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Several practical implications of the noncrossing property of one-dimensional Bohm trajectories are exam-
ined. It is shown that the position of a Bohm particle, the average transmission, reflection and dwell times, and
the probability distribution of these tunneling times, can all be obtained without actually calculating trajecto-
ries. On the other hand, the intuitive interpretation of the scattering of wave packets by potential barriers is
discussed within the framework of Bohm’s interpretation of quantum mechanics. In this regard, claims that
Bohm’s approach leads to counterintuitive results are shown to be subjective.@S1050-2947~96!02209-3#

PACS number~s!: 03.65.2w, 73.40.Gk, 85.30.Mn, 02.70.Lq

I. INTRODUCTION

In the context of one-dimensional tunneling configura-
tions, the dwell time is defined as the average~ensemble!
time spent by the incoming particles in the potential barrier
region (a,x,b):

tD5E
0

`

dtE
a

b

dxuC~x,t !u2. ~1!

This time was first postulated by Bu¨ttiker @1#, and more re-
cently rigorous derivations have been obtained within Feyn-
man’s @2# and Bohm’s@3–5# formulations of quantum me-
chanics ~QM!. Although there are some divergences
regarding its physical interpretation@6,7#, this is widely rec-
ognized as a meaningful concept@8,9#. On the other hand,
much more controversy exists about the transmission~tT!
and reflection~tR! times, which are sometimes loosely de-
fined as theaverage times spent in the barrier region by the
particles that are ultimately transmitted or reflected, respec-
tively. In the same way, the relation

tD5uTu2tT1uRu2tR ~2!

~uTu2 and uRu2 being the transmission and reflection prob-
abilities associated with the wave packet! is also controver-
sial. Some authors have claimed that this is a necessary re-
quirement for any meaningfultT and tR , arguing that
transmission and reflection are mutually exclusive events
that exhaust all the possibilities@8#. However, it has also
been pointed out that the questions, ‘‘Will the particle be
transmitted’’ and ‘‘ Is the particle in the potential barrier
region?’’ correspond to noncommuting observables@9–11#.
As a consequence, an additional interference term appears in
the right-hand side of Eq.~2! @11#. In our opinion, however,
if the definition of the tunneling times given just prior to Eq.
~2! is to be interpreted literally, there should be no doubt
about the validity of relation~2!. Nevertheless, the problem
is that this definition is not meaningful within the conven-
tional interpretation of QM becausethe time spent in the
barrier region by one particlecannot actually be measured.
To determine this time, two successive measurements of po-
sition would be required, but this procedure leads to mean-

ingless results due to the collapse of the wave function after
the first measurement. For this reason, there is no contradic-
tion if some of the diverse quantities proposed to represent
the tunneling times within conventional QM do not satisfy
Eq. ~2!. On the contrary, tunneling times are unambiguously
defined within Bohm’s interpretation of QM@12–14#, which
is a causal theory of quantum-mechanical processes in space
and time, and not just a theory about experimental results
@15#. Since, on the other hand, the Bohm tunneling times
perfectly fit the previous general definition, they indeed sat-
isfy Eq. ~2!, as required@3–5#.

According to Bohm’s interpretation, an electron is a par-
ticle that is guided by a pilot field related to the wave func-
tion C(x,t), and follows a well-defined trajectoryx(x0 ,t),
which only depends on its starting positionx0 within the
initial wave packetC(x,0). A complete description of any
quantum-mechanical problem, however, requires the consid-
eration of a~classical! ensemble of trajectories. All measur-
able quantities, which are obtained by averaging the values
of the single trajectories weighted according touC~x0,0!u

2,
exactly reproduce the results of the standard interpretation of
QM. Furthermore, since the particle trajectories are perfectly
defined, some quantities that are controversial within the
standard interpretation~such as tunneling times! are unam-
biguous within Bohm’s framework. Mainly for this reason,
the tunneling of electrons through potential barriers has been
recently analyzed by Leavens and Aers within Bohm’s inter-
pretation@3–5#. These authors presented the theory in detail,
worked out several examples of transmission of wave pack-
ets through one-dimensional barriers, obtained the distribu-
tions of transmission and reflection times~in addition to their
average values!, and compared their results with those of
other conventional approaches to the tunneling time problem
@5#. They also emphasized that one-dimensional Bohm tra-
jectories never intersect at any space-time point, and dis-
cussed one of its consequences. There is a bifurcation trajec-
tory ~starting atxc0! that separates the wave packet in two
parts: that to be transmitted (x0.xc0), and that to be re-
flected (x0,xc0). This means that, within Bohm’s approach,
all the transmission comes from the spatial front of the wave
packet, and that all the rear part of it is reflected. This had
been previously observed by Dewdney and Hiley@16#, and
motivated the somehow skeptical comments of Landauer and
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Martin @9#, who stressed apparent contradictions between
these results and the common intuitive interpretation of the
scattering of wave packets by potential barriers. In a very
recent paper, the noncrossing property of Bohm trajectories
was also used by McKinnon and Leavens@17# to obtain the
distribution of transmission times without calculating trajec-
tories. Their method is very interesting and significantly re-
duces the time required to compute this distribution. How-
ever, further discussion is required because, as we will show,
their procedure cannot be applied to all possible cases.

It is the purpose of this paper to discuss several practical
implications of the noncrossing property of Bohm trajecto-
ries. In particular, it is shown that the average transmission
and reflection times can be obtained without actually calcu-
lating a single trajectory, and that the position of a Bohm
particle can be directly obtained from the wave function, i.e.,
without following its trajectory. On the other hand, the
method of McKinnon and Leavens@17# is reformulated so
that it can be used to obtain the distributions of transmission,
reflection, and dwell times corresponding toarbitrary wave
packets and potential barriers, without calculating trajecto-
ries. Finally, subjective implications of the fact that Bohm
trajectories never intersect are also discussed. In this regard,
we try to reconcile the results obtained within Bohm’s ap-
proach with the common sense interpretation of the scatter-
ing processes in one-dimensional tunneling configurations.
We center our discussions in double-barrier resonant tunnel-
ing structures ~DBRTS! because the phenomenology is
richer than in the simpler case of single barriers. In all the
numerical examples, physical parameters~effective mass,
barrier heights and thicknesses, etc.! typical of the GaAs/
AlGaAs system are considered.

