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1. Introduction

This paper investigates the connections between single-peakedness and strategy-
proofness. Whether or not nontrivial strategy-proof social choice functions exist
depends on the environment where we want them to operate. When alternatives
can be represented as points in a rectangular grid, and preferences are single-
peaked, generalized median voter schemes are strategy-proof. Outside those sit-
uations, nontrivial strategy-proof social choice functions may still exist, but they
are harder to find: domain restrictions become less natural.

Single-peakedness of the agent’s preferences is often assumed in the existing
literature and it is certainly a useful requirement toward the existence of nontrivial
strategy-proof social choice functions. In some environments it is sufficient to
guarantee it, in others it needs to be combined with additional restrictions. But
it is always there. This leads us to investigate, in the present paper, the extent to
which some form of single-peakedness might be necessary for strategy-proofness,
as well as sufficient.

Our answer is partial, because it only refers to generalized median voter
schemes, but it is precise. We start from any such scheme F', and we charac-
terize the maximal set of preferences under which F' is strategy-proof. It turns
out that the condition characterizing this maximal domain is a qualified version
of single-peakedness. Previous results in the same vein include Barbera, Sonnen-
schein, and Zhou [4], Serizawa [10], and Barbera, Mass6, and Serizawa [3]. Our
results improve upon these previous results in several directions. We allow for
all types of generalized median voter schemes, by not ruling out the existence of
vetoers or dummies. We also cover restricted domains under which the range of
generalized median voter schemes might not be a cartesian product.

We have chosen to keep this introduction short, leaving further motivational
remarks and examples for Section 2, which contains the definitions and a statement
of our result. This is proven in Section 3. Section 4 concludes.

2. Definitions, Notation and the Theorem

Agents are the elements of a finite set N = {1,2,...,n}. We assume that n is at
least 2.



Alternatives are K-tuples of integers numbers. For integers a,b € Z, with
a < b, we will denote the integer interval [a,b] = {a,a + 1,...,b}. A K-dimensional
boxr B is a cartesian product of K integer intervals:

K
B=]]Bs
k=1

where By = [ag, bg] and ay, < bx. A subbozx of B is any box A contained in B. We
endow B with the L;—norm. That is, for every o € B,

K
lall =" Tanl.
k=1

Given «, 8 € B, the minimal box containing o and [ is defined by

MB(e,3) ={y € B lla=fl=lla=~+Ilv—5l}.

Preferences are binary relations on alternatives (or subsets of alternatives).
Let U be the set of complete, transitive and asymmetric preferences on B. Pref-
erence profiles are n-tuples of preferences on B, P € U". Preference profiles
P = (P, ..., P,) are also represented by (P;, P_;) when we want to stress the role
of 7’s preference. For P € Y and A C B, we denote the alternative in A most
preferred by P as 74 (P), and we call it the top of P on A. Therefore, 72 (P) is
the unconstrained top of P. B N N

A social choice function on Py x...xP, C U" is a function F' : Py x...xP, — B.

The range of a social choice function F : Py X ... Xx P, — B, is denoted by
Rp. That is,

R = {aeB |3P = (P,,..., P,) € Py x ... x P, such that F(P):a}.

Social choice functions require each agent to report some preference. A social
choice function is strategy-proof if it is always in the best interest of agents to
reveal their preferences truthfully. Formally,

Definition 1. A social choice function F' : 731 X ... X 73n — B is manipulable on
P, X ... x P, if there exist P = (P, ... P,) € Py X ... X ﬁm i€ N and P! € P, such
that F (P!, P_;) P,F" (P). A social choice function is strategy-proof on Pi X ... X Py
if it is not manipulable on 731 X ... X 75”



Definition 2. Let F : ﬁl X ... X 73” — B be a social choice function and let
P, € P;. The set of options left open to the other agents by i declaring P; is
defined as follows:

o(F) = {a € Rp | there exists P_; € P, such that F (P, P;) = a} )

We shall consider different restrictions on preferences, all of them related to
single-peakedness. The first one is a natural extension of this classical condition
and has been already used in the literature; see for instance Barbera, Gul and
Stacchetti [1], Serizawa [10], and Barbera, Mass6, and Neme [2]. The second one
refers to any set O of K-dimensional alternatives. The third one involves three
sets O, A, and D. We present these definitions in sequence for the benefit of
the reader, since the first one is very natural while the others are a bit harder to
interpret. Formally, though, we need only one of them (Definition 5).

