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Several practical implications of the noncrossing property of one-dimensional Bohm trajectories are exam-
ined. It is shown that the position of a Bohm particle, the average transmission, reflection and dwell times, and
the probability distribution of these tunneling times, can all be obtained without actually calculating trajecto-
ries. On the other hand, the intuitive interpretation of the scattering of wave packets by potential barriers is
discussed within the framework of Bohm's interpretation of quantum mechanics. In this regard, claims that
Bohm's approach leads to counterintuitive results are shown to be subjé&ME50-294{©6)02209-3

PACS numbg(s): 03.65—w, 73.40.Gk, 85.30.Mn, 02.70.Lq

I. INTRODUCTION ingless results due to the collapse of the wave function after
the first measurement. For this reason, there is no contradic-
In the context of one-dimensional tunneling configura-tion if some of the diverse quantities proposed to represent
tions, the dwell time is defined as the averdgesemblg the tunneling times within conventional QM do not satisfy
time spent by the incoming patrticles in the potential barrierEq. (2). On the contrary, tunneling times are unambiguously
region @<x<bh): defined within Bohm’s interpretation of Q12—14], which
is a causal theory of quantum-mechanical processes in space
* b and time, and not just a theory about experimental results
TD:fO dtfadx|\1f(x,t)|2. () [15]. Since, on the other hand, the Bohm tunneling times
perfectly fit the previous general definition, they indeed sat-
This time was first postulated by Biker [1], and more re- isfy Ed. (2), as required3-5].
cently rigorous derivations have been obtained within Feyn- According to Bohm's interpretation, an electron is a par-
man’s[2] and Bohm's[3—5] formulations of quantum me- ticle that is guided by a pilot field related to the wave func-
chanics (QM). Although there are some divergencestion ¥(x.t), and follows a well-defined trajectony(x,,t),
regarding its physical interpretatigs,7], this is widely rec-  Which only depends on its starting positiogy within the
ognized as a meaningful concdi®9]. On the other hand, initial wave packet¥(x,0). A complete description of any
much more controversy exists about the transmissigh guantum-mechanical problem, however, requires the consid-
and reflection(7z) times, which are sometimes loosely de- eration of a(classical ensemble of trajectories. All measur-
fined as theaverage times spent in the barrier region by the able quantities, which are obtained by averaging the values
particles that are ultimately transmitted or reflectedspec- Of the single trajectories weighted according|¥(x,,0)%,

tively. In the same way, the relation exactly reproduce the results of the standard interpretation of
QM. Furthermore, since the particle trajectories are perfectly
o=|T|?mr+|R|?7g (2)  defined, some quantities that are controversial within the

standard interpretatiofsuch as tunneling timgsare unam-
(IT|? and |R|? being the transmission and reflection prob- biguous within Bohm's framework. Mainly for this reason,
abilities associated with the wave pacdkist also controver-  the tunneling of electrons through potential barriers has been
sial. Some authors have claimed that this is a necessary reecently analyzed by Leavens and Aers within Bohm'’s inter-
qguirement for any meaningfuly and 7z, arguing that pretation[3-5]. These authors presented the theory in detail,
transmission and reflection are mutually exclusive eventsvorked out several examples of transmission of wave pack-
that exhaust all the possibilitig8]. However, it has also ets through one-dimensional barriers, obtained the distribu-
been pointed out that the questionsill the particle be tions of transmission and reflection tims addition to their
transmitted and “Is the particle in the potential barrier average valugs and compared their results with those of
region?” correspond to noncommuting observablgs11]. other conventional approaches to the tunneling time problem
As a consequence, an additional interference term appears|if]. They also emphasized that one-dimensional Bohm tra-
the right-hand side of Eq2) [11]. In our opinion, however, jectories never intersect at any space-time point, and dis-
if the definition of the tunneling times given just prior to Eqg. cussed one of its consequences. There is a bifurcation trajec-
(2) is to be interpreted literally, there should be no doubttory (starting atx.) that separates the wave packet in two
about the validity of relatiorf2). Nevertheless, the problem parts: that to be transmitteck{>Xx.,), and that to be re-
is that this definition is not meaningful within the conven- flected k,<X.g). This means that, within Bohm's approach,
tional interpretation of QM becaus#e time spent in the all the transmission comes from the spatial front of the wave
barrier region by one particleannot actually be measured. packet, and that all the rear part of it is reflected. This had
To determine this time, two successive measurements of pdeeen previously observed by Dewdney and Hilég], and
sition would be required, but this procedure leads to meanmotivated the somehow skeptical comments of Landauer and