II. NONCROSSING PROPERTY OF BOHM
TRAJECTORIES

In Bohm’s interpretation of nonrelativistic QM@12–14#,
an electron is a particle the motion of which is completely
determined by an objectively real field related to the wave
function C(x,t), so that it has a well-determined position
and velocity at each instant of time, i.e., a well-defined tra-
jectory. In this casual interpretation,C(x,t) is a solution of
the time-dependent Schro¨dinger equation~TDSE!, the veloc-
ity at any space-time point is uniquely given byv(x,t)
5]S(x,t)/]x @S(x,t) being the phase of the complex wave
function#, anduC(x,t)u2dx is the probability of the electron
being betweenx andx1dx at time t even in the absence of
a position measurement. The description of any scattering
problem requires the choice of an initial wave function
C~x,0! adequate to the particular situation, and the analysis
of its subsequent time evolution. A description in terms of
scattering energy eigenstates is not convenient because these
are stationary states and time evolution is inherent to the
concept of trajectory. Moreover, if stationary states are used,
unphysical and inconsistent results come out within Bohm’s
framework @18,19#. In any case, this is not a limitation of
Bohm’s interpretation but rather a consequence of the nature
of these states themselves which, not being normalized, can-
not be a perfect description of the quantum system. For these
reasons, localized time-dependent wave packets have to be
used to analyze scattering processes within Bohm’s ap-

proach. Assuming a particularC~x,0!, and given the position
x0 of an electron within the wave packet, its subsequent tra-
jectoryx(x0 ,t) is uniquely determined by simultaneous inte-
gration of the TDSE and the guidance equationdx/dt
5v(x,t). However, due to the uncertainty principle, the
position of the electron att50 cannot be precisely known
and, as a consequence, one must deal with an ensemble of
trajectories that can be labeled byx0. To determine the ex-
pectation value of any function~observable or not! one has
to average the results of all the possible trajectories accord-
ing to a weight given byuC(x0,0)u

2dx.
The Bohm trajectories can also be viewed as the solutions

of a modified Hamilton-Jacobi equation@12# and, as such,
they cannot cross each other in the configuration space.
Moreover, since the velocity of the Bohm particles is
uniquely determined by]S(x,t)/]x, it immediately follows
that the trajectories do not cross in space-time either. In fact,
if two trajectories should cross at a point (x,t), the corre-
sponding velocities would also be identical, and the trajecto-
ries would cross in the configuration space. In one-
dimensional systems, the fact that Bohm trajectories do not
intersect each other means that any pair of particles starting
at initial pointsx02.x01 will maintain their relative positions
all the time, i.e.,x(x02,t).x(x01,t). Since, on the other hand,
the probability densityuC(x,t) u2 is directly related to the
positions of the Bohm particles,

uC~x,t !u25E
2`

`

dx0uC~x0,0!u2d„x2x~x0 ,t !…, ~3!

it follows that the total probability presence at the right~or
left! of any trajectory is constant for all the times. Thus, if we
defineQ(x,t) as the probability presence to the right of point
x at time t:

Q~x,t ![E
x

`

uC~x8,t !u2dx85E
0

t

J~x,t8!dt8, ~4!

we can also label each trajectory byQ(x0)[Q(x0,0) and the
probability presence to the right ofx(x0 ,t) is alwaysQ(x0):

Q~x0![E
x0

`

dxuC~x,0!u25E
x~x0 ,t !

`

dxuC~x,t !u2. ~5!

The first consequence of the noncrossing property of Bohm
trajectories, already pointed out by Leavens and Aers@5#, is
that there is a bifurcation trajectoryxc(t)5x(xc0,t) implic-
itly given by

uTu25E
xc~ t !

`

dxuC~x,t !u2, ~6!

which divides the wave packet in two spatially separated
parts,uCT(x,t) u

2 and uCR(x,t) u
2, which are to be transmitted

and reflected, respectively:

uCT~x,t !u25uC~x,t !u2U@x2xc~ t !#,

uCR~x,t !u25uC~x,t !u2U@xc~ t !2x#, ~7!

U[x] being the unit step Heaviside function. This is particle-
like decomposition@20#, which allows the calculation of the
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average transmission and reflection times directly from the
wave function without weighting trajectories@5#:

tT5
1

uTu2 E0
`

dtE
a

b

dxuCT~x,t !u2,

tR5
1

uRu2 E0
`

dtE
a

b

dxuCR~x,t !u2. ~8!

Notice that only the bifurcation trajectoryxc(t) is needed to
obtainuCT(x,t) u

2 anduCR(x,t) u
2, and that this directly allows

the calculation oftT andtR . However, the explicit calcula-
tion of xc(t) is not required to obtained these tunneling
times, as it will be shown below.

