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Abstract
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1. Introduction

This paper investigates the connections between single-peakedness and strategy-
proofness. Whether or not nontrivial strategy-proof social choice functions exist
depends on the environment where we want them to operate. When alternatives
can be represented as points in a rectangular grid, and preferences are single-
peaked, generalized median voter schemes are strategy-proof. Outside those sit-
uations, nontrivial strategy-proof social choice functions may still exist, but they
are harder to �nd: domain restrictions become less natural.
Single-peakedness of the agent�s preferences is often assumed in the existing

literature and it is certainly a useful requirement toward the existence of nontrivial
strategy-proof social choice functions. In some environments it is su¢ cient to
guarantee it, in others it needs to be combined with additional restrictions. But
it is always there. This leads us to investigate, in the present paper, the extent to
which some form of single-peakedness might be necessary for strategy-proofness,
as well as su¢ cient.
Our answer is partial, because it only refers to generalized median voter

schemes, but it is precise. We start from any such scheme F , and we charac-
terize the maximal set of preferences under which F is strategy-proof. It turns
out that the condition characterizing this maximal domain is a quali�ed version
of single-peakedness. Previous results in the same vein include Barberà, Sonnen-
schein, and Zhou [4], Serizawa [10], and Barberà, Massó, and Serizawa [3]. Our
results improve upon these previous results in several directions. We allow for
all types of generalized median voter schemes, by not ruling out the existence of
vetoers or dummies. We also cover restricted domains under which the range of
generalized median voter schemes might not be a cartesian product.
We have chosen to keep this introduction short, leaving further motivational

remarks and examples for Section 2, which contains the de�nitions and a statement
of our result. This is proven in Section 3. Section 4 concludes.

2. De�nitions, Notation and the Theorem

Agents are the elements of a �nite set N = f1; 2; :::; ng. We assume that n is at
least 2.
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Alternatives are K-tuples of integers numbers. For integers a; b 2 Z, with
a < b, we will denote the integer interval [a; b] = fa; a+ 1; :::; bg. AK-dimensional
box B is a cartesian product of K integer intervals:

B =

KY
k=1

Bk;

where Bk = [ak; bk] and ak < bk. A subbox of B is any box A contained in B. We
endow B with the L1�norm. That is, for every � 2 B,

k�k =
KX
k=1

j �k j :

Given �; � 2 B, the minimal box containing � and � is de�ned by

MB(�; �) = f
 2 B j k�� �k = k�� 
k+ k
 � �kg :
Preferences are binary relations on alternatives (or subsets of alternatives).

Let U be the set of complete, transitive and asymmetric preferences on B. Pref-
erence pro�les are n-tuples of preferences on B, P 2 Un. Preference pro�les
P = (P1; :::; Pn) are also represented by (Pi; P�i) when we want to stress the role
of i�s preference. For P 2 U and A � B, we denote the alternative in A most
preferred by P as �A (P ), and we call it the top of P on A. Therefore, �B (P ) is
the unconstrained top of P .
A social choice function on eP1�:::� ePn � Un is a function F : eP1�:::� ePn ! B.
The range of a social choice function F : eP1 � ::: � ePn ! B, is denoted by

RF . That is,

RF =
n
� 2 B j 9 P = (P1; :::; Pn) 2 eP1 � :::� ePn such that F (P) = �o .

Social choice functions require each agent to report some preference. A social
choice function is strategy-proof if it is always in the best interest of agents to
reveal their preferences truthfully. Formally,

De�nition 1. A social choice function F : eP1 � :::� ePn ! B is manipulable oneP1� :::� ePn if there exist P = (P1; :::; Pn) 2 eP1� :::� ePn, i 2 N and P 0i 2 ePi such
that F (P 0i ; P�i)PiF (P). A social choice function is strategy-proof on eP1� :::� ePn
if it is not manipulable on eP1 � :::� ePn.
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De�nition 2. Let F : eP1 � ::: � ePn ! B be a social choice function and let
Pi 2 ePi. The set of options left open to the other agents by i declaring Pi is
de�ned as follows:

o (Pi) =
n
� 2 RF j there exists P�i 2 eP�i such that F (Pi; P�i) = �o :

We shall consider di¤erent restrictions on preferences, all of them related to
single-peakedness. The �rst one is a natural extension of this classical condition
and has been already used in the literature; see for instance Barberà, Gul and
Stacchetti [1], Serizawa [10], and Barberà, Massó, and Neme [2]. The second one
refers to any set O of K-dimensional alternatives. The third one involves three
sets O, A, and D. We present these de�nitions in sequence for the bene�t of
the reader, since the �rst one is very natural while the others are a bit harder to
interpret. Formally, though, we need only one of them (De�nition 5).
Our �rst condition is a natural extension of single-peakedness and it coincides

with the classical version when K = 1. It says that whenever alternative � is
closer than 
 to the best alternative �B (P ) (lies on the minimal path from �B (P )
to 
, in the sense of the L1-norm) then �P
.

De�nition 3. A preference P 2 U is single-peaked if �P
 for all �; 
 2 B (� 6= 
)
such that � 2MB

�
�B (P ) ; 


�
:

Preferences satisfying De�nition 3 are characterized by the following two prop-
erties. The �rst one is goodwise single-peakedness: those preferences, restricted
to sets of alternatives di¤ering only on one component, are single-peaked. The
second is peak-separability: the best alternative for those preferences on such
one-dimensional sets are the projection of the global best on the set.1

Our next de�nition involves a subset O � B and imposes conditions only on
elements of this set. Therefore, it is weaker than De�nition 3 and it coincides with
single-peakedness whenever O = B.