1050-2947/96/54)/259411)/$10.00 54 2594 © 1996 The American Physical Society



54 IMPLICATIONS OF THE NONCROSSING PROPERTYRO. . . 2595

Martin [9], who stressed apparent contradictions betweemproach. Assuming a particuldr(x,0), and given the position
these results and the common intuitive interpretation of thex, of an electron within the wave packet, its subsequent tra-
scattering of wave packets by potential barriers. In a veryectoryx(Xp,t) is uniquely determined by simultaneous inte-
recent paper, the noncrossing property of Bohm trajectoriegration of the TDSE and the guidance equatidr/dt
was also used by McKinnon and Leavdiig] to obtain the =uv(x,t). However, due to the uncertainty principle, the
distribution of transmission times without calculating trajec-position of the electron at=0 cannot be precisely known
tories. Their method is very interesting and significantly re-and, as a consequence, one must deal with an ensemble of
duces the time required to compute this distribution. How-trajectories that can be labeled ky. To determine the ex-
ever, further discussion is required because, as we will showgectation value of any functiofobservable or ngtone has
their procedure cannot be applied to all possible cases. to average the results of all the possible trajectories accord-
It is the purpose of this paper to discuss several practicahg to a weight given by¥ (x,,0)|%dx.
implications of the noncrossing property of Bohm trajecto- The Bohm trajectories can also be viewed as the solutions
ries. In particular, it is shown that the average transmissiomf a modified Hamilton-Jacobi equatigd2] and, as such,
and reflection times can be obtained without actually calcuthey cannot cross each other in the configuration space.
lating a single trajectory, and that the position of a BohmMoreover, since the velocity of the Bohm particles is
particle can be directly obtained from the wave function, i.e.,uniquely determined byS(x,t)/dx, it immediately follows
without following its trajectory. On the other hand, the that the trajectories do not cross in space-time either. In fact,
method of McKinnon and Leaverid7] is reformulated so if two trajectories should cross at a point,{), the corre-
that it can be used to obtain the distributions of transmissionsponding velocities would also be identical, and the trajecto-
reflection, and dwell times correspondingartbitrary wave  ries would cross in the configuration space. In one-
packets and potential barriers, without calculating trajectodimensional systems, the fact that Bohm trajectories do not
ries. Finally, subjective implications of the fact that Bohm intersect each other means that any pair of particles starting
trajectories never intersect are also discussed. In this regardf initial pointsxq,>Xq; Will maintain their relative positions
we try to reconcile the results obtained within Bohm’s ap-all the time, i.e.x(Xg2t) >X(Xq1,t). Since, on the other hand,
proach with the common sense interpretation of the scattethe probability density|W(x,t)|? is directly related to the
ing processes in one-dimensional tunneling configurationgositions of the Bohm particles,
We center our discussions in double-barrier resonant tunnel-
ing structures(DBRTS because the phenomenology is P 2500
ric?her than in the simpler case of singlg barriers. In g:J;I/I the ¥ (xD]"= fﬁxdx0|\lf(xo,0)| Sx=x(xo,0), (3
numerical examples, physical parametéeffective mass,
barrier heights and thicknesses, ptiypical of the GaAs/ it follows that the total probability presence at the rigot
AlGaAs system are considered. left) of any trajectory is constant for all the times. Thus, if we
defineQ(x,t) as the probability presence to the right of point
X at timet:
Il. NONCROSSING PROPERTY OF BOHM
o t
TRAJECTORIES Q(x,t)zf |\If(x’,t)|2dx’=f J(x,t")dt’, (4)
In Bohm’s interpretation of nonrelativistic Q¥L.2—14, X 0
an electron is a particle the motion of which is completely
determined by an objectively real field related to the wav
function ¥(x,t), so that it has a well-determined position
and velocity at each instant of time, i.e., a well-defined tra- o
jectory. In this casual interpretatio®;(x,t) is a solution of Q(xo)Ef dx|‘If(x,0)|2:f
the time-dependent Schiimger equatiofTDSE), the veloc- *o X(Xo
ity at any space-time point is uniquely given hyx,t)
=9S(x,t)/dx [S(x,t) being the phase of the complex wave
fuqction], and| ¥ (x,1)| *dx is the probabili'ty of the electron that there is a bifurcation trajectomy(t) = x(Xo,t) implic-
being betweerx andx+dx at timet even in the absence of itly given by
a position measurement. The description of any scattering
problem requires the choice of an initial wave function o
W(x,0) adequate to the particular situation, and the analysis |T|2=j dx|W(x,1)]?, (6)
of its subsequent time evolution. A description in terms of Xe(V

scattering energy eigenstates is not convenient because th%ﬁich divides the wave packet in two spatially separated

are stationary_ states and time _evquFion is inherent to th arts,|\IfT(x,t)|2 and|\IfR(x,t)|2, which are to be transmitted
concept of trajectory. Moreover, if stationary states are use nd reflected, respectively:

unphysical and inconsistent results come out within Bohm’s

we can also label each trajectory @fx,) =Q(x,,0) and the
eprobability presence to the right &fx,,t) is alwaysQ(Xy):

o0

dx¥(x,t)|2. (5
9]

The first consequence of the noncrossing property of Bohm
trajectories, already pointed out by Leavens and ABtsis

framework[18,19. In any case, this is not a limitation of | W(x,1)|2= ¥ (x,1)|20] x—x(1)],
Bohm'’s interpretation but rather a consequence of the nature
of these states themselves which, not being normalized, can- |WR(X,D)]2=|P(x,1)|20[ x(t) —X], (7)

not be a perfect description of the quantum system. For these
reasons, localized time-dependent wave packets have to ¥ x] being the unit step Heaviside function. This is particle-
used to analyze scattering processes within Bohm's apike decompositiorf20], which allows the calculation of the
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average transmission and reflection times directly from thevith a(E)= [§Wg (X)W (x,0)dx. Thus, to obtain the position
wave function without weighting trajectori¢s]: of any Bohm particle at timé,, we do not need to evaluate
the associated wave function nor its trajectory at intermedi-
1 (= b 5 ate times betweet=0 andt=t,. This method, which is the
TR fo dtL dXWr(x )%, one used in this paper to integrate the TDSE is only valid for
time-independent potential profiléghis is the case between
successive actualizations of the potential in a MC simula-

TRziz fmdtfbdx|\IfR(x,t)|2. (g)  tion), and has the additional advantage of avoiding spurious
IRI* Jo a reflections at the boundaries of the integration b23].
Notice that only the bifurcation trajectomy(t) is needed to
obtain|¥(x,t)[? and|¥x(x,t)|?, and that this directly allows Il DISTRIBUTION OF TUNNELING TIMES
the calculation ofr; and 7. However, the explicit calcula- As we have advanced in Sec. I, another important con-
tion of x.(t) is not required to obtained these tunneling sequence of the noncrossing property of Bohm trajectories is
times, as it will be shown below. that the distributions of transmission, reflection, and dwell