The noncrossing property of Bohm trajectories has other
interesting practical consequences that were not discussed in
@5#: ~1! the position of any Bohm particle can be obtained
at any arbitrary time without calculating the corresponding
trajectory; and~2! the causal distributions of transmission,
reflection, and dwell times can also be directly determined
from the time-evolved wave function. Section III is entirely
dedicated to show how these distributions can be obtained
without evaluating trajectories, and the rest of this section is
devoted to the discussion of how to assess the position of any
Bohm particle fromC(x,t), and to some practical implica-
tions of this property. From Eq.~5!, it immediately follows
that we can determine the position of a Bohm particle at any
time by integrating the presence probability. In other words,
for a particle starting atx0, we can compute its position
x(x0 ,t0) at any arbitrary instant of timet0 without wonder-
ing about its trajectory betweent50 andt5t0 . In fact, hav-
ing calculatedQ(x0) from the initial wave packet, we can
determinex(x0 ,t0) by spatial integration of the time-evolved
wave functionC(x,t0). This is quite a trivial result, but it
may have very interesting practical consequences. If, for ex-
ample, Bohm trajectories were used for the extension of the
Monte Carlo~MC! simulation technique to quantum-based
electron devices such as resonant tunneling diodes@21#, the
direct calculation of the position of the Bohm particles would
significantly reduce the computation times. In a MC scheme,
the time of flight is chosen through the generation of a ran-
dom number according to the total scattering rate. Using Eq.
~5!, we would be able to obtain the position of the electrons
after their free flight without computing their entire trajec-
tory. This would largely improve the numerical efficiency
because of the huge number of trajectories that should oth-
erwise be calculated. Let us finally indicate that the conve-
nience of this procedure to assess the position of the Bohm
particles can be enhanced by the use of an appropriate
method to solve the TDSE. In this regard, instead of time-
discretizing this equation, as it is usually done@22#, it is
more convenient to begin by numerically solving the station-
ary Schro¨dinger equation~see, for example,@23,24#!, and
then project the initial wave packet onto the basis of Hamil-
tonian scattering eigenstatesCE(x). In this way, the time-
dependent wave function can be directly obtained by super-
position, i.e., without calculating it at intermediate times:

C~x,t0!5E
0

`

a~E!e2 i ~Et0!/\CE~x!dE ~9!

with a(E)5*0
`CE* (x)C(x,0)dx. Thus, to obtain the position

of any Bohm particle at timet0, we do not need to evaluate
the associated wave function nor its trajectory at intermedi-
ate times betweent50 andt5t0 . This method, which is the
one used in this paper to integrate the TDSE is only valid for
time-independent potential profiles~this is the case between
successive actualizations of the potential in a MC simula-
tion!, and has the additional advantage of avoiding spurious
reflections at the boundaries of the integration box@22#.

III. DISTRIBUTION OF TUNNELING TIMES

As we have advanced in Sec. II, another important con-
sequence of the noncrossing property of Bohm trajectories is
that the distributions of transmission, reflection, and dwell
times can also be be obtained without calculating trajecto-
ries. As for the transmission time distribution, McKinnon
and Leavens have recently discussed how to evaluate it by
connecting the arrival time distributions at the two bound-
aries of the barrier~x5a andx5b! with the help of Eq.~5!
@17#. Although we agree with their basic idea of connecting
arrival time distributions, we want to point out that their
method is not completely general. In particular, they implic-
itly assumed that different Bohm particles must have differ-
ent transmission times and, although this is the case in the
most common situations, this is not true in general. This is
discussed in detail below, and a reformulation of McKinnon
and Leavens’s method is presented to overcome its limita-
tions.

Recently, Muga, Brouard, and Macı´as have rigorously
justified the use of the current density as an arrival time
distribution within the conventional interpretation of QM
@25#. If J(x,t) is the probability current density at pointx
and timet, the quantum-mechanical particles cross~arrive at!
this point distributed according to

Px~ t !5
uJ~x,t !u

*2`
` uJ~x,t !udt

. ~10!

The absolute value is required to take into account that the
current density can take negative values, and the normaliza-
tion is needed because it is neither guaranteed that all the
particles arrive at pointx, nor that they do not cross thex
interface several times from left to right and vice versa.
Equation~10! is quite intuitive, and had already been previ-
ously proposed by other authors@10,26,27#. Following
McKinnon and Leavens@17#, we considerQ(x,t) @see Eq.
~4!# at the boundaries of the barrier, i.e.,Q(a,t) andQ(b,t).
For the typical problem of a Gaussian wave packet imping-
ing upon a DBRTS~see diagram in Fig. 1! from left to right,
Q(a,t) andQ(b,t) appear as shown in Fig. 2. Notice that
Q(b,t) increases monotonously towardsuTu2 ~though oscil-
lating for reasons that will be discussed below!, and that this
means thatJ(b,t).0 at all times. In this regard, we have to
point out that although the positivity of the current density
has been recently demonstrated for the asymptotic region
sufficiently far from the barrier@25#, it can be shown that the
current density can eventually take negative values atx5b
in extreme situations~capricious wave packets!. However, in
the rest of the paper we will assume thatJ(b,tb).0 or, in
other words, we will neglect the possibility of reentrant
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Bohm trajectories at thex5b interface. In this sense, our
numerical results of this and previous works have always
confirmed this assumption@19,28#, in spite of the fact that in
QM the probability current can take negative values even for
states having only positive momentum components@29#.
This is in agreement wiht Leavens and Aers’s results@5#,
who never found Bohm trajectories crossing thex5b bound-
ary from right to left. In Leavens’s words, ‘‘a flag in the

author’s computer codes to monitor reentrant trajectories at
x5b has yet to be triggered’’@27#. This is not the case, of
course, at thex5a boundary. In particular, all the reflected
particles that cross this interface from left to right cross it
again from right to left. For the case shown in Fig. 2,Q(a,t)
increases monotonously@though oscillating asQ(b,t)# be-
fore reaching its maximum and then it decreases towards
uTu2. However, this behavior is not the most general one~as
it will be shown below! because, depending on the shape of
the initial wave packet,Q(a,t) can present several relative
maxima, which correspond to particles that cross thex5a
boundary more than once before being finally reflected or
transmitted.