De�nition 4. A preference P 2 U is single-peaked on O � B if �P
 for all
�; 
 2 O (� 6= 
) such that � 2MB

�
�B (P ) ; 


�
:

Finally, the third de�nition refers to three di¤erent sets O, A (O � A), and
D. Preferences will be restricted on the two sets O \ D and A \ D, but not in

1Barberà, Gul, and Stacchetti [1] introduced �rst this concept and called it multidimensional
single-peaked. Serizawa [10] calls those preferences cross-shaped.
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the same way. They will be required to be single-peaked on O \D, although the
reference point will be the top of P on A, �A (P ), instead of the unconstrained top,
�B (P ). In addition, they will also be required to respect some milder restriction
on (A \D) n (O \D). In applications, O will be the set of options left open by
an agent, under a given social choice function, D will be a subset of alternatives
where the agent is not a dummy and A will be the range of the social choice
function.

De�nition 5. Consider O � A � B and D � B. A preference P 2 U is
single-peaked on O relative to A and D if for every 
 2 A \ D and every � 2
O \D \MB

�
�A (P ) ; 


�
such that � 6= 
 we have that �P
.

We will say that a preference P is single-peaked on O relative to A, whenever
D = A and P satis�es De�nition 5.
Single-peakedness and single-peakedness on O relative to A and D are related

concepts but they de�ne sets of preferences which are not necessarily subsets of
each other. To see that there are single-peaked preferences which do not sat-
isfy De�nition 5, consider the case where B = f0; 1g � f0; 1g, O = A = D =
f(0; 1) ; (1; 0) ; (0; 0)g, and the single-peaked preference (1; 1)P (0; 1)P (1; 0)P (0; 0).
Notice that P is not single-peaked on O relative to A since � = (0; 0) is not pre-
ferred to 
 = (1; 0), � 2 O \ D \MB

�
�A (P ) ; 


�
, and 
 2 A \ D. Obviously,

a single-peaked preference on O relative to A and D may not be single-peaked
because the ordering between some pairs �; 
 2 BnD is free while it is not for a
preference satisfying De�nition 3.
Next, we de�ne generalized median voter schemes. This class of social choice

functions are interesting multidimensional extensions of the basic idea of median
voting. Additionally, several papers have shown that, in this and similar settings,2

they are strategy-proof rules under single-peakedness.

De�nition 6. A left (right)-coalition system on Bk = [ak; bk] is a correspondence
Wk that assigns to every �k 2 Bk a nonempty collection of nonempty coalitions
Wk (�k) satisfying the following conditions:
(1) If W 2 Wk (�k) and W � W 0, then W 0 2 Wk (�k).
(2) If �k > (<)�k and W 2 Wk (�k), then W 2 Wk (�k).
(3) Wk (bk) = 2

Nn; (Wk (ak) = 2
Nn;).

2See, for example, Moulin [8], Border and Jordan [6], Barberà, Sonnenschein, and Zhou [4],
Barberà, Gul, and Stacchetti [1], Peters, van der Stel, and Storken [9], Barberà, Massó, and
Neme [2], and Barberà, Massó, and Serizawa [3].
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A family L of left-coalition systems on B is a collection fLkgKk=1 where each Lk
is a left-coalition system on Bk. Similarly, a family R of right-coalition systems
on B is a collection fRkgKk=1 where each Rk is a right-coalition system on Bk.
Moreover, given a left (right)-coalition systemWk on Bk we say thatW 2 Wk (�k)
is a minimal left (right) coalition if for every i 2 W , Wn fig =2 Wk (�k). Given Lk
(Rk) denote by Lmk (Rm

k ) the corresponding sets of minimal left (right) coalitions.
For a preference pro�le P =(P1; :::; Pn) 2 Un, A � B, and �k 2 Bk, denote by

�A (P) =
�
�A (P1) ; :::; �

A (Pn)
�
the vector of tops on A, and de�ne the coalition

to the left (right) of �k at �
A (P) by

l
�
�A (P) ; �k

�
=

�
i 2 N j �Ak (Pi) � �k

	
(r
�
�A (P) ; �k

�
=

�
i 2 N j �Ak (Pi) � �k

	
):

De�nition 7. Let fLkgKk=1 (fRkgKk=1) be a family of left (right)-coalition systems
on B and let A � B. The social choice function FA : eP1� :::� ePn ! A is called a
generalized median voter scheme de�ned by L (R) if it can be de�ned as follows:
for every P 2 eP1 � :::� ePn and every k = 1; :::; K
FAk (P) = �k , l

�
�A (P) ; �k

�
2 Lk (�k) and l

�
�A (P) ; �k � 1

�
=2 Lk (�k � 1)

(FAk (P) = �k , r
�
�A (P) ; �k

�
2 Rk (�k) and r

�
�A (P) ; �k + 1

�
=2 Rk (�k + 1)):

Notice that our de�nition is relative to the set A, since two preference pro�les
P and P0 with the same top �B (P) = �B (P0) outside of A may lead to di¤erent
choices under FA, if their tops on A are not the same. However, this will not
happen if A itself is box-shaped. Also notice that a generalized median voter
scheme FA respects unanimity on A and therefore the range of FA contains A.
Hence, when we write FA : eP1 � :::� ePn ! A we implicitly understand that the
range of FA is the set A.3

Before proceeding, it is useful to understand the relationship between right
and left coalition systems, Rk and Lk that produce the same outcome for all�
�Ak (P1) ; :::; �

A
k (Pn)

�
. Given Rk, de�ne L�k as follows: for all ak � �k < bk,

L�k (�k) = fS � N j S \ S 0 6= ; for all S 0 2 Rk (�k + 1)g , and
L�k (bk) = 2Nn;.