Our first condition is a natural extension of single-peakedness and it coincides
with the classical version when K = 1. It says that whenever alternative 3 is
closer than + to the best alternative 72 (P) (lies on the minimal path from 77 (P)
to 7, in the sense of the Li-norm) then §P~.

Definition 3. A preference P € U is single-peaked if P~ for all 5,y € B (8 # )
such that 5 € MB (77 (P),7) .

Preferences satisfying Definition 3 are characterized by the following two prop-
erties. The first one is goodwise single-peakedness: those preferences, restricted
to sets of alternatives differing only on one component, are single-peaked. The
second is peak-separability: the best alternative for those preferences on such
one-dimensional sets are the projection of the global best on the set.!

Our next definition involves a subset O C B and imposes conditions only on
elements of this set. Therefore, it is weaker than Definition 3 and it coincides with
single-peakedness whenever O = B.

Definition 4. A preference P € U is single-peaked on O C B if fP~y for all
B,y € O (B #~) such that § € M B (TB (P) ,'y) :

Finally, the third definition refers to three different sets O, A (O C A), and
D. Preferences will be restricted on the two sets O N D and AN D, but not in

IBarbera, Gul, and Stacchetti [1] introduced first this concept and called it multidimensional
single-peaked. Serizawa [10] calls those preferences cross-shaped.
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the same way. They will be required to be single-peaked on O N D, although the
reference point will be the top of P on A, 74 (P), instead of the unconstrained top,
78 (P). In addition, they will also be required to respect some milder restriction
on (AN D)\ (OND). In applications, O will be the set of options left open by
an agent, under a given social choice function, D will be a subset of alternatives
where the agent is not a dummy and A will be the range of the social choice
function.

Definition 5. Consider O C A C B and D C B. A preference P € U is
single-peaked on O relative to A and D if for every v € AN D and every €
ONDNMB (74 (P),~) such that 3 # v we have that SP~.

We will say that a preference P is single-peaked on O relative to A, whenever
D = A and P satisfies Definition 5.

Single-peakedness and single-peakedness on O relative to A and D are related
concepts but they define sets of preferences which are not necessarily subsets of
each other. To see that there are single-peaked preferences which do not sat-
isfy Definition 5, consider the case where B = {0,1} x {0,1}, O = A =D =
{(0,1),(1,0),(0,0)}, and the single-peaked preference (1,1) P (0,1) P (1,0) P (0,0).
Notice that P is not single-peaked on O relative to A since 8 = (0,0) is not pre-
ferred to v = (1,0), 5 € ONDNMB (TA (P) ,7), and v € AN D. Obviously,
a single-peaked preference on O relative to A and D may not be single-peaked
because the ordering between some pairs 3,7 € B\ D is free while it is not for a
preference satisfying Definition 3.

Next, we define generalized median voter schemes. This class of social choice
functions are interesting multidimensional extensions of the basic idea of median
voting. Additionally, several papers have shown that, in this and similar settings,>
they are strategy-proof rules under single-peakedness.

Definition 6. A left (right)-coalition system on By = |ay, by| is a correspondence
W that assigns to every ay € By a nonempty collection of nonempty coalitions
Wi (au,) satisfying the following conditions:
(1) EW € Wy () and W C W', then W' € Wy (ay,).
(2) If B}, > (<)o, and W € Wy, (a), then W € Wy, (5,,).
(3) Wi (bi) = 28\0 (Wi (ar) = 2"\D).

2See, for example, Moulin [8], Border and Jordan [6], Barbera, Sonnenschein, and Zhou [4],

Barbera, Gul, and Stacchetti [1], Peters, van der Stel, and Storken [9], Barbera, Massé, and
Neme [2], and Barbera, Mass6, and Serizawa [3].
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A family £ of left-coalition systems on B is a collection {Ek}szl where each Ly,
is a left-coalition system on By. Similarly, a family R of right-coalition systems
on B is a collection {Rk}szl where each Ry is a right-coalition system on By
Moreover, given a left (right)-coalition system W, on By, we say that W € W (ay,)
is a minimal left (right) coalition if for every i € W, W\ {i} & Wy (o). Given Ly
(Ry) denote by L} (R}") the corresponding sets of minimal left (right) coalitions.