A. Average tunneling times

Before discussing the method to calculate the tunneling
time distributions, let us show howtD , tT , andtR can all be
obtained fromQ(a,t) andQ(b,t), i.e., without evaluating a
single trajectory. For the sake of simplicity, we begin by
considering cases as that of Fig. 2, i.e., withQ(a,t) showing
a single maximum. First of all, notice that the probability
presence in the barrier region,D(t)5* a

buC(x,t)u2dx, is
equal toQ(a,t)2Q(b,t). Thus, according to Eq.~1!, the
dwell time is

tD5E
0

`

@Q~a,t !2Q~b,t !#dt ~11!

and this corresponds to the area enclosed by the two curves
of Fig. 2. It can also be shown that this area is divided by the
horizontal lineQ(t)5uTu2 in two subareas that are propor-
tional to tT and tR , respectively. Effectively, since Bohm
trajectories do not cross, all the particles that have entered
the barrier are to be finally transmitted ifQ(a,t),uTu2.
Thus, fort,t1 @with t1 implicitly defined byQ(a,t1)5uTu2#,
the probability presence ofto be transmittedparticles in the
barrier region,DT(t)5*a

buC(x,t)u2dx, is equal toQ(a,t)
2Q(b,t), and coincides withD(t). For t.t1 , only those
particles located at the right ofxc(t) ~which for t.t1 is
located within the barrier or at the right side of it! are to be
transmitted, and henceDT(t)5uTu22Q(b,t). As a conse-
quence, the average transmission time is given by

tT5
1

uTu2 E0
t1

@Q~a,t !2Q~b,t !#dt

1
1

uTu2 Et1
`

@ uTu22Q~b,t !#dt. ~12!

This demonstrates that the area enclosed by the two curves of
Fig. 2, Q(a,t), Q(b,t), and by the horizontal line
Q(t)5uTu2, is equal touTu2tT . On the other hand, from Eq.
~2! it follows that the rest of the area enclosed byQ(a,t) and
Q(b,t), i.e., the area overQ(t)5uTu2 and belowQ(a,t), is
equal touRu2tR . This can also be formulated as

tR5
1

uRu2 Et1
`

@Q~a,t !2uTu2#dt. ~13!

In the most general case when the wave packet is such that
the correspondingQ(a,t) has several maxima and crosses

FIG. 1. Schematic diagram of the considered symmetric double-
barrier heteroestructures. A hypothetical trajectory is used to define
ta (t a

i ) and tb as the times the trajectory crosses thex5a and the
x5b interface, respectively.

FIG. 2. Probability presence at the right of the extreme double-
barrier pointsQ(a,t) andQ(b,t) as a function of time. These re-
sults correspond to the resonant transmission of a Gaussian electron
wave packet~with the effective mass of pointG in GaAs, i.e., 0.067
times the free-electron mass! incident upon a double-barrier poten-
tial typical of the GaAs/AlGaAs system: barrier height of 0.3 eV,
barrier thickness 2 nm, and well width of 18 nm. The well is wide
so as to observe the oscillations in the Bohm trajectories. The hori-
zontal line corresponds toQ(t)5uTu2, or in other words, to the
xc(t) trajectory.
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theQ(t)5uTu2 line several times before decreasing towards
uTu2, the procedure to evaluate the average tunneling times is
analogous. The case of the dwell time is trivial becausetD is
always given by Eq.~11!, independently of the shape of
Q(a,t). The other two times can also be obtained from
Q(a,t) andQ(b,t), but this requires a straightforward gen-
eralization of Eqs.~12! and~13!. In the most general case, it
can be easily demonstrated that the transmission time is
given by

tT5
1

uTu2 E0
`

$min@Q~a,t !,uTu2#2Q~b,t !%dt ~14!

and the reflection time by

tR5
1

uRu2 E0
`

$max@Q~a,t !,uTu2#2uTu2%dt, ~15!

Eqs. ~12! and ~13! being particular cases of Eqs.~14! and
~15!, respectively. This demonstrates that the calculation of
trajectories is not needed to obtain the average tunneling
times. In particular, the calculation ofxc(t) is also not re-
quired, since the decomposition of the wave packet intoto be
transmittedandto be reflectedcomponents is implicitly done
when the area betweenQ(a,t) andQ(b,t) is divided by the
horizontal lineQ(t)5uTu2. In this regard, notice that in a
Q5Q(t) plot, the Bohm trajectories fall on horizontal lines
because of their noncrossing property, and thatQ(t)5uTu2
actually corresponds to the bifurcation trajectoryxc(t).

B. Transmission time distribution

As discussed by McKinnon and Leavens@17#, the prob-
lem of calculating the transmission time distribution can be
reduced to matching points of the arrival distribution atx5a
with points of the arrival distribution atx5b. In the standard
interpretation of QM, this matching is not possible because
the actual concept of a particle sequentially arriving at two
points is meaningless. On the contrary, within Bohm’s ap-
proach, there is a well-defined procedure that consists in
identifying which particle arrives at these boundaries at each
instant of time. In this regard, we have seen that a Bohm
particle~trajectory! can be labeled by its starting positionx0.
However, the noncrossing property of the trajectories pro-
vides an alternative identification method, which consists in
labeling the particles by their corresponding value ofQ(x0),
as defined in Eq.~5!. In this way, the particle that arrives at
the x5b boundary att5tb is determined byQ[x0(tb)]
5Q(b,tb), and one can readily calculate the instant of time
ta at which the same particle crossedx5a by requiring
Q(a,ta)5Q[x0(tb)]. This latter equation can have more
than one solution because the particles can cross thex5a
interface several times. However, and for the sake of sim-
plicity, we will first consider that~as in Fig. 2! the transmit-
ted particles only cross this boundary once. In this simplest
case, the transmission time of the particle which starts at
x0(tb) is just tab5tb2ta .

Provided that there are no reentrant trajectories atx5b,
the distribution of arrival times at this interface can be cal-
culated fromQ(b,t) as

Pb~ tb!5
1

uTu2
]Q~b,t !

]t U
t5tb

. ~16!