3See Barberà, Massó, and Neme [2] for an explicit discussion over the ontoness of such
functions and a characterization of all such generalized median voter schemes.

6



Remark 1. It is easy to see that Rk and Lk will select the same outcome for all�
�Ak (P1) ; :::; �

A
k (Pn)

�
if and only if Lk = L�k.

Our de�nition of generalized median voter schemes induces some distribution
of power among agents. Some agents may never be able to in�uence the outcome
at all: they are dummies. Some agents may always dictate the outcome to be
in a speci�c subset: they are decisive. Some agents may avoid some outcomes,
if they want: they are vetoers. These possibilities are some times global, but
they can also be de�ned in a local sense: power may depend on the alternative
under consideration and also on each of the dimensions de�ning this alternative.
The de�nition below makes all these notions precise. To do so, let L = fLkgKk=1�
Lm = fLmk g

K
k=1

�
be a (minimal) left-coalition system de�ned on B, A � B,

and let R = fRkgKk=1
�
Rm = fRm

k g
K
k=1

�
and FA : eP1 � ::: � ePn ! A be its

associated (minimal) right-coalition system and generalized median voter scheme,
respectively.

De�nition 8. We say that agent i is left (right) dummy at �k 2 Bk if i =2

[
S2Lmk (�k)

S

�
i =2 [

S2Rm
k (�k)

S

�
.

We say that agent i is left (right) vetoer at �k 2 Bk if i 2 \
S2Lk(�k)

S

�
i 2 \

S2Rk(�k)
S

�
.

We say that agent i is left (right) decisive at �k 2 Bk if fig 2 Lk (�k) (fig 2 Rk (�k)).

Remark 2. The following relationships result from Remark 1.
(1) Assume that ak � �k < bk: (1.a) if agent i is left dummy at �k then agent i
is right dummy at �k + 1, and (1.b) if agent i is left vetoer at �k then agent i is
right decisive at �k + 1.
(2) Assume that ak < �k � bk: (2.a) if agent i is right dummy at �k then agent i
is left dummy at �k � 1, and (2.b) if agent i is right vetoer at �k then agent i is
left decisive at �k � 1.

The de�nition of a decisive agent follows Serizawa [10]. Notice that its power
is weaker than what the name may suggest. If i is left decisive at �k, then he can
guarantee that the outcome will not be strictly above �k. In other words, i can
veto all values strictly above �k.

De�nition 9. We say that FA is a generalized median voter scheme without dum-
mies if for all k = 1; :::; K the set of left (right) dummies at �k is empty for all
�k 2 [ak; bk].
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Our next de�nition requires the domain of the social choice function to be
su¢ ciently large: this avoids cases where strategy-proofness might be trivially
obtained because agents�preferences are almost �xed.

De�nition 10. We say that a domain eP1 � ::: � ePn is rich on A � B if for all
i 2 N and � 2 A there exists Pi 2 ePi such that �A (Pi) = �.
The richness condition simply requires that there should be, for each alterna-

tive, at least one admissible preference ranking this alternative as best. This is a
standard assumption (see, for instance, Barberà, Sonnenschein, and Zhou [4] and
Serizawa [10]). Notice that if a domain of preferences is rich, its supersets are also
rich.
As a starting point, we remind the reader the following result.

Theorem 1. (Serizawa (1995)) Let FB : eP1 � ::: � ePn ! B be a strategy-proof
generalized median voter scheme without dummies with rich domain on B. Let
i 2 N . For any k = 1; :::; K, let dk be the maximal level such that i is right
decisive in Rk, and let vk be the minimal level such that he is a right vetoer in
Rk. Then any Pi 2 ePi is single-peaked on
S (Pi) =

�
� 2 B j 8k = 1; :::; K;min

�
dk; �

B
k (Pi)

	
� �k � max

�
vk; �

B
k (Pi)

		
:

Our results improve upon this one in several directions. In order to motivate
our contributions, let us �rst rephrase the essential intuition behind Theorem 1.
The set S (Pi) is almost the option set o (Pi), i.e. the set of alternatives that,
given that i votes Pi, may be the �nal outcome, depending on the votes of others.
Precisely,4

o (Pi) =
�
� 2 B j 8k = 1; :::; K;min

�
dk; �

B
k (Pi)

	
� �k � max

�
vk � 1; �Bk (Pi)

		
:

Then, Theorem 1 requires that i�s preferences are single-peaked on S (Pi). This
statement is equivalent to requiring that (a) Pi is single-peaked on o (Pi), and (b)
vk is worse than any point di¤erent than vk in MB

�
�Bk (Pi) ; vk

�
if vk 6= �Bk (Pi).5

(This rewording may seem arti�cial, but wait). In fact, single-peakedness on
o (Pi) is necessary. But, because agent i, by changing his preference from Pi to
P 0i , can change these options, and shift the outcome, a further requirement is also

4See Lemma 1 in the Appendix.
5This heuristic argument is done assuming implicitly that K = 1.