For a preference profile P = (Py, ..., P,) e U", A C B, and 3, € By, denote by
™ (P) = (4 (P1),...,7* (P,)) the vector of tops on A, and define the coalition
to the left (right) of 3, at 74 (P) by

L (P),By) = {ieN|7i(P)<b)
(r (TA (P) 7ﬁk) = {2 €N | T? (P;) > 5k})

Definition 7. Let {£}1_, ({Ri}i_,) be a family of left (right)-coalition systems
on B and let A C B. The social choice function F4 : ﬁl X ... X 75n — A is called a
generalized median voter scheme defined by L (R ) if it can be defined as follows:
for every P €Py X ... x P, and every k=1,.., K

Flf (P)=p, &1 (TA (P) >5k) € Ly (B),) and [ (TA (P), By — 1) ¢ Ly (B —1)
(FAP) =8, &r(t*(P),B,) € R (8y) andr (17 (P), B, +1) ¢ Ry, (B, +1)).

Notice that our definition is relative to the set A, since two preference profiles
P and P’ with the same top 772 (P) = 77 (P’) outside of A may lead to different
choices under F4, if their tops on A are not the same. However, this will not
happen if A itself is box-shaped. Also notice that a generalized median voter
scheme F4 respects unanimity on A and therefore the range of F’ 4 contains A.
Hence, when we write F'4 : P; x ... x P, — A we implicitly understand that the
range of F4 is the set A.

Before proceeding, it is useful to understand the relationship between right
and left coalition systems, R, and L, that produce the same outcome for all
(7',?1 (Py), .y (Pn)) Given Ry, define £} as follows: for all ar < oy < by,

Li(ag) = {SCN|SNS #0forall S"e Ry (ar+1)}, and
Ly (by) = 2M\0.

3See Barbera, Massé, and Neme [2] for an explicit discussion over the ontoness of such
functions and a characterization of all such generalized median voter schemes.



Remark 1. It is easy to see that R, and L; will select the same outcome for all
(2 (P1), ..., (P,)) if and only if £, = Lj.

Our definition of generalized median voter schemes induces some distribution
of power among agents. Some agents may never be able to influence the outcome
at all: they are dummies. Some agents may always dictate the outcome to be
in a specific subset: they are decisive. Some agents may avoid some outcomes,
if they want: they are vetoers. These possibilities are some times global, but
they can also be defined in a local sense: power may depend on the alternative
under consideration and also on each of the dimensions defining this alternative.
The definition below makes all these notions precise. To do so, let £ = {Li}1,

<£m = {LZ@}kKﬂ) be a (minimal) left-coalition system defined on B, A C B,
and let R = {Ri}r, (Rm = {ka}fﬂ) and F4 : Py x ... x P, — A be its

associated (minimal) right-coalition system and generalized median voter scheme,
respectively.

Definition 8. We say that agent i is left (right) dummy at B, € By if i ¢

u S (z‘gé u S
SeLy(By) SER(Br)

We say that agent ¢ is left (right) vetoer at 3, € B ifi€ N S |i¢€ n Sj.
v & Jt (right) bi € B SeLi(By) ( SERk(By) )

We say that agent i is left (right) decisive at ), € By if{i} € Ly (8;,) ({i} € Ri (By))-

Remark 2. The following relationships result from Remark 1.

(1) Assume that a, < 5, < by: (1.a) if agent i is left dummy at (3, then agent i
is right dummy at 3, + 1, and (1.b) if agent i is left vetoer at (3, then agent i is
right decisive at 3, + 1.

(2) Assume that ay < 3, < by: (2.a) if agent i is right dummy at (3, then agent i
is left dummy at [3,, — 1, and (2.b) if agent i is right vetoer at (3, then agent i is
left decisive at [3;, — 1.

The definition of a decisive agent follows Serizawa [10]. Notice that its power
is weaker than what the name may suggest. If 7 is left decisive at 3, then he can
guarantee that the outcome will not be strictly above [3,. In other words, ¢ can
veto all values strictly above f3,.

Definition 9. We say that F'4 is a generalized median voter scheme without dum-
mies if for all k = 1,..., K the set of left (right) dummies at (3, is empty for all

Bk & [ak, bk]



Our next definition requires the domain of the social choice function to be
sufficiently large: this avoids cases where strategy-proofness might be trivially
obtained because agents’ preferences are almost fixed.

Definition 10. We say that a domain ﬁl X ... X ﬁn is rich on A C B if for all
i € N and o € A there exists P; € P; such that 4 (P;) = a.