For this reason, McKinnon and Leavens@17# identified
Q(b,tb) asuTu2 times the cumulative arrival time distribution
function associated withPb(tb). After that, they considered
that the cumulative transmission time distributionQT(tab)
could be calculated by inverting the relation

tab„Q~x0!…5tb„Q~x0!…2ta„Q~x0!…, ~17!

i.e., by determining the value ofQ(x0) that corresponds to
each transmission timetab , and assuming thatQT(tab)
5Q(x0). Finally, they evaluated the transmission time dis-
tribution PT(tab) by differentiatingQT(tab) with respect to
tab and normalizing byuTu2. However, this procedure is cor-
rect only if all the transmitted particles have different trans-
mitted times, i.e., if the relation betweentab andQ(x0) is
single valued. This condition is satisfied for all the cases
worked out in @17# but, in the most general case, several
particles can have the same transmission time and, as a con-
sequence, Eq.~17! cannot be inverted. This will be explicitly
shown by means of an example but, for the moment, let us
reformulate the method so that it can be applied to all pos-
sible cases.

To calculate the transmission time distribution, we pro-
pose to proceed as follows: first that the transmission time
tab is calculated for each value oftb , i.e., for all the Bohm
particles that arrive atx5b. In this way, a function
tab5tab(tb) is obtained. If the transmission time is different
for all the trajectories, i.e., if the functiontab(tb) is mono-
tonic, the transmission time distributionPT(tab) is directly
given by

PT~ tab!5Pb~ tb!Fdtab~ tb!dtb
G21

5
1

uTu2
J~b,tb!Fdtab~ tb!dtb

G21

.

~18!

This expression is exactly equivalent to the inversion of Eq.
~17! proposed by McKinnon and Leavens@17#, and it reveals
that the transmission distribution is obtained from a local
renormalization of the arrival time distribution. For the par-
ticular case of Fig. 2, which corresponds to a Gaussian wave
packet impinging upon a DBRTS, the functiontab(tb) is
shown in Fig. 3~a!. After a certain time delay, the relation
betweentab andtb becomes linear and with unity slope, and
this occurs when all theto be transmittedparticles have
crossed thex5a interface. Sincetab increases monotonously
with tb , Eq. ~18! can be used to calculatePT(tab), as it is
explicitly demonstrated in Fig. 3~b!, where the obtained dis-
tribution is compared to that evaluated by integration of
2.53104 Bohm trajectories. The periodic bumps of the ob-
tained distribution are due to the presence of Bohm trajecto-
ries that oscillate in the well of the DBRTS before being
finally transmitted, and which are also the cause for the os-
cillatory structure inQ(a,t) andQ(b,t) of Fig. 2. Equation
~18! is valid for a monotonictab(tb) but, as previously said,
this function can be nonmonotonic under some circum-
stances. In these situations, several discrete valuesN(tab) of
arrival times,t b

i @with 1, i,N(tab)#, give exactly the same
transmission timetab . The dependence ofN on tab is explic-
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itly indicated to emphasize that the number of Bohm par-
ticles that have identical transmission times can be different
for the differenttab values. In any case, sincetab(tb) is not
single valued, Eq.~17! cannot be inverted to obtainPT(tab)
as proposed by McKinnon and Leavens@17#. However, the
generalization of Eq.~18! is straightforward, as it only re-
quires to sum up the contribution of all theN(tab) particles.
In this way, the transmission time distribution can be calcu-
lated as

PT~ tab!5 (
i51

N~ tab!
1

uTu2
J~b,tb

i !Fdtab~ tb!dtb
U
tb5t

b
i G21

. ~19!

Before considering a particular example of this situation, let
us remove the assumption that the left boundary of the bar-
rier is only crossed once by each transmitted trajectory. Even
in this case, however, if the particle is to be transmitted, we
know that thex5a boundary has to be crossed an odd num-
ber of times,N8(tab). These multiple crossings affect the
calculation oftab since the equationQ(a,ta)5Q[x0(tb)] has

N8(tab) solutionst a
i that correspond to the sequential arrival

of thex0(tb) particle to the pointx5a from left to right and
vice versa. When a particle crossesx5a from left to right, it
enters the barrier region, and when the crossing takes place
in the opposite sense, the particle abandons the barrier. Only
those time intervals with the particle within the barrier have
to be counted up to calculate the transmission time to be
consistent with the definition oftT as the average time spent
by the transmitted particles in the barrier region. In other
words, we have to determine the time elapsed from the very
first crossing ofx5a ~i.e., t a

1! to the time when it finally
crossesx5b ~i.e., tb!, but we have to subtract the time in-
tervals between right-to-left and left-to-right crossings. Thus,
the transmission time is given by

tab5tb2ta
12 (

n51

@N8~ tab!21#/2

~ ta
2n112ta

2n! ~20!

when thex5a boundary is crossedN8(tab) times by the
same particle. The rest of the procedure to calculate the
transmission time distribution is identical to that correspond-
ing to a monotonicQ(a,t). As an example of the need of
Eqs.~20! and~19! to calculate the transmission time and the
transmission time distribution, respectively, we consider a
wave function composed of two spatially separated Gaussian
wave packets impinging upon a DBRTS. A similar example,
initially studied by Leavens and Aers@5#, was subsequently
used by Landauer and Martin to comment on thecounterin-
tuitive consequences of the noncrossing property of Bohm
trajectories@9#. Section IV is entirely devoted to the intuitive
interpretation of scattering events within Bohm’s approach,
and this example will be further examined. However, let us
now concentrate on how the transmission time distribution
can be calculated in this case. The electrons are considered to
be prepared att50 in the wave function:

C~x,0!5
1

V~ps1
2!1/4

exp~ ik1x!expF2
~x2x1!

2

2s1
2 G

1
1

V~ps2
2!1/4

exp~ ik2x!expF2
~x2x2!