8



necessary: other points which might be attained by declaring preferences other
than Pi must be worse than some points in the option set. Serizawa�s condition
requires this for the point vk only (and does so implicitly). If we want to get a
condition which is not only necessary but also su¢ cient for strategy-proofness we
must require it explicitly and for a (generally) larger set of alternatives.
To be more speci�c, consider Example 1, which shows that the set of single-

peaked preferences on S (Pi) is still too large in the sense that with those prefer-
ences generalized median voter schemes may be manipulable.

Example 1. Consider a one-dimensional problem B = f�1; �2; �3; �4g with
�1 < �2 < �3 < �4 and agents 1 and 2. De�ne the generalized median voter
scheme FB as follows: Rm (�4) = f1; 2g, and Rm (�3) = Rm (�2) = Rm (�1) =
ff1g ; f2gg. Notice that FB does not have a right-dummy agent and, by Remark
2, it does not have a left-dummy agent. Consider the preference P2 of agent 2
such that �4P2�1P2�2P2�3. Since �3 is the maximal level such that agent 2 is
right decisive and �4 is the minimum level such that agent 2 is right vetoer, we
have that S (P2) = [min f�3; �4g ;max f�4; �4g] = [�3; �4]. Since �4P2�3 we have
that P2 is single-peaked on S (P2). However, to see that agent 2 can manipulate
FB let P1 be any single-peaked preference for agent 1 with the property that
�B (P1) = �1 and P 02 = P1. Then, F

B (P1; P
0
2) = �1P2�3 = F

B (P1; P2).

In view of this, we proceed as follows. We provide necessary and su¢ cient
conditions for strategy-proofness of generalized median voter schemes for the gen-
eral case where the range is not necessarily equal to B. Before that, in order to
allow for better comparison with Serizawa�s result and to proceed more smoothly,
we state an intermediate result which maintains the non-dummy condition and
highlights one of the directions of our extension. Since it will become a Corollary
of Theorem 3 (proven in Section 3), we state it without proof.

Theorem 2. Let FA : eP1 � ::: � ePn ! A be a generalized median voter scheme
with rich domain on A without dummies. Then, FA is strategy-proof on eP1� :::�ePn if and only if for every i 2 N and every Pi 2 ePi, Pi is single-peaked on o (Pi)
relative to A.

Example 2 below illustrates that the non-dummy condition in Theorems 1
and 2 is very restrictive because many generalized median voter schemes do not
satisfy it. It is obvious that any maximality result should exclude agents which
are dummies at all points, but there is a wide gap between the trivial case where
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an agent is dummy everywhere and those where he might be dummy locally,
especially in a multidimensional setting.

Example 2. Consider a one-dimensional problemB = [�1; �10] with ten alterna-
tives �1 < ::: < �10, and agents i and j (i 6= j) in a set N = f1; :::; ng where n � 3.
De�ne the generalized median voter scheme FB as follows: Lm (�1) = Nn fig,
Lm (�2) = ::: = Lm (�9) = fNn fig ; Nn fjgg, and Lm (�10) = 2Nn;. Notice that
although agent i is only left dummy at �1, FB does not satisfy the non-dummy
condition, and therefore we can not apply Theorems 1 and 2.

Consider a generalized median voter scheme FA : eP1 � ::: � ePn ! A de�ned
by R = fRkgKk=1 (and L = fLkg

K
k=1) and let i 2 N and k 2 K be given. Consider

the set of points
�
x1k; :::; x

T
k

	
where ak < x1k < ::: < xTk � bk and agent i is

right dummy at xtk for all 1 � t � T . Denote by Dk (i) =
�
D0k (i) ; :::;DTk (i)

	
the partition of [ak; bk] where D0k (i) = [ak; x1k � 1], Dtk (i) =

�
xtk; x

t+1
k � 1

�
for all

1 � t < T , and DTk (i) =
�
xTk ; bk

�
.

De�nition 11. Let FA : eP1� :::� ePn ! A be a generalized median voter scheme
de�ned by R = fRkgKk=1 (and L = fLkgKk=1) and let i 2 N . The partition

D (i) =
KQ
k=1

Dk (i) of B is called the non-dummy partition of i.

Theorem 3. Let FA : eP1 � ::: � ePn ! A be a generalized median voter scheme
with rich domain on A. Then, FA is strategy-proof on eP1� :::� ePn if and only if
for every i 2 N , every Pi 2 ePi, and every D 2 D (i), Pi is single-peaked on o (Pi)
relative to A and D.

Example 3 below illustrates some of the main concepts used in the de�nition
of single-peaked preferences on o (Pi) relative to A and D.

Example 3. Consider the case with two coordinates where B = f�11; :::; �71g �
f�12; :::; �52g and the set of agents is N = f1; 2; 3; 4; 5g. Consider the generalized
median voter scheme FB de�ned by the following family of right-coalition systems
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R = fR1;R2g:

Rm
1

�
�71
�
= f1; 2; 3; 4; 5g ;

Rm
1

�
�61
�
= f2; 3; 4; 5g ;

Rm
1

�
�51
�
= Rm

1

�
�41
�
= ff2; 3; 4; 5g ; f1; 2; 3; 4gg ;

Rm
1

�
�31
�
= ff1; 2; 3g ; f2; 3; 4g ; f3; 4; 5gg ;

Rm
1

�
�21
�
= ff2; 3g ; f3; 4; 5gg ;

Rm
1

�
�11
�
= 2Nn;;

Rm
2

�
�52
�
= f1; 2; 3; 4g ;

Rm
2

�
�42
�
= ff2; 3; 4g ; f3; 4; 5gg ;