The noncrossing property of Bohm trajectories has othetimes can also be be obtained without calculating trajecto-
interesting practical consequences that were not discussediiies. As for the transmission time distribution, McKinnon
[5]: (1) the position of any Bohm particle can be obtainedand Leavens have recently discussed how to evaluate it by
at any arbitrary time without calculating the correspondingconnecting the arrival time distributions at the two bound-
trajectory; and(2) the causal distributions of transmission, aries of the barrietx=a andx="h) with the help of Eq(5)
reflection, and dwell times can also be directly determined17]. Although we agree with their basic idea of connecting
from the time-evolved wave function. Section Il is entirely arrival time distributions, we want to point out that their
dedicated to show how these distributions can be obtainedhethod is not completely general. In particular, they implic-
without evaluating trajectories, and the rest of this section istly assumed that different Bohm particles must have differ-
devoted to the discussion of how to assess the position of amgnt transmission times and, although this is the case in the
Bohm particle fromW¥(x,t), and to some practical implica- most common situations, this is not true in general. This is
tions of this property. From Ed5), it immediately follows discussed in detail below, and a reformulation of McKinnon
that we can determine the position of a Bohm particle at anynd Leavens’s method is presented to overcome its limita-
time by integrating the presence probability. In other wordstions.
for a particle starting ak,, we can compute its position Recently, Muga, Brouard, and Mas have rigorously
X(Xg,t) at any arbitrary instant of timg, without wonder-  justified the use of the current density as an arrival time
ing about its trajectory betwedr=0 andt=t,. In fact, hav-  distribution within the conventional interpretation of QM
ing calculatedQ(x,) from the initial wave packet, we can [25]. If J(x,t) is the probability current density at poimnt
determinex(x,,to) by spatial integration of the time-evolved and timet, the quantum-mechanical particles créssive aj
wave functionW(x,ty). This is quite a trivial result, but it this point distributed according to
may have very interesting practical consequences. If, for ex-
ample, Bohm trajectories were used for the extension of the |3(x,t)]
Monte Carlo(MC) simulation technique to quantum-based Pyx()= m
electron devices such as resonant tunneling dipggk the o ’
direct calculation of the position of the Bohm particles would tje apsolute value is required to take into account that the
significantly reduce the computation times. In a MC schemegrrent density can take negative values, and the normaliza-
the time of flight is chosen through the generation of a ranjon, s needed because it is neither guaranteed that all the
dom number according to the total scattering rate. Using Ecbarticles arrive at poink, nor that they do not cross the
(5), we would be able to obtain the position of the electrongerface several times from left to right and vice versa.
after their free flight without computing their entire trajec- Equation(10) is quite intuitive, and had already been previ-
tory. This would largely improve the numerical efficiency ously proposed by other authofd0,26,27. Following
because of the huge number of trajectories that should othyKinnon and Leaven§l7], we considerQ(x,t) [see Eq.
erwise be calculated. Let us finally indicate that the CONVe14)] at the boundaries of the barrier, i.€(a,t) andQ(b,t).
nien_ce of this procedure to assess the position of the Bo_hrpor the typical problem of a Gaussian wave packet imping-
particles can be enhanced by the use of an appropriaigy ypon a DBRTSsee diagram in Fig.)lfrom left to right,
method to solve the TDSE. In this regard, instead of tlme-Q(a’t) and Q(b,t) appear as shown in Fig. 2. Notice that
discretizing this equation, as it is usually dof®2], it is Q(b,t) increases monotonously towart§? (though oscil-
more convenient to begin by numerically solving the stationa4ing for reasons that will be discussed beJpand that this
ary Schralinger equation(see, for example{23,24), and  means thad(b,t)>0 at all times. In this regard, we have to
then project the initial wave packet onto the basis of Hamil-gint out that although the positivity of the current density
tonian scattering eigenstatdisg(x). In this way, the time-  paq peen recently demonstrated for the asymptotic region
dependent wave function can be directly obtained by supelgiciently far from the barrief25], it can be shown that the
position, i.e., without calculating it at intermediate times: . ,irent density can eventually take negative values=ab

in extreme situation&apricious wave packetsHowever, in
W (X,to) = foca(E)e—i(Eto)/h\I,E(X)dE (9) the rest of the paper we will assume th]_&t.),_tb)>0 or, in
0 other words, we will neglect the possibility of reentrant

(10
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author’'s computer codes to monitor reentrant trajectories at
x=Db has yet to be triggered[27]. This is not the case, of
course, at thex=a boundary. In particular, all the reflected

~— Barrier region — particles that cross this interface from left to right cross it
again from right to left. For the case shown in FigHa,t)
t, e - increases monotonousfyhough oscillating af(b,t)] be-
// fore reaching its maximum and then it decreases towards

]l — |T|?. However, this behavior is not the most general ¢aee
: it will be shown below because, depending on the shape of

g’) 5 B the initial wave packetQ(a,t) can present several relative
.......... 7 & 8 maxima, which correspond to particles that cross tkea
............. o s boundary more than once before being finally reflected or
° 2 transmitted.
x=a x=b A. Average tunneling times

Before discussing the method to calculate the tunneling
time distributions, let us show howy, , 7+, and 7 can all be
obtained fromQ(a,t) andQ(b,t), i.e., without evaluating a

FIG. 1. Schematic diagram of the considered symmetric doubleSingle trajectory. For the sake of simplicity, we begin by
barrier heteroestructures. A hypothetical trajectory is used to defingonsidering cases as that of Fig. 2, i.e., witta,t) showing
t, (t}) andt, as the times the trajectory crosses #wea and the @ single maximum. First of all, notice that the probability
x=b interface, respectively. presence in the barrier regiom(t)=J 5| W (x,t)|%dx, is

equal toQ(a,t) —Q(b,t). Thus, according to Eq(l), the

Bohm trajectories at th&=b interface. In this sense, our dwell time is
numerical results of this and previous works have always .
confirmed this z_igsumptl({a9,28|, in spite o_f the fact that in TD:f [Q(a,t)— Q(b,t)]dt (11)
QM the probability current can take negative values even for 0
states having only positive momentum componef#§].
This is in agreement wiht Leavens and Aers’s res[fis and this corresponds to the area enclosed by the two curves
who never found Bohm trajectories Crossing x¥eb bound- of Flg 2. It can also be shown that this area is divided by the

ary from right to left. In Leavens’s words, “a flag in the horizontal lineQ(t)=|T|? in two subareas that are propor-
tional to 7 and 7z, respectively. Effectively, since Bohm

trajectories do not cross, all the particles that have entered

025 S the barrier are to be finally transmitted @(a,t)<|TL2.
Thus, fort<t, [with t, implicitly defined byQ(a,t;)=|T|],
the probability presence @b be transmittegarticles in the

