = 2 and then we will deal with this particular case.

5.1 Reduction to the case a=2. By [21, p. 553] I,(A*(R%)) = A*+t%(R%),
a >0, s >0, and so the dual map I}, = I, satisfies

I,B? = B4

where % =
Then

%—% and 0 <p< 1.

I.B? =1,B" where r = B_—Wdh'
d

Now 7= < r < 1 follows from &%& <p< min(l,a;%—_i) and thus the
reduction is performed.

5.2 The case a=2. We employ a duality argument. We observe that the
mapping

I,B?(R%) — BP(R?)
f — Af

is an onto isomorphism. Hence the dual of I;BP(R?) is A*(R%), s = d(3-1),
and the action of a b € A*(R?) on a f € I,BP? is given by

b(f) = (b,AF),

where (,) is the A®-BP duality.
Let b € A®*(R?) such that

(5.1) b(p)=0 for all ¢ € C§°(F°).

We must see that b(f) = 0, f being the function in the statement of Theorem
2. Obviously (5.1) is equivalent to the harmonicity of b on F°. The idea of the
proof consists in applying the Vitushkin’s scheme to approximate b in the weak-x
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topology of A*(R?) by functions 3 for which we know that B(f) is either zero or
small.

We may assume that b is harmonic outside a compact set K of F' (see [13,
p. 314] for the argument).

Fix § > 0 and let (Bj,p;,b;) a 6-Vitushkin scheme for the approximation of
b. Then b; = ¢;AbxI; and so b= Y b;, where the sum is over those j such that

B; intersects K. But if B; C K then b;i(f) = (bj,Af) = (Abj, f) = 0, because
spt Ab; C B; C K and f=0o0n K, M3 2+s_3.e. Therefore

b(f) = (Zb])(f) where J = {j : B;N0K # 0}.

jeJ

We will distinguish three cases:

(1) —d—-(ll-_l < p < 1, corresponding to 0 < s < 1.
d
(2) 172 <p< PR corresponding to 1 < s < 2.
d
(3) P=aTT corresponding to s = 1.

FIRST CASE. As in the proof of Theorem 2.5 we proceed to localize again
each bj, j € J, this time using the Covering Lemma 2.3 with h(t) = td4=1+s.
We get functions

d
P = Zujk*lz +ZV§ * 01y,

k i=1

where pj, and V; are Borel measures with compact support contained in K,
satisfying
skl (B(z,r) < Cré=2+e zeRe, >0,
|V;|(B(a:,r)) < Cri-its zeR r>0.
The functions P; satisfy also

b; = Pj + O(|z|™%) as r — 00

and
I1P5lls < ClIbjlls < C|b]|s.
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Write
b= P+ (b—P)
JjeJ jeJ jeJ
= Bs + Ds.
Then
b(f) = Bs(f) + Ds(f), for all 6 > 0
Now

(ﬂ*Iz)(f) = (“*I2aAf) = (Au'af) = 07
because f = 0 on K M4 2*s_ae., spty C K and pu vanishes on sets of zero
Md_2+3.
Also . . ‘
(v*')(f) = (v* 'y, Af) = (1,0°f) =0,
since Lemma 3.2 implies that Vf = 0 on K M% '*%.ae., spt v C K and v

vanishes on sets of zero M%~1+s
Therefore

Bs(f) =0.

By Lemma 2.1 ||Dslls < CJb|ls, so there is a sequence 6, — 0 and D €

A*(R?) such that Ds, — D weak-* in A*(R%). Thus b(f) = b(D). We claim now
that

Ds — 0 as § — 0,

uniformly on compact subsets of (9K)°. Thus D vanishes on (0K)¢ and by
continuity D vanishes on the whole of R?. Hence b(f) = 0.

To prove the claim consider a compact H C (0K)° and let [ be the distance
from H to 8K. Fix ¢ € H and define for n = 0,1,2,...

Ap={y:né<|r—y|<(n+1)§} and J,={je€J:a;€A,}.

Since the (Bj) is an almost disjoint family of balls, §J, < Cnd=!. Taking
§ < £/3, |z —aj| > £—8 > 26, we can apply for each j € J the decay lemma (see
[22, p. 163]) and so

1bj(@) = P;(@)| < C8™*|a = a;{~*blls, when [&—aj| > 26.
Therefore

M,
IDs(2)] < 3" Ibs(@) = Pi@)l = D D Ibi(x) — Py(x)l,

jE€J n=sz€Jn
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where
N, = [dlst(;v,K)] and M, = [dlst(x,K);-dlam(K)] 41
Next
M, a1 6d+8 M
< - < s T
IDsa) < Ot~ g bl < 0o os (3 )
< C6°||b||, log (2 (1 + ‘hﬂt}u{—)» 0 2s 6 — 0,

and the claim is proved.
SECOND CASE. Taking into account [22, p. 184] we can construct a function
}Dj = g * 127

where p; is a Borel measure with compact support contained in K such that
lu;|(B(z,r)) < Cri=2+s, z € R, r > 0, satisfying

b; = P; +O(|z|*™%) as T — 00
and
I1P5lls < Cllbslls < Clb]ls.
Set

> bj=Y_Pj+Y (bj—P;) = Bs+Ds,

jeJ jeJ jeJ
so that, as before,

b(f) = Ds(f).

Again it is enough to show that Ds — 0 uniformly on compact subsets of
(OK)e.

Given a compact H C (0K)¢ and z € H, by the decay lemma we have

L diam(K)
IDs(@)| < Y [bj = Pil(z) < C&* bl ——5—> =0 as§—0
n=N,

because s > 1, and this ends the proof of the second case.
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THIRD CASE. As in Theorem 4.1, setting, for each j € J,
Py = pj*1a,

where p; is some Borel measure with compact support contained in K such that
lus|(B(z,r)) < Cré=t, z € R%, 7 > 0, we get

b; — Pj = O(|z|'~%) as ¥ — 00,
and
I1P;llx < Clibjllx < Cljbl1.
This time we need a zero of order d at oo, so we set
d
(bj — Pj)(z) =Y _ Cid'ly(z — a;) + O(|z| %) as T — 00,
i=1

a; being the center of B;. It is easy to see that |Ci| < C8%|b; — Pj|l1 < C6%||b||:.
Let ¢; € Cgo(BJ), fl/)] =1 and Ile"oo < C674. Define

d

i=1
Thus
bj = Pj+H; +0(|z|~%) as T — 00
and by (2.9)
1 Hjllx < Cliblls-
Set
> by => (P +Hj)+Y (b — P;— Hj)
jeJ JjeJ JjeJ
= Bs + Ds.
Then

b(f) = Bs(f) + Ds(f)-

It is clear that (P; xI3,Af) = (u;,f) = 0. On the other hand, using that
(Bj) is an almost disjoint family and ||C;:¢j||oo < C||b||1 we have

|(S"H;,Af)] < Cllbllx / ]

|Vfl =0 as § — 0,
jeJ UB;\K

because |Vf| € L(R?) and |J B; decreases to K.
Hence Bs(f) —» 0as 6§ — 0.

As in the preceeding cases we can also show that Ds(f) — 0 as § — 0, thus
completing the proof of Theorem 2. 0O
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