The richness condition simply requires that there should be, for each alterna-
tive, at least one admissible preference ranking this alternative as best. This is a
standard assumption (see, for instance, Barbera, Sonnenschein, and Zhou [4] and
Serizawa [10]). Notice that if a domain of preferences is rich, its supersets are also
rich.

As a starting point, we remind the reader the following result.

Theorem 1. (Serizawa (1995)) Let FB : Py x ... x P, — B be a strategy-proof
generalized median voter scheme without dummies with rich domain on B. Let
t € N. For any k = 1,..., K, let d be the maximal level such that i is right
decisive in Ry, and let v, be the minimal level such that he is a right vetoer in
Ri. Then any P; € P; is single-peaked on

S(P)={aeB|Vk=1,..,K min {di, 7} (P)} < ay, < max {vy, 74 (P)}}.

Our results improve upon this one in several directions. In order to motivate
our contributions, let us first rephrase the essential intuition behind Theorem 1.
The set S (P;) is almost the option set o(P;), i.e. the set of alternatives that,
given that ¢ votes P;, may be the final outcome, depending on the votes of others.
Precisely,!

o(P)={a€B|Vk=1,. K min{d, 77 (P)} <, <max{v, — 1,77 (P)}}.

Then, Theorem 1 requires that i’s preferences are single-peaked on S (P;). This
statement is equivalent to requiring that (a) P; is single-peaked on o (F;), and (b)
vy, is worse than any point different than vy, in M B (77 (B;) ,vy,) if vy, # 78 (P;).°
(This rewording may seem artificial, but wait). In fact, single-peakedness on
o (P;) is necessary. But, because agent i, by changing his preference from P; to
P!, can change these options, and shift the outcome, a further requirement is also

4See Lemma 1 in the Appendix.
>This heuristic argument is done assuming implicitly that K = 1.



necessary: other points which might be attained by declaring preferences other
than P, must be worse than some points in the option set. Serizawa’s condition
requires this for the point v, only (and does so implicitly). If we want to get a
condition which is not only necessary but also sufficient for strategy-proofness we
must require it explicitly and for a (generally) larger set of alternatives.

To be more specific, consider Example 1, which shows that the set of single-
peaked preferences on S (F;) is still too large in the sense that with those prefer-
ences generalized median voter schemes may be manipulable.

Example 1. Consider a one-dimensional problem B = {aq, s, a3, s} with
ap < ag < agz < ay and agents 1 and 2. Define the generalized median voter
scheme FZ as follows: R™ (ay) = {1,2}, and R™ (a3) = R™ (a0) = R™ (av1) =
{{1},{2}}. Notice that F'Z does not have a right-dummy agent and, by Remark
2, it does not have a left-dummy agent. Consider the preference P, of agent 2
such that ayPoaq Poag Poars. Since ag is the maximal level such that agent 2 is
right decisive and a4 is the minimum level such that agent 2 is right vetoer, we
have that S (P2) = [min {ag, g}, max {ayg, as}] = [as, ay]. Since ayPoas we have
that P, is single-peaked on S (FP,). However, to see that agent 2 can manipulate
FB let P, be any single-peaked preference for agent 1 with the property that
TB(Pl) = 1 and P2/ :Pl. Then, FB(Pl,Pgl) :Oélpg()ég :FB(Pl,PQ).

In view of this, we proceed as follows. We provide necessary and sufficient
conditions for strategy-proofness of generalized median voter schemes for the gen-
eral case where the range is not necessarily equal to B. Before that, in order to
allow for better comparison with Serizawa’s result and to proceed more smoothly,
we state an intermediate result which maintains the non-dummy condition and
highlights one of the directions of our extension. Since it will become a Corollary
of Theorem 3 (proven in Section 3), we state it without proof.

Theorem 2. Let F4 : ﬁl X ... X ﬁn — A be a generalized median voter scheme
with rich domain on A without dummies. Then, Ff is strategy-proof on Py X ... X
P,, if and only if for every i € N and every P, € P;, P; is single-peaked on o (F;)
relative to A.

Example 2 below illustrates that the non-dummy condition in Theorems 1
and 2 is very restrictive because many generalized median voter schemes do not
satisfy it. It is obvious that any maximality result should exclude agents which
are dummies at all points, but there is a wide gap between the trivial case where



an agent is dummy everywhere and those where he might be dummy locally,
especially in a multidimensional setting.