020 - barrier region,D1(t)= /%W (x,t)|?dx, is equal toQ(a,t)
—Q(b,t), and coincides wittD(t). For t>t;, only those

o1s L particles located at the right of.(t) (which for t>t; is

) located within the barrier or at the right side of @#re to be
’-;I transmitted, and hencB+(t)=|T|>—Q(b,t). As a conse-
S o0l guence, the average transmission time is given by
1 ty
TT=—zf [Q(a,t)—Q(b,t)]dt
0.05F |T| 0
+ ! f 712 Q(b, )]t 12
000 ) 1 L 1 1 1 n 1 1 WZ tl [| | Q( 1 )] . ( )
0 50 100 150 200 250
Time (fs) This demonstrates that the area enclosed by the two curves of

Fig. 2, Q(a,t), Q(b,t), and by the horizontal line
Q(t)=|T|? is equal to|T|?7;. On the other hand, from Eq.
(2) it follows that the rest of the area enclosed®a,t) and
Q(b.1), i.e., the area oveR(t)=|T|? and belowQ(a,t), is
equal to|R|?7g. This can also be formulated as

FIG. 2. Probability presence at the right of the extreme double
barrier pointsQ(a,t) andQ(b,t) as a function of time. These re-
sults correspond to the resonant transmission of a Gaussian electr
wave packetwith the effective mass of poirt in GaAs, i.e., 0.067
times the free-electron masscident upon a double-barrier poten- 1 "
tial t_yp|ca_l of the GaAs/AlGaAs sys_tem. barrier height of Q.3 gV, TR=T= j [Q(a,t)—|T|2]dt. (13)
barrier thickness 2 nm, and well width of 18 nm. The well is wide |R| ty
S0 as to observe the oscillations in the Bohm trajectories. The hori-
zontal line corresponds tQ(t)=|T|?, or in other words, to the In the most general case when the wave packet is such that
Xc(t) trajectory. the corresponding)(a,t) has several maxima and crosses
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the Q(t) = |T|2 line several times before decreasing towards 1 dQ(b,t)

|T|2, the procedure to evaluate the average tunneling times is Pb(tb):W v (16)
analogous. The case of the dwell time is trivial becagses t=ty

always given by Eq(11), independently of the shape of . , . .
Q(a,t). The other two times can also be obtained fromFor this reason, McKinnon and Leavena7] identified
Q(a,t) andQ(b,t), but this requires a straightforward gen- Q(b,?b) as|T| times the cumulative arrival time dlstr!but|on
eralization of Eqs(12) and(13). In the most general case, it function associated witlP(t,). After that, they considered

can be easily demonstrated that the transmission time {&1at the cumulative transmission time distributiQ(tap)
; could be calculated by inverting the relation
given by

tan(Q(X0)) =1tp(Q(Xg)) — ta(Q(Xp)), (17)

i.e., by determining the value d@(x,) that corresponds to
each transmission time,,, and assuming thaQt(t,,)
=Q(xp). Finally, they evaluated the transmission time dis-
tribution P(t,p) by differentiatingQ+(t,,) with respect to
1 e t,p and normalizing by T|2. However, this procedure is cor-
TR= =3 f {ma{Q(a,t),|T|?]—|T|2dt, (15)  rectonly if all the transmitted particles have different trans-
IR[* Jo mitted times, i.e., if the relation betweep, and Q(xy) is
single valued. This condition is satisfied for all the cases
Egs. (12) and (13) being particular cases of Eqel4) and  worked out in[17] but, in the most general case, several
(15), respectively. This demonstrates that the calculation oparticles can have the same transmission time and, as a con-
trajectories is not needed to obtain the average tunnelingequence, Eq17) cannot be inverted. This will be explicitly
times. In particular, the calculation of(t) is also not re- shown by means of an example but, for the moment, let us
quired, since the decomposition of the wave packettiotoe  reformulate the method so that it can be applied to all pos-
transmittedandto be reflectedomponents is implicitly done  sible cases.
when the area betwedd(a,t) andQ(b,t) is divided by the To calculate the transmission time distribution, we pro-
horizontal lineQ(t)=|T|?. In this regard, notice that in a pose to proceed as follows: first that the transmission time
Q=0Q(t) plot, the Bohm trajectories fall on horizontal lines t,p is calculated for each value ¢f, i.e., for all the Bohm
because of their noncrossing property, and Q) =|T|?  particles that arrive atx=b. In this way, a function
actually corresponds to the bifurcation trajectagyt). tan=tan(ty) is obtained. If the transmission time is different
for all the trajectories, i.e., if the functioty,(t,) is mono-
tonic, the transmission time distributid®(t,,,) is directly
given by