Rm
2

�
�32
�
= Rm

2

�
�22
�
= ff1; 2g ; f3; 4gg ; and

Rm
2

�
�12
�
= 2Nn;:

Notice that agent 1 is right dummy at �21, �
6
1, and �

4
2 but agent 2 is never right

dummy. Therefore, the non-dummy partition of agent 1 is D (1) = D1 (1)�D2 (1),
whereD1 (1) = ff�11g ; f�21; �31; �41; �51g ; f�61; �71gg andD2 (1) = ff�12; �22; �32g ; f�42; �52gg,
while the non-dummy partition of agent 2 is the box B itself since D1 (2) =
ff�11; :::; �71gg and D2 (2) = ff�12; :::; �52gg. Consider any set of preferences eP1 �
:::� eP5 for which FB has rich domain on B. Notice that since D (2) = fBg, any
single-peaked preference P2 on o (P2) is indeed single-peaked on o (P2) relative to
B and D. Consider any preference P12 eP1 such that �B (P1) = (�31; �

2
2). Notice

that o (P1) = f�11; �21; �31; �41; �51; �61g � f�12; �22; �32; �42g. If FB is strategy-proof
we must have, for instance that (�61; �

2
2)P1 (�

7
1; �

1
2) and (�

4
1; �

3
2)P1 (�

5
1; �

3
2) but

we could have either (�51; �
5
2)P1 (�

4
1; �

3
2) or (�

4
1; �

3
2)P1 (�

5
1; �

5
2) since (�

5
1; �

5
2) and

(�41; �
3
2) belong to di¤erent elements of the non-dummy partition of agent 1.

Before proving the main result of the paper we illustrate, in Example 4 below,
that the class of preferences identi�ed in Theorem 3 may be very large, indeed.

Example 4. Consider the case with two coordinates whereB = f�11; �21; �31; �41; �51g�
f�12; �22; �32; �42; �52g and the set of agents is N = f1; 2g. Let FB be the generalized
median voter scheme where each agent is a dictator in one of the coordinates; that
is, FB is de�ned by the following family of right-coalition systems R = fR1;R2g:

Rm
1

�
�21
�
= ::: = Rm

1

�
�51
�
= f1g ;

Rm
2

�
�22
�
= ::: = Rm

2

�
�52
�
= f2g , and

Rm
1

�
�11
�
= Rm

2

�
�12
�
= ff1g ; f2gg .
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Following Le Breton and Sen [7] we say that a preference P1 2 U is top uncon-
ditional for agent 1 if given �B (P1) = (�1; �2) we have that (�1; �02)P1 (�

0
1; �

0
2) for

all �01 6= �1 and all �02 2 B2. Similarly, we say that a preference P2 2 U is top un-
conditional for agent 2 if given �B (P2) = (�1; �2) we have that (�01; �2)P2 (�

0
1; �

0
2)

for all �02 6= �2 and all �01 2 B1. Denote by T U i the set of top unconditional
preferences for agent i.
Le Breton and Sen [7] show, in a more general set up, that the maximal

domain of preferences under which this coordinatewise dictator FB is strategy-
proof is precisely T U1 � T U2. We will see that, even though preferences on
T U1 are far from being single peaked, the set of top unconditional preferences for
agent 1 coincides with the class of preferences identi�ed in Theorem 3.6 Given
FB, and since agent 1 is a dummy at every �2 6= �12 we have that D2 (1) =
ff�12g ; :::; f�52gg. Moreover, since agent 1 is never a dummy at any �1 2 B1,
we have that D1 (1) = f�11; :::; �51g. Therefore, a generic element D in D (1) can
be written as f�11; :::; �51g � f�02g, an horizontal integer segment. Given P1 2
T U1 and its associated top element �B (P1) = (�1; �2), we have that o (P1) =
f(�1;�12) ; :::; (�1; �52)g, a vertical integer segment, because agent 1 is a dictator
in the �rst coordinate and a dummy in the second one. But De�nition 5 just
says that (�1; �02)P1 (�

0
1; �

0
2) for all �

0
1 6= �1 and all �02 2 B2 which is the top

unconditional condition for agent 1.

3. Proof of Theorem 3

Let A � B be a subset of alternatives and let FA : eP1 � ::: � ePn ! A be a
generalized median voter scheme de�ned by R = fRkgKk=1 (and L = fLkgKk=1)
with rich domain on A. Since the set A will be kept �xed throughout the proof
we will omit its use as a superscript; that is, in this section, F and � should be
understood as FA and �A. Let i 2 N , k = 1; :::; K and Pi be a preference ordering
in ePi. De�ne:

vik =

8<: max

�
�k 2 Bk j i 2 \

S2Lk(�k)
S

�
if the set is nonempty

ak � 1 otherwise
, (3.1)

dik = min f�k 2 Bk j fig 2 Lk (�k)g ; (3.2)
6We omit the argument for agent 2 since it is identical after interchanging the role of the

coordinates.
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ak (Pi) = min
�
vik + 1; � k (Pi)

	
; (3.3)

bk (Pi) = max
�
dik; � k (Pi)

	
; and (3.4)

B (Pi) = A \
"
KY
k=1

[ak (Pi) ; bk (Pi)]

#
:7 (3.5)

Lemma 1 below describes, for any given generalized median voter scheme, the
exact shape of the set of options left open by an agent i to the other agents.

Lemma 1. B (Pi) = o (Pi).