Example 2. Consider a one-dimensional problem B = [ay, a;0] with ten alterna-
tives a; < ... < aqg, and agents i and j (i # j) inaset N = {1,...,n} wheren > 3.
Define the generalized median voter scheme FZ as follows: L™ (a;) = N\ {i},
LM () = ... = L™ (ag) = {N\{i}, N\ {j}}, and L™ (a10) = 2V\(. Notice that
although agent i is only left dummy at ay, F® does not satisfy the non-dummy
condition, and therefore we can not apply Theorems 1 and 2.

Consider a generalized median voter scheme F'4 : Pr X ... X 75n — A defined
by R = {Rk}szl (and £ = {Ek}szl) and let : € N and k € K be given. Consider
the set of points {z},...,a} } where a;, < z}; < .. < 2} < b and agent i is
right dummy at 2 for all 1 < ¢ < T. Denote by D (i) = {D} (i), ..., Df (i)}
the partition of [ay, by where D (i) = [ay, z} — 1], D} (i) = [«}, =} — 1] for all
1<t<T,and Df (i) = [z}, by

Definition 11. Let FA: Py x ... x 75n — A be a generalized median voter scheme
defined by R = {Rk}szl (and L = {Ek}le) and let i € N. The partition

K
D (i) = [] Dy (i) of B is called the non-dummy partition of i.
k=1

Theorem 3. Let F4 : ﬁl X ... X ﬁn — A be a generalized median voter scheme
with rich domain on A. Then, F' 4 js strategy-proof on Py X ... x P, if and only if
for every i € N, every P, € P;, and every D € D (i), P; is single-peaked on o (F;)
relative to A and D.

Example 3 below illustrates some of the main concepts used in the definition
of single-peaked preferences on o (FP;) relative to A and D.

Example 3. Consider the case with two coordinates where B = {aj,...,al} x
{ad,...,a5} and the set of agents is N = {1,2,3,4,5}. Consider the generalized
median voter scheme F'® defined by the following family of right-coalition systems
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R ={R1, Ra}:

R (of) = {1,2,3,4,5},

R (af) = {2,3,4,5},

RY'(e1) = R (af) ={{2,3,4,5},{1,2,3,4}},
RY (aF) = {{1,2,3},{2,3,4},{3,4,5}},

R (o) = {{2,3},{3,4,5}},

Ry (1) = 2M\0,

Ry (0f) = {1,2,3,4},

Ry (o5) = {{2,3,4},{3,4,5}},

Ry (03) = Ry (az) = {{1,2},{3,4}}, and
Ry (o) = 2"\0.

Notice that agent 1 is right dummy at a2, of, and o3 but agent 2 is never right
dummy. Therefore, the non-dummy partition ofagent 1is D (1) = Dy (1) x D4 (1),
where D, (1> {{041} {051,041,041, } {a1> I}} and D, (1> = {{04570‘%704%}7{0/217053}}7
while the non-dummy partition of agent 2 is the box B itself since D (2) =
{{ad, ..., a7}} and D, (2) = {{al, ...,a3}}. Consider any set of preferences Py x
.. X Ps for which F® has rich domain on B. Notice that since D (2) = {B}, any
single-peaked preference P, on o (P;) is indeed single—peaked on o (P,) relative to
B and D. Consider any preference PyeP; such that 75 (P) = (a3, a2). Notice
that o (P) = {al,a?, a3, a0}, a8} x {ad, a2, a3,a3}. If FB is strategy-proof
we must have, for instance that (af, a2) P (o], o) and (af,a3) P (a3, a3) but

we could have either (a3, a3) P (af,a3) or (af,ad) P (a3, a3) since (a,a3) and

(af, a3) belong to different elements of the non-dummy partition of agent 1.

Before proving the main result of the paper we illustrate, in Example 4 below,
that the class of preferences identified in Theorem 3 may be very large, indeed.

Example 4. Consider the case with two coordinates where B = {a}, a?, a3, ai, af} x
{ad, a2, a3, a3, a5} and the set of agents is N = {1,2}. Let F'® be the generalized
median voter scheme where each agent is a dictator in one of the coordinates; that
is, F'P is defined by the following family of right-coalition systems R = {R, R}

RY (03) = =R () = {1},
Ry (a3) = ..=Ry (o)) ={2}, and
RY (a1) = RE (az) = {{1},{2}}.