1 (=
rr=r |, minQ@ [TE-Qbnjat (4
T U

and the reflection time by

B. Transmission time distribution

As discussed by McKinnon and Leavelis/], the prob-
lem of calculating the transmission time distribution can be dta(ty) ]t dtp(ty) ]t
reduced to matching points of the arrival distributiorxata Pr(tap) = Pb(tb)[d—tb} “IT? J b’tb)[d—tb} '
with points of the arrival distribution at=b. In the standard (18)
interpretation of QM, this matching is not possible because
the actual concept of a particle sequentially arriving at twoThis expression is exactly equivalent to the inversion of Eq.
points is meaningless. On the contrary, within Bohm’s ap{17) proposed by McKinnon and Leavefik/], and it reveals
proach, there is a well-defined procedure that consists ithat the transmission distribution is obtained from a local
identifying which particle arrives at these boundaries at eachenormalization of the arrival time distribution. For the par-
instant of time. In this regard, we have seen that a Bohnticular case of Fig. 2, which corresponds to a Gaussian wave
particle(trajectory can be labeled by its starting positigg. packet impinging upon a DBRTS, the functidg,(t,) is
However, the noncrossing property of the trajectories proshown in Fig. 8a). After a certain time delay, the relation
vides an alternative identification method, which consists irbetweent,, andt, becomes linear and with unity slope, and
labeling the particles by their corresponding valuegdgk,),  this occurs when all théo be transmittedparticles have
as defined in Eq(5). In this way, the particle that arrives at crossed the=a interface. Sincé,, increases monotonously
the x=b boundary att=t, is determined byQ[Xy(t})] with t,, Eg. (18) can be used to calculaf(t,,), as it is
=Q(b,t,), and one can readily calculate the instant of timeexplicitly demonstrated in Fig.(B), where the obtained dis-
t, at which the same particle crossee=a by requiring tribution is compared to that evaluated by integration of
Q(a,t,)=Q[xo(t,)]. This latter equation can have more 2.5x10" Bohm trajectories. The periodic bumps of the ob-
than one solution because the particles can crossthe  tained distribution are due to the presence of Bohm trajecto-
interface several times. However, and for the sake of simries that oscillate in the well of the DBRTS before being
plicity, we will first consider thatas in Fig. 2 the transmit-  finally transmitted, and which are also the cause for the os-
ted particles only cross this boundary once. In this simplestillatory structure inQ(a,t) andQ(b,t) of Fig. 2. Equation
case, the transmission time of the particle which starts afl18) is valid for a monotonid,,(t,,) but, as previously said,
Xo(tp) is justt,,=t,—t,. this function can be nonmonotonic under some circum-

Provided that there are no reentrant trajectories=ab,  stances. In these situations, several discrete valfeg,) of
the distribution of arrival times at this interface can be cal-arrival times,t, [with 1<i<N(t,,)], give exactly the same
culated fromQ(b,t) as transmission timé¢,,,. The dependence ®f ont,, is explic-
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N’ (t,,) solutionst 'a that correspond to the sequential arrival
of thexy(t,) particle to the poink=a from left to right and

vice versa. When a particle crosses a from left to right, it
enters the barrier region, and when the crossing takes place
in the opposite sense, the particle abandons the barrier. Only
those time intervals with the particle within the barrier have
to be counted up to calculate the transmission time to be
consistent with the definition of; as the average time spent
by the transmitted particles in the barrier region. In other
words, we have to determine the time elapsed from the very
first crossing ofx=a (i.e., t1) to the time when it finally
crossex=b (i.e., t,), but we have to subtract the time in-
tervals between right-to-left and left-to-right crossings. Thus,
the transmission time is given by

[N’ (tap) —11/2

tap=tp—t3— n; (3 —15") (20

when thex=a boundary is crossetll’(t,,) times by the
same particle. The rest of the procedure to calculate the
transmission time distribution is identical to that correspond-
ing to a monotonidQ(a,t). As an example of the need of
Egs.(20) and(19) to calculate the transmission time and the
transmission time distribution, respectively, we consider a
wave function composed of two spatially separated Gaussian
wave packets impinging upon a DBRTS. A similar example,
initially studied by Leavens and Aef§], was subsequently
used by Landauer and Martin to comment on toenterin-
tuitive consequences of the noncrossing property of Bohm
trajectorieqg9]. Section IV is entirely devoted to the intuitive
interpretation of scattering events within Bohm’s approach,
and this example will be further examined. However, let us
now concentrate on how the transmission time distribution
can be calculated in this case. The electrons are considered to

FIG. 3. (@ Transmission time as a function of time of arrival at be prepared at=0 in the wave function:

thex=b interface for the scattering process of Fig(l®. Transmis-

sion time distribution obtained by calculating X50* trajectories 1 ) (X—X1)?
(dotted line compared with that obtained using the procedure pre- WV (X,0)= ————7 explikix)exg — ———

; ; . Q(mo?q) 207
sented in the texcontinuous ling

1 . (X—Xp)?

itly indicated to emphasize that the number of Bohm par- + mexmkzx)ex ~ 5.2 |
ticles that have identical transmission times can be different 2 2
for the differentt,, values. In any case, sintgy(t,) is not (21

single valued, Eq(17) cannot be inverted to obtai(t,;,)
as proposed by McKinnon and Leavdid¥]. However, the
generalization of Eq(18) is straightforward, as it only re-
quires to sum up the contribution of all tiN{t,,) particles.

which is composed of two packets centered at the coordinate
pointsx; andx, (with x;<x,), and at wave numbeis, and
k, (with ky<k,), and which evolves towards a DBRTS that

In this way, the transmission time distribution can be calcuhas a transmission resonancekat The constant} is for

lated as

N(tab)
1 [ dtay(ty)
Pr(tan) = 2, WJ(b,tp[ D

-1
—_— . (19
dty tb_tibl

normalization, andr; and o, are the standard deviations of
two successive packets. The actual parameters that define the
barrier and the wave function are those specified in the cap-
tion of Fig. 4. This figure shows the corresponding cumula-
tive arrival time distributions at=a andx=Db, i.e., Q(a,t)
andQ(b,t), respectively. The asymptotic behaviottate is

Before considering a particular example of this situation, leidentical to that shown in Fig. 2, i.e., bot®(a,t) and
us remove the assumption that the left boundary of the bai@(b,t) converge toward$T|? because the probability pres-
rier is only crossed once by each transmitted trajectory. Evernce at the right side of the barrier is equal 1&* when the
in this case, however, if the particle is to be transmitted, wescattering event is finished. As expect€{b,t) increases
know that thex=a boundary has to be crossed an odd num-nonotonously because of the positivity &b,t). On the
ber of times,N'(t,,). These multiple crossings affect the other hand, however, the behavior Qf(a,t) is different

calculation oft,,, since the equatio®(a,t,) = Q[Xq(t,)] has

from that shown in Fig. 2 in several respects. First of all,
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FIG. 4. Probability presence at the right of the extreme barrier

pointsQ(a,t) andQ(b,t) as a function of time. These results cor- 1or
respond to the double Gaussian wave packet £0.067n,) de- ‘\
scribed in the texfEq. (21)] impinging upon a double-barrier po- 08 - 800

tential with 0.3-eV-barrier height, 3-nm-thick barriers, and 5-nm-
wide well. The horizontal corresponds tQ(t)=|T|?, i.e., it
separates transmitted and reflected particles. The horizontal line
(whose crossing are marked with open cirtlesrresponds to one

of the Bohm particles that cross the-a interface three times be-
fore being finally transmitted.