2

2s2
2 G ,

~21!

which is composed of two packets centered at the coordinate
pointsx1 andx2 ~with x1,x2!, and at wave numbersk1 and
k2 ~with k1,k2!, and which evolves towards a DBRTS that
has a transmission resonance atk1. The constantV is for
normalization, ands1 ands2 are the standard deviations of
two successive packets. The actual parameters that define the
barrier and the wave function are those specified in the cap-
tion of Fig. 4. This figure shows the corresponding cumula-
tive arrival time distributions atx5a andx5b, i.e.,Q(a,t)
andQ(b,t), respectively. The asymptotic behavior att→` is
identical to that shown in Fig. 2, i.e., bothQ(a,t) and
Q(b,t) converge towardsuTu2 because the probability pres-
ence at the right side of the barrier is equal touTu2 when the
scattering event is finished. As expected,Q(b,t) increases
monotonously because of the positivity ofJ(b,t). On the
other hand, however, the behavior ofQ(a,t) is different
from that shown in Fig. 2 in several respects. First of all,

FIG. 3. ~a! Transmission time as a function of time of arrival at
thex5b interface for the scattering process of Fig. 2.~b! Transmis-
sion time distribution obtained by calculating 2.53104 trajectories
~dotted line! compared with that obtained using the procedure pre-
sented in the text~continuous line!.
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notice thatQ(a,t) shows two relative maxima before finally
decreasing towardsuTu2. These maxima are related to the
arrival and reflection of the two successive packets but, as
we will later show explicitly, only particles from the first one
enter into the barrier region in the two successive attempts to
cross it. WhenQ(a,t) decreases after the first relative maxi-
mum, some of the particles that have entered the barrier are
provisionally reflected~i.e., they cross thex5a interface
from right to left! before being thrown again towards the
barrier after a collision with the second wave packet. Since
the magnitude of the first maximum is smaller thanuTu2, all
the particles contributing to it are to be finally transmitted.
As a consequence, some of the transmitted particles cross the
x5a interface three times~see the horizontal line and the
circles in Fig. 4!. For these particles, Eq.~20! is required to
calculate their transmission time because during the interval
between the second and the third crossings they are outside
the barrier region. On the other hand, if we look in Fig. 5~a!
at the relationtab(tb) obtained using this equation, we per-
ceive that it contains negative slope regions. These negative
slopes are related to the extrema ofQ(a,t) and, in particular,
to the first minimum and the first maximum, respectively. It
must be said that several crossings of thex5a interface are
a necessary~though not sufficient! condition for having a
nonmonotonic relation betweentab and tb . On the other
hand, this nonmonotonic behavior means that several Bohm
particles cross the barrier in exactly the same transmission
time. In particular, as shown in the inset of Fig. 5~a!, in the
particular example that we are analyzing, there are groups of
three particles with identical transmission times. In cases as
this one, Eq.~17! cannot be inverted, and the calculation of
PT(tab) requires the use of our reformulated procedure that
is explicitly represented by Eq.~19!. Using this procedure,

the transmission time distribution shown in Fig. 5~b! has
been obtained without calculating a single trajectory. The
curvetab(tb) of Fig. 5~a! has also been repeated in Fig. 5~b!
to enlighten some relevant features of the transmission time
distribution. The first broad bump of this distribution is re-
lated to the particles that are transmitted during the first in-
teraction of the front wave packet with the barrier. This can
be appreciated in Fig. 4, whereQ(b,t) is seen to increase
and saturate fortb,100 fs, showing a flat terrace that ex-
tends up totb.150 fs, and which corresponds to the time
interval elapsed between the two successive interactions of
the front wave packet with the barrier~these sequential in-
teractions and the fact that all the transmission comes from
the front packet will become more evident in Sec. IV!. Re-
turning back to the description of the transmission distribu-
tion of Fig. 5~b!, we appreciate a second broad peak that
corresponds to the second interaction of the packet with the

FIG. 4. Probability presence at the right of the extreme barrier
pointsQ(a,t) andQ(b,t) as a function of time. These results cor-
respond to the double Gaussian wave packet (m*50.067m0) de-
scribed in the text@Eq. ~21!# impinging upon a double-barrier po-
tential with 0.3-eV-barrier height, 3-nm-thick barriers, and 5-nm-
wide well. The horizontal corresponds toQ(t)5uTu2, i.e., it
separates transmitted and reflected particles. The horizontal line
~whose crossing are marked with open circles! corresponds to one
of the Bohm particles that cross thex5a interface three times be-
fore being finally transmitted.

FIG. 5. ~a! Transmission time versus arrival time at thex5b
interface for the scattering process of Fig. 4. The inset highlights a
region with negative slope and the fact that some groups of three
Bohm particles~indicated by open circles! that arrive atx5b at
different times have exactly the same transmission time.~b! Trans-
mission time distribution associated with the scattering of the
double-packet wave function. Thetab(tb) curve of ~a! is repeated
here to explain the origin of the two sharp peaks of the transmission
distribution.
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barrier. This second bump, however, is limited by two sharp
peaks that can be understood by looking at the superposed
tab(tb) function. In this regard, we must notice that eventual
flat regions in thetab(tb) characteristic are an indication of
particles that arrive at different instants of time tox5b and
that spend exactly the same time in the barrier region. These
flat regions would consequently lead tod functions in the
transmission time distribution. In the same way, the extrema
of tab(tb) are locally flat regions which lead to sharp peaks
@as those of Fig. 5~b!# in the transmission time distribution
becausedtab/dtb50.

C. Distribution of dwell and reflection times

Although we have used the arrival time distribution at
x5b as the starting point to calculatePT(tab), an analogous
procedure can be followed using the arrival distribution at
x5a. In this regard, it is straightforward to demonstrate that
the transmission time distribution can also be calculated as

PT~ tab!5 (
i51

N~ ta!
1

uTu2
J~a,ta

i !Fdtab~ ta!dta
U
ta5t

a
i G21

, ~22!