11



Following Le Breton and Sen [7] we say that a preference P; € U is top uncon-
ditional for agent 1 if given 72 (P) = (a1, az) we have that (ay, af) Py (o, ob) for
all of # «a; and all o), € B,. Similarly, we say that a preference P, € U is top un-
conditional for agent 2 if given 72 (P,) = (a1, ay) we have that (o, an) P (o), o)
for all o, # a9 and all of € B;. Denote by TU,; the set of top unconditional
preferences for agent i.

Le Breton and Sen [7] show, in a more general set up, that the maximal
domain of preferences under which this coordinatewise dictator F'? is strategy-
proof is precisely TU; x TUs. We will see that, even though preferences on
TU, are far from being single peaked, the set of top unconditional preferences for
agent 1 coincides with the class of preferences identified in Theorem 3.9 Given
FB_ and since agent 1 is a dummy at every ay # ai we have that Dy (1) =
{{ad},....,{a3}}. Moreover, since agent 1 is never a dummy at any a; € B,
we have that D; (1) = {al,...,a}}. Therefore, a generic element D in D (1) can
be written as {af,...,a}} X {a}}, an horizontal integer segment. Given P; €
TU, and its associated top element 72 (P;) = (a1, as), we have that o(P) =
{(a1,ad), ..., (a1,a3)}, a vertical integer segment, because agent 1 is a dictator
in the first coordinate and a dummy in the second one. But Definition 5 just
says that (aq,ab) Py (o), af) for all of # a; and all o), € B, which is the top
unconditional condition for agent 1.

3. Proof of Theorem 3

Let A C B be a subset of alternatives and let F4 : 731 X ... X 7511 — A be a
generalized median voter scheme defined by R = {Ry}1, (and £ = {Li}1—,)
with rich domain on A. Since the set A will be kept fixed throughout the proof
we will omit its use as a superscript; that is, in this section, I and 7 should be
understood as F Aand 7. Leti € N, k=1,..., K and P, be a preference ordering
in P;. Define:

max € B.|ic€ N S, if the set is nonempt
{Bk SRR } P i)

vy =
ap — 1 otherwise
L =min {f;, € By | {i} € Ly, (B})}, (3:2)

6We omit the argument for agent 2 since it is identical after interchanging the role of the
coordinates.
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ap (P;) =min {vj, + 1,74 (P)}, (3.3)

b (P;) = max {dj, 74 (P;)} ,and (3.4)
B(P)=An |[]lox (P),bx (P)]] 7 (3.5)

Lemma 1 below describes, for any given generalized median voter scheme, the
exact shape of the set of options left open by an agent 7 to the other agents.

Lemma 1. B(FP) =o(F).

Proof. Let § € B(P;). For every j # i, consider any P; € 75j with the prop-
erty that 7(P;) = 5. We will show that F(P,P_;) = . Let k = 1,.., K
be arbitrary and define the set S = {j € N | 7 (P;) < S,}; by construction,
N\ {i} C S. First, suppose that i ¢ S. Then, v} + 1 < 3, since a; (P;) <
B, < Tk (P;) implies that ay (P;) = v}, + 1. Therefore, S € Ly (8,). Moreover,
{j € N |7, (P;) < B, — 1} =0, which implies that Fy (P;, P_;) = ;. Second, as-
sume that i € S; that is S = N, which implies that S € Ly (5,,) . By construction,
the set S = {j € N | 74 (P;) < 8, — 1} is either empty or is equal to the set {i}.
Suppose S = {i}, then 3, < di since 7 (P;) < B, and by, (P;) = max {d}, ¢ (P;)}
imply that by (P;) = di. From the hypothesis that 3, < b, (P) it follows that
B, — 1 < di. Therefore {i} ¢ L (8, — 1) which implies that Fy (P;, P_;) = 3.
Since k € K was arbitrary, we have that § € o (FP).

Let a € o(P;). That is, there exists P_; € P_, such that F(P,P;) = .
Define P = (P;, P_;). Let k = 1,..., K be arbitrary. Notice that if 7, (P;) = a4
the result follows immediately by (3.3) and (3.4). Assume first that 74 (P;) < a.
It implies that ay, (P;) < oy. Define the set S = {j € N | 74 (P;) < oy, — 1}. Since
F(P) = a we know that S ¢ L (ar —1). However, since i € S we have that
ap — 1 < di implying that oy, < by, (P;) since 74 (P;) < oy < di and (3.4) hold.
Assume now that 7 (P;) > «g. It implies that a; < by (F;). Define the set
S ={jeN |7, (P) < a;} which belongs to L, (o) since Fj, (P) = ;. Notice
that 7 ¢ S which means that vi+1 < ay. Therefore, (3.3) and vi+1 < ay < 74 (P)