400

(s3) Y oum reary

notice thatQ(a,t) shows two relative maxima before finally
decreasing toward§T|°. These maxima are related to the
arrival and reflection of the two successive packets but, as
we will later show explicitly, only particles from the first one
enter into the barrier region in the two successive attempts to ¢
cross it. WherQ(a,t) decreases after the first relative maxi-
mum, some of the particles that have entered the barrier are

prOV|S|_0naIIy reflected(i.e., they Cross the(=_a interface interface for the scattering process of Fig. 4. The inset highlights a
from right to lefy before being thrown again towards the egion with negative slope and the fact that some groups of three

barrier after a collision with the second wave packet. Sincgonm particles(indicated by open circlgsthat arrive atx=b at

the magnitude of the first maximum is smaller tHai’, all gifferent times have exactly the same transmission tiieTrans-

the particles contributing to it are to be finally transmitted. mission time distribution associated with the scattering of the
As a consequence, some of the transmitted particles cross t@guble-packet wave function. The(t,) curve of(a) is repeated
x=a interface three timegsee the horizontal line and the here to explain the origin of the two sharp peaks of the transmission
circles in Fig. 4. For these particles, Eq20) is required to  distribution.

calculate their transmission time because during the interval

between the second and the third crossings they are outsidlee transmission time distribution shown in Figtbp has

the barrier region. On the other hand, if we look in Fige)5 been obtained without calculating a single trajectory. The
at the relationt,,(t,) obtained using this equation, we per- curvet,y(t,) of Fig. 5a) has also been repeated in Figbb
ceive that it contains negative slope regions. These negative enlighten some relevant features of the transmission time
slopes are related to the extrema(fa,t) and, in particular, distribution. The first broad bump of this distribution is re-
to the first minimum and the first maximum, respectively. Itlated to the particles that are transmitted during the first in-
must be said that several crossings of tkea interface are teraction of the front wave packet with the barrier. This can
a necessarythough not sufficient condition for having a be appreciated in Fig. 4, whef@(b,t) is seen to increase
nonmonotonic relation betweety, and t,. On the other and saturate fot,<100 fs, showing a flat terrace that ex-
hand, this nonmonotonic behavior means that several Bohrtends up tot,>150 fs, and which corresponds to the time
particles cross the barrier in exactly the same transmissioimterval elapsed between the two successive interactions of
time. In particular, as shown in the inset of Figap in the  the front wave packet with the barriéthese sequential in-
particular example that we are analyzing, there are groups déractions and the fact that all the transmission comes from
three particles with identical transmission times. In cases athe front packet will become more evident in Sec).IRe-

this one, Eq(17) cannot be inverted, and the calculation of turning back to the description of the transmission distribu-
P+(t,p) requires the use of our reformulated procedure thation of Fig. 5b), we appreciate a second broad peak that
is explicitly represented by Eq19). Using this procedure, corresponds to the second interaction of the packet with the

Y e A — :
] 50 100 150 200 250 300

Transmission time probability P..(t_ ) (au.)

(=2
~

Transmission time t  (fs)

FIG. 5. (a) Transmission time versus arrival time at theb
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l -1

that spend exactly the same time in the barrier region. These ta=t,

flat regions would consequently lead &functions in the (23)
transmission time distribution. In the same way, the extrema

: : here thet !, represent the first time of arrival to=a of the
of t(t,) are locally flat regions which lead to sharp peaks"’ a . .
[as those of Fig. ®)] in the transmission time distribution g(taa) r_eflec;ed hpar‘gcle_s thit. h?lve exac_tly thle sameh resk-
becausalt,/dt, 0. ence time in the barrier. Finally, consistently weighting

P+(t,p) andPg(t,.) by |T|? and|R|? respectively, we can
directly obtain the dwell time distributioR(t):
-1
tatial

barrier. This second bump, however, is limited by two sharp IR|2—|Ry|?
peaks that can be understood by looking at the superposed Pr(taa) = TIRZ a(t)
tap(tp) function. In this regard, we must notice that eventual

flat regions in thet,,(t,) characteristic are an indication of 1 Nlad [ dtaa(ts)
particles that arrive at different instants of timexs b and + W E J(a,ta)[ dt,

i=1

C. Distribution of dwell and reflection times N(tap)

[ dtgy(ts
Po(t)=TIRE- IR0+ 3, I(ath] o

Although we have used the arrival time distribution at dta
x=b as the starting point to calculak(t,;), an analogous N(t,a) dt.(t 1
procedure can be followed using the arrival distribution at + E Jath) aa(ta) (24)
x=a. In this regard, it is straightforward to demonstrate that i1 [ S P

the transmission time distribution can also be calculated as
t being equal td,, or t,, for transmitted and reflected par-
ticles, respectively.
22) Notice that in all the considered cases, the distributions of
' tunneling times have been obtained without calculating tra-
jectories. All that is needed is the time-evolved wave func-
tion, which is used to calculate the current probability den-
. . . . sity at the boundaries, and to link the corresponding times of
wheret; represents the time of first crossing of tkea  arrival. Again, this represents a very important improvement
interface of theN(t,,) particles that have exactly the same in the efficiency of the numerical procedures because a very
transmission time,;,. Moreover, this procedure can be eas-large number10°~1() of trajectories is usually needed to
ily extended to calculate the reflection and dwell time distri-obtain reliable distributions. Finally, it is worth remarking
butions. Until now, we have only considered transmitted paragain that although the arrival time distributions are perfectly