where t a
i represents the time of first crossing of thex5a

interface of theN(tab) particles that have exactly the same
transmission timetab . Moreover, this procedure can be eas-
ily extended to calculate the reflection and dwell time distri-
butions. Until now, we have only considered transmitted par-
ticles which, as discussed above, are those withQ(x0),uTu2,
i.e., those that arrive atx5a before t1. Now, we can also
consider those particles which are reflected, i.e., those that
arrive at thex5a interface later thant1. According to the
assumption thatJ(b,tb) is always positive, the reflected par-
ticles never cross thex5b interface, and they remain within
the barrier during time intervals enclosed by their first and
last crossings of thex5a interface. Contrary to the transmit-
ted particles, the reflected ones cross this interface an even
number of times, but the procedure to calculate their resi-
dence time in the barrier regiontaa is analogous to that used
to evaluatetab @see Eq.~20!#. As for the calculation of the
reflection time distribution, although the procedure is very
similar, a relevant difference arises from the fact that not all
the reflected particles enter into the barrier region, many of
them being reflected without ever reachingx5a. The frac-
tion of particles that enter the barrier and are ultimately re-
flected,uR1u

2, can be directly obtained fromQ(a,t), since its
absolute maximum is preciselyuTu21uR1u

2. The rest of the
reflected particles, i.e., a fraction of the total equal to
uRu22uR1u

2, never enter the barrier and, as a consequence,
have zero reflection time. Thus, the reflection time distribu-
tion must always include a term [uRu22uR1u

2]d(t) to pre-
serve the normalization. The distribution of reflection times
of those particles that actually enter the barrier region is ob-
tained following a procedure analogous to that of Eq.~22!
for transmitted particles, but now for those particles arrive at
x5a later thant1. In this way, the reflection time distribu-
tion PR(taa) is obtained:

PR~ taa!5
uRu22uR1u2

uRu2
d~ t !

1
1

uRu2 (
i51

N~ taa!

J~a,ta
i !Fdtaa~ ta!dta

U
ta5t

a
i G21

,

~23!

where thet a
i represent the first time of arrival tox5a of the

N(taa) reflected particles that have exactly the same resi-
dence time in the barrier. Finally, consistently weighting
PT(tab) andPR(taa) by uTu2 and uRu2, respectively, we can
directly obtain the dwell time distributionPD(t):

PD~ t !5@ uRu22uR1u2#d~ t !1 (
i51

N~ tab!

J~a,ta
i !Fdtab~ ta!dta

U
ta5t

a
i G21

1 (
i51

N~ taa!

J~a,ta
i !Fdtaa~ ta!dta

U
ta5t

a
i G21

, ~24!

t being equal totab or taa for transmitted and reflected par-
ticles, respectively.

Notice that in all the considered cases, the distributions of
tunneling times have been obtained without calculating tra-
jectories. All that is needed is the time-evolved wave func-
tion, which is used to calculate the current probability den-
sity at the boundaries, and to link the corresponding times of
arrival. Again, this represents a very important improvement
in the efficiency of the numerical procedures because a very
large number~104–105! of trajectories is usually needed to
obtain reliable distributions. Finally, it is worth remarking
again that although the arrival time distributions are perfectly
defined within the standard interpretation of QM, the distri-
butions of transmission and reflection times only make sense
in Bohm’s framework because a causal connection between
the crossings of the two boundaries of the barrier is needed
to calculatetab and taa .

IV. INTUITIVE INTERPRETATION OF THE SCATTERING
OF WAVE PACKETS

Let us now consider the implications of the noncrossing
property of Bohm trajectories on the intuitive interpretation
of the scattering of wave packets by one-dimensional poten-
tial barriers. In this regard, Landauer and Martin@9# have
made skeptical comments concerning two limit cases:~i! a
wave function composed of two spatially separated packets
incident on an opaque barrier; and~ii ! a very long wave
packet~a day in duration! incident on a very short but high
barrier. In the first case they wrote ‘‘wave packets in succes-
sion, separated by a long time interval . . . all the transmitted
paths still come from the very first tip of the first packet,’’
and in the second, ‘‘all the transmitted packet will come from
about the first microsecond of the incident packet . . . a day
is long compared to any of the kinetic times associated with
such a short barrier.’’ The second example is difficult to
analyze numerically for obvious reasons, but we will use an
enriched version of the first one to show that Bohm’s results
are fully compatible with an intuitive interpretation of both
cases. In particular, we consider the double-packet wave
function, defined in Sec. III B@Eq. ~21!#, which evolves to-
wards a double-barrier structure that has a resonance around
k1. Sincek1 is the center of the rear packet spectrum, this
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second packet is expected to practically control the whole
transmission probability~this emphasizes the unexpected
features of the first case considered by Landauer and Martin!.
Figure 6 shows selected Bohm trajectories and Fig. 7 is a
picture motion of the traveling wave packet as obtained by
numerical integration of the TDSE. At the beginning, the
front packet travels faster towards the barrier and arrives to it

in first position. Only a small portion of this first packet is
transmitted, and the rest of it is reflected with roughly the
same momentum~k2!. At times of the order of 120 fs strong
interference effects take place between the two packets,
which in Fig. 6 appear as a collision between Bohm trajec-
tories. Momentum is interchanged, and the front packet trav-
els again towards the barrier, but now with roughlyk1. This
change of momentum can be noticed in Fig. 6 by a change of
the slope of the trajectories, but could also be appreciated in
the spatial oscillations of the real~or the imaginary! part of
the wave function@30#. This second attempt to cross the
barrier is more successful because now the front packet
reaches the double barrier under resonance~accumulation of
particles in the well is also apparent in both figures!. In the
Schrödinger picture, there is not an unambiguous criterion to
decide whether the observed self-interference effects corre-
spond to the scattering or to the crossing of wave packets.
However, although both interpretations are equally accept-
able, only the first one is compatible with Bohm’s picture.
The intuitive idea that the second wave packet, being reso-
nant, controls most of the transmission continues to be valid.
What Bohm’s formulation tells us is that the second packet
does its job bypushing the first one with the appropriate
momentum towards the barrier, instead of being transmitted
itself. A similar point of view, and the same example ana-
lyzed in Figs. 6 and 7, is also suitable to enlighten the case of
the one-day-long wave packet impinging upon a very short
and opaque barrier.