"Notice that ay and by were already defined as the extreme values By. The values ay (P;)
and by, (P;) are defined here. We keep a parallel notation, since [ay, (P;) , by, (P;)] will again stand
for intervals defined by their extremes.
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imply that a (P;) = vl + 1. Hence, a;, (P;) < . Since k € K was arbitrary, we
have that o € B (FP;). &

3.1. Necessity

Let F be strategy-proof on Pi X ... X P,. Consider i € N, P, € P;, and D € D (7).
Let ye AN D and 5 € B(P;) N DN MB (7 (P;),7) be such that 5 # ~.

Let Ky ={ke K|y, <pB,<71r(P)}and Ks ={k € K| 7x(P;) < B <V}
Notice that K7 U Ky # () since 5 # v and 8 € MB (7 (P;),7).

Lemma 2. If B(P,)NDNMB(3,v) ={5,7} then Py.

Proof. The proof is based on the choice of a profile such that, when i declares his
top 7 (P;) on A, then [ obtains, but ¢ could change the outcome to v by voting
for v. To find such profile, we will divide the proof into two different cases.

Case 1: Assume that K; # 0. That is, there exists & such that v < Br <

7; (P;) and 7 is not a left dummy at 7; because v, Bz € [xz, m%“ - 1} for some

0 <t <T} and 73 < Bj. Let S C N be such that i € S € L (v;), and consider
P_; where for every j € N\ {i}, P; € P; is such that

[ itjes\{i}
T(Pj)_{ B ifjEN\S
which exist since 3,7 € A and F has rich domain on A.

First, for every k ¢ K; UK» we have that N\{i} C {j € N | 74 (P}) < B, = 7}
Using the fact that 5,7 € B(F;) we will show that Fy (P, P_;) = v, = B,.
To see it, first assume that Fy (P, P_;) < 7, = [, which would imply that
{i} € Ly (Fy (P, P)) and 74 (P;) < 7y, = f;; but from these two conditions
we could conclude that by, (P;) = max {d,, 7 (P;)} < 7, = 3, contradicting the
hypothesis that 5,7 € B (FP;). Assume now that F (P;, P_;) > 7, = [, which
would imply that 7 (P;) > 7, = 8. Therefore, N\ {i} ¢ L (7,) implying that
i € () S, which would mean that v; + 1 > v, = f3,. Therefore, we would

S€Lk(r)
have that v, = 8, < min {v} + 1,74 (P;)} = ay (P;), contradicting the hypothesis
that 3,7 € B (P;). Hence,

Fk (.PZ,P_z) :Bk for allk;¢K1UK2 (36)
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Second, for every k € K; the set {j € N | 74 (P;) < (,} contains the set N \
{i}. Since § € B (P;) by hypothesis, N\{i} € L (5;) and therefore F}, (P;, P_;) <
Bj- Moreover, v, < Fy (P;, P_;) because 7y, (P;) >, for every j € N. Hence,

Vi < Fy (P, P_;) < B, for all k € Kj. (3.7)

The set {j € N | 75 (P;) <73} is equal to S\ {i}. Since S\ {i} ¢ L; (7;) we must
have that

Vi < Fp (P, Py). (3.8)
Third, for every k € Ky the set {j € N | 7 (P;) < B4} is either empty, in

which case Fy, (P;, P_;) > ,, or else it is equal to the set {i}. But since 8 € B (P;)
implies that {i} ¢ Ly (8, — 1) we must have that Fy (P, P—;) > (,. Hence,

Fy (P, P_;) > 3, for all k € K. (3.9)

It is straightforward to see that from (3.6), (3.7), (3.8), (3.9), and the hypoth-
esis of Lemma 2 it follows that F'(P;, P_;) = f.

Consider any P; € P; with the property that 7 (R) = v, which exists since
v € A and F has rich domain on A. Now, F (H,P_i) € MB(f,v) because
for every j € N we have that 7 (FP;) € {f,7}. Consider again the coordi-
nate k € K, and the set S = {j € N | 7 (P;) <7z}, which belongs to L2 (v5)-
Therefore, F;, (R, P,i) = 7, which implies, by the hypothesis of Lemma 2, that
F (R, P_i) = . Since F is strategy-proof on ﬁl X ... X ﬁn we must have that
BPFry. 3

Case 2: Assume that K; = () and Ky # (). That is, there exists k such
that v; > By > 73 (F;). Notice that ¢ is not a right dummy at v; because

Vi By € [x%,x%“ — 1] for some 0 < ¢ < 7% and ~; > f;. Let S C N be such that

ihe S € R (v;), and consider P-; where for every j € N\ {i}, P; € ﬁj is such
that

N oy ifieS\{i}
T(PJ)_{ﬁ ifjeN\S
which exist since 5,7 € A and F' has rich domain on A.