ticles which, as discussed above, are those @itk,)<|T|?,  defined within the standard interpretation of QM, the distri-
i.e., those that arrive at=a beforet;. Now, we can also butions of transmission and reflection times only make sense

consider those particles which are reflected, i.e., those th#e%::)@;ﬂ”?g?%‘gﬁﬁg%%“jﬁ dgriceasuzm?ltk?g%g?ﬁg??sbﬁégggg
arrive at thex=a interface later thar;. According to the 9

assumption thal(b,t,) is always positive, the reflected par- to calculatet,y andty,.

ticles never cross the=b interface, and they remain within |v. INTUITIVE INTERPRETATION OF THE SCATTERING
the barrier during time intervals enclosed by their first and OF WAVE PACKETS

last crossings of the=a interface. Contrary to the transmit-

ted particles, the reflected ones cross this interface an even L€t uS now consider the implications of the noncrossing
number of times, but the procedure fo calculate their resiPOPEry of Bohm trajectories on the intuitive interpretation

L ; T f the scattering of wave packets by one-dimensional poten-
dence time in the barrier regidg, is analogous to that used 0 ; .
to evaluatet,,, [see Eq.(20)]. As for the calculation of the tial barriers. In this regard, Landauer and Marfil] have

) . A ; made skeptical comments concerning two limit cagpsa
reflection time distribution, although the procedure is Very, ave function composed of two spatially separated packets

similar, a relevany difference.arises from f[he fac_t that not alk, siqent on an opaque barrier; arl) a very long wave
the reflepted particles enter into the barr_ler region, many ofacket(a day in duratiopincident on a very short but high
them being reflected without ever reaching a. The frac-  paprier. In the first case they wrotevave packets in succes-
tion of particles that enter the barrier and are ultimately re<jon, separated by a long time intetva . all the transmitted
flected,|R,[%, can be directly obtained fro@(a,t), since its  paths still come from the very first tip of the first packet
absolute maximum is preciselff|*+|Ry|?. The rest of the and in the second, &l the transmitted packet will come from
reflected particles, i.e., a fraction of the total equal toabout the first microsecond of the incident packe a day
|IR|2—|Ry|%, never enter the barrier and, as a consequencés long compared to any of the kinetic times associated with
have zero reflection time. Thus, the reflection time distribusuch a short barriet’ The second example is difficult to
tion must always include a termR|?>—|R,|?] 8(t) to pre- analyze numerically for obvious reasons, but we will use an
serve the normalization. The distribution of reflection timesenriched version of the first one to show that Bohm’s results
of those particles that actually enter the barrier region is obare fully compatible with an intuitive interpretation of both
tained following a procedure analogous to that of E2R) cases. In particular, we consider the double-packet wave
for transmitted particles, but now for those particles arrive afunction, defined in Sec. Il BEg. (21)], which evolves to-
x=a later thant,. In this way, the reflection time distribu- wards a double-barrier structure that has a resonance around
tion Pg(t,,) is obtained: k,. Sincek; is the center of the rear packet spectrum, this

& dtap(ts) -1

1 _
Pritan) = 2 12 J(a,t'a{d—ta

=1

—
ta=th
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FIG. 6. Representative Bohm trajectories associated with ki, g, Ensemble probability of finding the particles described
double-packet scattering of Fig. 4. The position of the barriers is,y the double-packet wave function of Figs. 6 and 7 as a function of
indicated by vertical dashed lines. The mafkguares for the rear ime during the scattering with the double-barrier potential. The
packet and circles for the front onare a visual aid to relate the yoited Jine corresponds @(t), which represents the probability of
trajectories with the evolution of the wave function shown in Fig. 7. finging the particles in the barrier region, independently of the scat-
Notice that the five horizontal linegonstant timgdefined by the  (ering channeitransmission or reflectionThe continuous line cor-
marks correspgnd to the f.ive ‘.‘snapshots” of the picture motion Ofresponds td+(t), which is the probability of findingo be trans-
the wave function shown in Fig. 7. mitted particles in the barrier region. The vertical line indicates the

average transmission dwell time as defined in expregSipnvhich
second packet is expected to practically control the wholdn this case is 160 fs.
transmission probability(this emphasizes the unexpected
features of the first case considered by Landauer and Martinin first position. Only a small portion of this first packet is

Figure 6 shows selected Bohm trajectories and Fig. 7 is &ansmitted, and the rest of it is reflected with roughly the
picture motion of the traveling wave packet as obtained bysame momenturtk,). At times of the order of 120 fs strong
numerical integration of the TDSE. At the beginning, thejnterference effects take place between the two packets,
front packet travels faster towards the barrier and arrives to iyhich in Fig. 6 appear as a collision between Bohm trajec-
tories. Momentum is interchanged, and the front packet trav-
__ els again towards the barrier, but now with roughly This
=300 fs 3 change of momentum can be noticed in Fig. 6 by a change of
g the slope of the trajectories, but could also be appreciated in
the spatial oscillations of the re@r the imaginary part of
the wave function[30]. This second attempt to cross the
barrier is more successful because now the front packet
reaches the double barrier under resongaceumulation of
particles in the well is also apparent in both figurda the
Schralinger picture, there is not an unambiguous criterion to
decide whether the observed self-interference effects corre-
spond to the scattering or to the crossing of wave packets.
However, although both interpretations are equally accept-
able, only the first one is compatible with Bohm’s picture.
, , e The intuitive idea that the second wave packet, being reso-
0 50 100 150 200 nant, controls most of the transmission continues to be valid.
Distance (nm) What Bohm'’s formulation tells us is that the second packet
does its job bypushingthe first one with the appropriate