To establish a clear distinction between the transmission
time @as defined in expression~8!# and the duration of the
whole scattering process, we have plotted in Fig. 8 the prob-
ability of finding a particle in the barrier regionD(t), and
that of finding a particleto be transmittedin the same spatial

FIG. 6. Representative Bohm trajectories associated with
double-packet scattering of Fig. 4. The position of the barriers is
indicated by vertical dashed lines. The marks~squares for the rear
packet and circles for the front one! are a visual aid to relate the
trajectories with the evolution of the wave function shown in Fig. 7.
Notice that the five horizontal lines~constant time! defined by the
marks correspond to the five ‘‘snapshots’’ of the picture motion of
the wave function shown in Fig. 7.

FIG. 7. Picture motion of the same double-packet wave function
considered in Fig. 6, calculated by numerical integration of the
time-dependent Schro¨dinger equation. Five representative ‘‘snap-
shots’’ obtained at different times are shown with the vertical scale
arbitrarily changed in each case for clarity~although the norm of
the wave function is always unity, it does not seem so because of
the scale changes!. The marks are visual aids that indicate the po-
sition of some related Bohm trajectories shown in Fig. 2. The
double-barrier position is indicated by the vertical dashed lines, and
the arrows indicate the sense of motion of the two packets.

FIG. 8. Ensemble probability of finding the particles described
by the double-packet wave function of Figs. 6 and 7 as a function of
time during the scattering with the double-barrier potential. The
dotted line corresponds toD(t), which represents the probability of
finding the particles in the barrier region, independently of the scat-
tering channel~transmission or reflection!. The continuous line cor-
responds toDT(t), which is the probability of findingto be trans-
mittedparticles in the barrier region. The vertical line indicates the
average transmission dwell time as defined in expression~8!, which
in this case is 160 fs.
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interval,DT(t). Two different peaks are perceived that cor-
respond to the sequential interaction of the first wave packet
with the barrier. In the first interaction event,DT(t) coin-
cides withD(t), and this means that all the particles that
enter the barrier region are ultimately transmitted. The dura-
tion of the whole scattering process, which in this case is
longer than 400 fs, can be appreciated to be much different
from the average transmission time~tT;160 fs!. The period
of time between the successive interactions of the front
packet with the barrier~separation of peaks in the figure!
does not contribute to the transmission time, while it is cer-
tainly a relevant portion of the whole scattering process. This
indirectly explains why the scattering of the one-day-long
packet can be roughly interpreted as a steady-state situation
~the common sense view according to Ref.@9#!. What
Bohm’s formulation tells us is that most of the packet is
reflected by self-interference effects and not by direct inter-
action with the barrier~it is reflected by the quantum poten-
tial in regions where the classical potential is zero!. As a
consequence, although the average transmission time can be
of the order of picoseconds, the transmission of the small tip
of the front packet can take much more time, i.e., as much as
the interference time of the finally reflected packet~of the
order of a day!.

To finish with the intuitive interpretation of the wave-
packet scattering, let us take another look at Fig. 6. In this
figure we see that Bohm trajectories can be reflected for two
different reasons: ~i! interaction with the classical potential
~i.e., the particles collide with the barrier! and ~ii ! collision
with other trajectories traveling in the opposite direction. The
second process is responsible for the reflection of those par-
ticles of the first packet, which never reach the barrier, and
for the reflection of the entire second packet. These colli-
sions between Bohm particles are related to the quantum
potential in regions where the classical potential is zero but,
for them to occur, there should be particles coming from
right to left. In this regard, if the initial wave packet is pre-
pared as a superposition of eigenstates incident from left to
right ~as is always assumed in scattering thought experi-
ments!, and the classical potential is zero forx.b, then find-
ing particles coming from the right-hand side in this region
will be at least very uncommon. This observation provides
further intuitive support to the assumption of a positive cur-
rentJ(b,tb) or, equivalently, of the absence of reentrant tra-
jectories at thex5b boundary. From the above discussion,
we conclude that the noncrossing property of Bohm trajec-
tories does indeed allow an intuitive interpretation of the
scattering of wave packets by potential barriers, and this
means that claims that Bohm’s approach provides counterin-
tuitive results are only subjective appreciations.

V. CONCLUSIONS

Several aspects of the tunneling of electrons through po-
tential barriers have been examined within the framework of
Bohm’s interpretation of quantum mechanics. In particular,
we have focused our attention on the noncrossing property of
the electron’s trajectories. Although this property is also
valid for three-dimensional problems, we have only consid-
ered the particular case of one-dimensional potentials and
wave functions.

It has been shown that, due to the noncrossing property,
the average tunneling times and the position of the Bohm
particles can both be calculated without integrating and
weighting trajectories. The consequences of this fact for the
possible use of these trajectories for the extension of the
Monte Carlo simulation technique to quantum-based devices
have also been emphasized. On the other hand, a method to
obtain the distributions of dwell, transmission, and reflection
times without calculating trajectories has been presented.
This method generalizes that of McKinnon and Leavens
@17#, which has been shown to have some limitations, but
preserves the fundamental idea of connecting arrival time
distributions. The presented method~hundreds of times
faster than explicitly calculated 104 Bohm trajectories!, not
only largely improves the numerical efficiency in the calcu-
lation of distribution of tunneling times, but also allows the
assessment of sharp features as those of Fig. 5~b!, which
would be very difficult to appreciate by calculating trajecto-
ries.

Finally, the intuitive physical interpretation of the scatter-
ing of wave packets by potential barriers has been considered
within Bohm’s picture. The obtained results show that not
only are the Bohm trajectories fully compatible with the
common interpretation of scattering processes, but that they
can enlighten some aspects that are less clear in the standard
interpretation of QM. In any case, it must be highlighted that
the Bohm trajectories exactly reproduce the time-dependent
behavior of the wave function so that all the dynamical in-
formation is contained in the solution of the time-dependent
Schrödinger equation. In other words, one cannot consider
that the behavior ofC(x,t) is intuitive, and that of the Bohm
trajectories counterintuitive because both lead to the same
observable results. Claims that Bohm trajectories lead to
counterintuitive results are subjective.
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