Proof. Let � 2 B (Pi). For every j 6= i, consider any Pj 2 ePj with the prop-
erty that � (Pj) = �. We will show that F (Pi; P�i) = �. Let k = 1; :::; K
be arbitrary and de�ne the set S = fj 2 N j � k (Pj) � �kg; by construction,
N n fig � S. First, suppose that i =2 S. Then, vik + 1 � �k, since ak (Pi) �
�k < � k (Pi) implies that ak (Pi) = vik + 1. Therefore, S 2 Lk (�k). Moreover,
fj 2 N j � k (Pj) � �k � 1g =;, which implies that Fk (Pi; P�i) = �k. Second, as-
sume that i 2 S; that is S = N , which implies that S 2 Lk (�k) : By construction,
the set S = fj 2 N j � k (Pj) � �k � 1g is either empty or is equal to the set fig.
Suppose S = fig ; then �k � dik since � k (Pi) < �k and bk (Pi) = max fdik; � k (Pi)g
imply that bk (Pi) = dik. From the hypothesis that �k � bk (Pi) it follows that
�k � 1 < dik. Therefore fig =2 Lk (�k � 1) which implies that Fk (Pi; P�i) = �k.
Since k 2 K was arbitrary, we have that � 2 o (Pi).
Let � 2 o (Pi). That is, there exists P�i 2 eP�i such that F (Pi; P�i) = �.

De�ne P = (Pi; P�i). Let k = 1; :::; K be arbitrary. Notice that if � k (Pi) = �k
the result follows immediately by (3:3) and (3:4). Assume �rst that � k (Pi) < �k.
It implies that ak (Pi) < �k. De�ne the set S = fj 2 N j � k (Pj) � �k � 1g. Since
F (P) = � we know that S =2 Lk (�k � 1). However, since i 2 S we have that
�k � 1 < dik implying that �k � bk (Pi) since � k (Pi) < �k � dik and (3:4) hold.
Assume now that � k (Pi) > �k. It implies that �k < bk (Pi). De�ne the set
S = fj 2 N j � k (Pj) � �kg which belongs to Lk (�k) since Fk (P) = �k. Notice
that i =2 S which means that vik+1 � �k. Therefore, (3:3) and vik+1 � �k < � k (Pi)

7Notice that ak and bk were already de�ned as the extreme values Bk. The values ak (Pi)
and bk (Pi) are de�ned here. We keep a parallel notation, since [ak (Pi) ; bk (Pi)] will again stand
for intervals de�ned by their extremes.

13



imply that ak (Pi) = vik + 1. Hence, ak (Pi) � �k. Since k 2 K was arbitrary, we
have that � 2 B (Pi).

3.1. Necessity

Let F be strategy-proof on eP1� :::� ePn. Consider i 2 N , Pi 2 ePi; and D 2 D (i).
Let 
 2 A \D and � 2 B(Pi) \D\ MB (� (Pi) ; 
) be such that � 6= 
.
Let K1 = fk 2 K j 
k < �k � � k (Pi)g and K2 = fk 2 K j � k (Pi) � �k < 
kg.

Notice that K1 [K2 6= ; since � 6= 
 and � 2MB (� (Pi) ; 
).

Lemma 2. If B (Pi) \D \MB (�; 
) = f�; 
g then �Pi
.

Proof. The proof is based on the choice of a pro�le such that, when i declares his
top � (Pi) on A, then � obtains, but i could change the outcome to 
 by voting
for 
. To �nd such pro�le, we will divide the proof into two di¤erent cases.
Case 1: Assume that K1 6= ;: That is, there exists ~k such that 
~k < �~k �

� ~k (Pi) and i is not a left dummy at 
~k because 
~k; �~k 2
h
xt~k; x

t+1
~k
� 1
i
for some

0 � t � T~k and 
~k < �~k. Let S � N be such that i 2 S 2 Lm~k (
~k), and consider
P�i where for every j 2 N n fig, Pj 2 ePj is such that

� (Pj) =

�


�
if j 2 S n fig
if j 2 N n S ;

which exist since �; 
 2 A and F has rich domain on A.
First, for every k =2 K1 [K2 we have thatNnfig � fj 2 N j � k (Pj) � �k = 
kg.

Using the fact that �; 
 2 B (Pi) we will show that Fk (Pi; P�i) = 
k = �k.
To see it, �rst assume that Fk (Pi; P�i) < 
k = �k, which would imply that
fig 2 Lk (Fk (Pi; P�i)) and � k (Pi) � 
k = �k; but from these two conditions
we could conclude that bk (Pi) = max fdik; � k (Pi)g < 
k = �k contradicting the
hypothesis that �; 
 2 B (Pi). Assume now that Fk (Pi; P�i) > 
k = �k, which
would imply that � k (Pi) > 
k = �k. Therefore, Nn fig =2 Lk (
k) implying that
i 2

T
S2Lk(
k)

S, which would mean that vik + 1 > 
k = �k. Therefore, we would

have that 
k = �k < min fvik + 1; � k (Pi)g = ak (Pi), contradicting the hypothesis
that �; 
 2 B (Pi). Hence,

Fk (Pi; P�i) = �k for all k =2 K1 [K2. (3.6)
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Second, for every k 2 K1 the set fj 2 N j � k (Pj) � �kg contains the set N n
fig. Since � 2 B (Pi) by hypothesis, N nfig 2 Lk (�k) and therefore Fk (Pi; P�i) �
�k. Moreover, 
k � Fk (Pi; P�i) because � k (Pj) � 
k for every j 2 N . Hence,


k � Fk (Pi; P�i) � �k for all k 2 K1. (3.7)