FIG. 7. Picture motion of the same double-packet wave functionmomenturn towards the barrier, instead of being transmitted

considered in Fig. 6, calculated by numerical integration of the'tself' _A s_lmllar point F’f view, a_nd the Sam_e example ana-
time-dependent Schdinger equation. Five representative “snap- lyzed in Figs. 6 and 7, is also su!tab!e tp enlighten the case of
shots” obtained at different times are shown with the vertical scald'® One-day-long wave packet impinging upon a very short
arbitrarily changed in each case for clarigithough the norm of and Opaque.bamer- S o
the wave function is always unity, it does not seem so because of 10 establish a clear distinction between the transmission
the scale changgsThe marks are visual aids that indicate the po-time [as defined in expressiof8)] and the duration of the
sition of some related Bohm trajectories shown in Fig. 2. Thewhole scattering process, we have plotted in Fig. 8 the prob-
double-barrier position is indicated by the vertical dashed lines, an@bility of finding a particle in the barrier regioD(t), and

the arrows indicate the sense of motion of the two packets. that of finding a particléo be transmittedn the same spatial

t=120fs

Presence probability (arb. units)
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interval, D+(t). Two different peaks are perceived that cor- V. CONCLUSIONS
respond to the sequential interaction of the first wave packet

with the barrier. In the first interaction everiby(t) coin- tential barriers have been examined within the framework of
cides withD(t), and this means that all the particles that s . : .
Bohm'’s interpretation of quantum mechanics. In particular,

enter the barrier region are ultimately transmitted. The dura\—Ne have focused our attention on the NONCrossing property of
tion of the whole scattering process, which in this case i% lectron’s traiectories. Although this pro egrtp is aIZo
longer than 400 fs, can be appreciated to be much differenpel.defeC rajectories. 9 property ;

from the average transmission tirie ~160 . The period valid for three-dimensional problems, we have only consid-

of time between the successive interactions of the fronf red the particular case of one-dimensional potentials and

. X . . . wave functions.
packet with the barrie(separation of peaks in the figure .
does not contribute to the transmission time, while it is cer- It has been shown that, due to the noncrossing property,

tainly a relevant portion of the whole scattering process. Thisthe average tunneling times and the position of the Bohm

indirectly explains why the scattering of the one-day-longpart'des can both be calculated without integrating and

packet can be roughly interpreted as a steady-state situa,[ic\)/\r/]elghtmg trajectories. The consequences of this fact for the

(the common sense view according to RE®]). What possible use of these trajectories for the extension of the
Bohm's formulation tells us is that r?wst of tHe. packet is Monte Carlo simulation technique to quantum-based devices

reflected by self-interference effects and not by direct inter-have also been emphasized. On the other hand, a method to

action with the barrie(it is reflected by the quantum poten- grt:::;n ﬂfhgﬁtrfﬁgﬁrasm?f d'zlrvae'!cigar?essmlr?;ort])’ezgd rféf:;'t% r:j
tial in regions where the classical potential is 2er@s a his method eneralize% th:j\t of McKinnon andpLeavens.
consequence, although the average transmission time can 1 which h 9 b h 0 h limitati but
of the order of picoseconds, the transmission of the small ti » Which has been shown fo have some fimitations, bu

of the front packet can take much more time, i.e., as much agreserves the fundamental idea of connecting arrival time

; : , istributions. The presented methddundreds of times
':)hrg ér'grfga:; e time of the finally reflected packet the faster than explicitly calculated $@Bohm trajectories not

To finish with the intuitive interpretation of the wave- only largely improves the numerical efficiency in the calcu-

packet scattering, let us take another look at Fig. 6. In thi4ation of distribution of tunneling times, but also allows the
figure we see that Bohm trajectories can be reflected for tw%isueigsbrge\?érc’f d?ﬁt:;rfl)t Igi:ur?Zc?astetrll)osgaﬁ:fug?ﬁ 5{::?:(:,[0_
different reasons: (i) interaction with the classical potential fies y PP y g tray
(i.e., the particles collide with the barrjeand (ii) collision :

with other trajectories traveling in the opposite direction. Thewg':c')?ag\;éh;agzg;gv;y%rgz'r?;‘;l'rg::ﬁ;f;a;:: t?;ézecsggitéeerr-e d
second process is responsible for the reflection of those pa Jithin Bohm’s picture. The obtained results show that not

ticles of the first packet, which never reach the barrier, an%\’nI are the Bohm traiectories fully compatible with the
for the reflection of the entire second packet. These colli- y J y P

sions between Bohm particles are related to the quantur%ommon interpretation of scattering processes, but that they

potential in regions where the classical potential is zero but-a" enlighten some aspects that are less clear in the standard

for them to occur, there should be particles coming froml’nterpretation_of QM' In any case, it must be hi.ghlighted that
right to left. In this, regard, if the initial wave packet is pre- the Bohm trajectories exactly reproduce the time-dependent

pared as a superposition of eigenstates incident from left t ehavior of the wave function so that all the dynamical in-

right (as is always assumed in scattering thought experié)éhmr.?é'iﬁnj gorl]ftligid I'I: g;ﬁesro\llvg:)dnsog:]heeé;?]ig[egg‘:ggz:
mentg, and the classical potential is zero for b, then find- g q : ’

ing particles coming from the right-hand side in this regionthat the behavior of(x,t) is intuitive, and that of the Bohm

will be at least very uncommon. This observation providestraJeCtor'eS counterintuitive because both lead to the same

further intuitive support to the assumption of a positive Cur_observgble_ _results. lCIalms tg"flt E_Sohm trajectories lead to
rentJ(b,t,) or, equivalently, of the absence of reentrant tra_countermtumve results are subjective.

jectories at thex=b boundary. From the above discussion,

we conclude_ that the noncrossing property of thm trajec- ACKNOWLEDGMENTS

tories does indeed allow an intuitive interpretation of the
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