The set fj 2 N j � ~k (Pj) � 
~kg is equal to S nfig. Since S nfig =2 L~k (
~k) we must
have that


~k < F~k (Pi; P�i) : (3.8)

Third, for every k 2 K2 the set fj 2 N j � k (Pj) < �kg is either empty, in
which case Fk (Pi; P�i) � �k, or else it is equal to the set fig. But since � 2 B (Pi)
implies that fig =2 Lk (�k � 1) we must have that Fk (Pi; P�i) � �k. Hence,

Fk (Pi; P�i) � �k for all k 2 K2. (3.9)

It is straightforward to see that from (3:6), (3:7), (3:8), (3:9), and the hypoth-
esis of Lemma 2 it follows that F (Pi; P�i) = �.
Consider any �Pi 2 ePi with the property that � � �Pi� = 
, which exists since


 2 A and F has rich domain on A. Now, F
�
�Pi; P�i

�
2 MB (�; 
) because

for every j 2 N we have that � (Pj) 2 f�; 
g. Consider again the coordi-
nate ~k 2 K1 and the set S = fj 2 N j � ~k (Pj) � 
~kg, which belongs to Lm~k (
~k).
Therefore, F~k

�
�Pi; P�i

�
= 
~k, which implies, by the hypothesis of Lemma 2, that

F
�
�Pi; P�i

�
= 
. Since F is strategy-proof on eP1 � ::: � ePn we must have that

�Pi
.
Case 2: Assume that K1 = ; and K2 6= ;: That is, there exists ~k such

that 
~k > �~k � � ~k (Pi). Notice that i is not a right dummy at 
~k because


~k; �~k 2
h
xt~k; x

t+1
~k
� 1
i
for some 0 � t � T~k and 
~k > �~k. Let S � N be such that

i 2 S 2 Rm
~k
(
~k), and consider P�i where for every j 2 N n fig, Pj 2 ePj is such

that

� (Pj) =

�


�
if j 2 S n fig
if j 2 N n S ;

which exist since �; 
 2 A and F has rich domain on A.
First, for every k =2 K2 we have that Fk (Pi; P�i) = 
k = �k since N n fig �

fj 2 N j � k (Pj) � �k = 
kg and i is neither a right-decisive nor a right-vetoer
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agent at �k = 
k. Therefore,

Fk (Pi; P�i) = �k for all k =2 K2. (3.10)

Second, for every k 2 K2 the set fj 2 N j � k (Pj) � �kg contains the set
Nn fig. Since i is not a right-vetoer agent at �k (remember that � 2 B (Pi)),
we have that Nn fig 2 Rk (�k). Therefore,

Fk (Pi; P�i) � �k for all k 2 K2. (3.11)

Moreover, the set fj 2 N j � ~k (Pj) � 
~kg is equal to Snfig. Since Snfig =2 R~k (
~k)
we must have that


~k > F~k (Pi; P�i) : (3.12)

It is straightforward to see that from (3:10), (3:11), (3:12) and the hypothesis
of Lemma 2 it follows that F (Pi; P�i) = �.
Consider any �Pi 2 ePi with the property that � � �Pi� = 
, which exists since


 2 A and F has rich domain on A. Now, F
�
�Pi; P�i

�
2 MB (�; 
) because

for every j 2 N we have that � (Pj) 2 f�; 
g. Consider again the coordi-
nate ~k 2 K2 and the set S = fj 2 N j � ~k (Pj) � 
~kg, which belongs to Rm

~k
(
~k).

Therefore, F~k
�
�Pi; P�i

�
= 
~k, which implies, by the hypothesis of Lemma 2, that

F
�
�Pi; P�i

�
= 
. Since F is strategy-proof on eP1 � ::: � ePn we must have that

�Pi
.

Lemma 3. If B (Pi) \D \MB (�; 
) ) f�; 
g then �Pi
.

Proof. Given 
 and �, there will exist �1 = �, �2,..., �h�1, �h = 
 such that,
for each j, B (Pi) \D \MB (�j; �j+1) = f�j; �j+1g. Speci�cally, we can choose
such �j�s by letting �j+1 be one of the closest elements (in the L1-norm) to �j in
B (Pi) \ D \MB (�j; 
). Now, to prove Lemma 3, apply successively Lemma 2
and the transitivity of the preference ordering Pi.

Lemma 4. If 
 =2 B (Pi) then �Pi
.

Proof. For each j 2 N consider any �Pj 2 ePj such that � � �Pj� = 
, which exists
since 
 2 A and F has rich domain on A. Obviously, F

�
�P1; :::; �Pn

�
= 
. The

proof will consists of two steps.
Step 1: We want to show that ak (Pi) � Fk

�
Pi; �P�i

�
� bk (Pi) for all k =

1; :::; K. But this is immediate, because by de�nition of option set F
�
Pi; �P�i

�
2
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o (Pi), and by Lemma 1, we have that ak (Pi) � Fk
�
Pi; �P�i

�
� bk (Pi) for all

k = 1; :::; K.
Step 2: We want to show that for all k = 1; :::; K:

(1) if �k � 
k then �k � Fk
�
Pi; �P�i

�
� 
k,

(2) if 
k < �k (� � k (Pi)) then 
k � Fk
�
Pi; �P�i

�
� �k.

De�ne P̂ =
�
Pi; �P�i

�
. To show (1) assume that �k � 
k and notice that

the set
n
j 2 N j � k

�
P̂ j
�
� 
k

o
contains Nn fig. Therefore, Fk

�
P̂
�
� 
k, be-

cause � 2 B (Pi). If �k = ak (Pi) then �k � Fk

�
P̂
�
. Assume that ak (Pi) <

�k. Since � 2 B (Pi) we know that �k 2 [ak (Pi) ; bk (Pi)], which implies that
�k � dik because � k (Pi) � �k. Therefore, fig =2 Lk (�k � 1). Moreover, sincen
j 2 N j �k > � k

�
P̂j

�o
� fig we must have that �k � Fk

�
P̂
�
. To show (2),

assume that 
k < �k and notice that the set
n
j 2 N j 
k � � k

�
P̂j

�o
is equal to

N . This implies that 
k � Fk
�
P̂
�
. Since � 2 B (Pi) we know that ak (Pi) � �k,

but because � k (Pi) � �k, we must have that �k > vik, implying that there exists
S 2 Lmk (�k) such that i =2 S. Since

n
j 2 N j �k � � k

�
P̂j

�o
� N n fig � S it

follows that Fk
�
P̂
�
� �k.

From Steps 1 and 2 we have established that 
 6= F
�
Pi; �P�i

�
2 B (Pi) \

MB (�; 
). Since f�; 
g � D; from (1) and (2) we have that F
�
Pi; �P�i

�
2 D:

Moreover, since F is strategy-proof and F
�
�P
�
= 
 we must have F

�
Pi; �P�i

�
Pi
.

De�ne F
�
Pi; �P�i

�
= 
0. Notice that � 2 MB (� (Pi) ; 
0) and 
0 2 B (Pi) \ D,

implying that the hypothesis of either Lemma 2 or Lemma 3 is satis�ed. Therefore,
we can deduce that �Pi
0 and by transitivity of Pi we can conclude that �Pi
.

3.2. Su¢ ciency

Assume that F is not strategy-proof. Then, there exist i 2 N , P = (P1; :::; Pn) 2eP1 � :::� ePn and P 0i 2 ePi such that
F (P 0i ; P�i)PiF (P) . (3.13)

Denote by �P the pro�le (P 0i ; P�i) and let 
 = F
�
�P
�
and � = F (P). We want

to show that there exists D 2 D (i) such that � 2 B (Pi) \ D \MB(� (Pi) ; 
)
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and 
 2 A \ D. First, notice that � = F (Pi; P�i) implies that � 2 o (Pi), and
therefore, by Lemma 1, we have that � 2 B (Pi).

Lemma 5. � 2MB (� (Pi) ; 
).

Proof. To show it, assume �rst that �k < � k (Pi). We will show that 
k � �k.
Since Fk (P) = �k we have that S = fj 2 N j � k (Pj) � �kg 2 Lk (�k) and because
i =2 S we have that S �

�
j 2 N j � k

�
�Pj
�
� �k

	
2 Lk (�k) by condition (1) in the

de�nition of a left-coalition system. Then, clearly Fk
�
�P
�
� �k which is the

desired result because 
k = Fk
�
�P
�
. Assume that �k > � k (Pi). We will show that

�k � 
k. Since Fk (P) = �k, the set S = fj 2 N j � k (Pj) � �k � 1g =2 Lk (�k � 1)
and because i 2 S we have that

�
j 2 N j � k

�
�Pj
�
� �k � 1

	
� S =2 Lk (�k � 1)

implying that 
k = Fk
�
�P
�
� �k. Finally, if �k = � k (Pi) we do not have to prove

anything since the minimal box condition for dimension k is irrelevant; that is, 
k
could be both higher or smaller than �k = � k (Pi).

Lemma 6. There exists D 2 D (i) such that f
; �g � D:

Proof. We have to show that:

(1) If 
k < �k then i is not left dummy at � for every 
k � � < �k, and
(2) If �k < 
k then i is not right dummy at � for every �k < � � 
k.

We will show only (1), since the argument to show (2) is the symmetric one
using right instead of left coalitions. Assume 
k < �k (� � k (Pi)). The inequal-
ity �k � � k (Pi) follows from Lemma 5. By condition (3:13) the coalition S =
fj 2 N j � k (Pj) � 
kg =

�
j 2 N n fig j � k

�
�Pj
�
� 
k

	
is not a member of Lk (
k)

since 
k < �k = Fk (P). However, �S =
�
j 2 N j � k

�
�Pj
�
� 
k

	
2 Lk (
k) since

Fk
�
�P
�
= 
k implying that i 2 �S and �S n fig = S =2 Lk (
k) which in turn implies

that there exists T � �S such that i 2 T and T 2 Lmk (
k) which means that i is not
left dummy at 
k. Let 
k < � < �k be arbitrary. By de�nition of left coalition sys-
tem �S 2 Lk (�) and by condition (3:13) �S n fig � fj 2 N j � k (Pj) � �g =2 Lk (�).
Therefore, there exists T � �S such that i 2 T and T 2 Lmk (�). Hence i is not a
left-dummy agent at �, which shows (1).

4. Conclusion and Final Remark

We have characterized the maximal domains of preferences under which gener-
alized median voter schemes are strategy-proof. The extent of these domains
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depends on the distribution of power among agents which is implied by each gen-
eralized median voter scheme. It is still an open question whether some form of
single-peakedness is necessary for a domain of preferences to admit some strategy-
proof social choice function (not necessarily a generalized median voter scheme).
An interesting partial answer is provided in Berga and Serizawa [5].
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