First, for every k ¢ K5 we have that Fy (P, P_;) = v, = ), since N \ {i} C
{j € N| 7 (Pj) > B, =} and i is neither a right-decisive nor a right-vetoer
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agent at 3, = 7. Therefore,
Fy, (P, P_;) = By for all k ¢ K. (3.10)

Second, for every k € K, the set {j € N |7, (P;) > (3,} contains the set
N\ {i}. Since i is not a right-vetoer agent at (3, (remember that 5 € B (F})),
we have that N\ {i} € Ry (5,). Therefore,

Moreover, the set {j € N | 71 (P;) > 7;.} is equal to S\{i}. Since S\{i} ¢ Ry (v;)
we must have that

Yi > F];; (Pz, P_i) . (3.12)
It is straightforward to see that from (3.10), (3.11), (3.12) and the hypothesis
of Lemma 2 it follows that F' (P, P_;) = f.
Consider any P; € P, with the property that 7 (R) = v, which exists since
v € A and F has rich domain on A. Now, F (Pi,P_Z-) € MB(f,v) because
for every j € N we have that 7(FP;) € {3,7}. Consider again the coordi-
nate k € Ky and the set S = {j € N | 73 (F;) > v;}, which belongs to R} (7).
Therefore, F;, (R, P,i) = 7, which implies, by the hypothesis of Lemma 2, that
F (R, P_i) = . Since F is strategy-proof on ’/31 X ... X 75n we must have that
Py ®

Lemma 3. If B(P,)NDNMB(3,v) 2 {5,7} then fPr.

Proof. Given v and 3, there will exist oy = 3, as,..., ap_1, a, = 7 such that,
for each j, B(FP;,) N DN MB (aj,aj41) = {j, a;41}. Specifically, we can choose
such «;’s by letting «; 1 be one of the closest elements (in the L;-norm) to «; in
B(P)N DN MB («j,7). Now, to prove Lemma 3, apply successively Lemma 2
and the transitivity of the preference ordering F;. B

Lemma 4. Ify ¢ B(P,) then SPyy.

Proof. For each j € N consider any P; € 75j such that 7 (Pj) =, which exists
since v € A and F has rich domain on A. Obviously, F (]51, ...P,) = ~. The
proof will consists of two steps.

Step 1: We want to show that ai (FP;) < Fj (Pi,P,i) < by (F;) for all k =
1,..., K. But this is immediate, because by definition of option set F’ (PZ-, ]5_1») €
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o(F;), and by Lemma 1, we have that a; (P;) < Fj (Pi,P,i) < by (P;) for all
k=1,... K.
Step 2: We want to show that for all k =1, ..., K:

(1) if B), < 7y then ), < Fj, (Pi, ]57.) < Vo
(2) if v, < By (S 71 (Py)) then v, < Fy, (P, P-;) < By
Define P <
the set {j €N |7k (ﬁj) < fyk} contains N\ {i}. Therefore, Fj (f’) < 9, be-

cause f € B(P;). If 5, = ay (P;) then 8, < Fj (13> Assume that ay (P;) <

Bi- Since f € B (FP;) we know that (5, € [ax (P;),bx (P;)], which implies that
B, < di because 74 (P;) < [;. Therefore, {i} ¢ Ly (3, —1). Moreover, since

{j €N | B> Tk (E)} C {i} we must have that 5, < F} (13‘> To show (2),

= (P, P_;). To show (1) assume that 8, < 7, and notice that

assume that v, < 3, and notice that the set {j EN|v, <7 <PJ>} is equal to

N. This implies that v, < Fj ( > Since 8 € B (P;) we know that ay (P;) < ,,
but because 7, (P;) > (;, we must have that 8, > vi, implying that there exists
S € L7 (B;) such that ¢ ¢ S. Since {j EN|PL>Tk (]%)} ODN\{i} 2Sit

follows that Fj, <A> < B4

From Steps 1 and 2 we have established that v # F (R,P Z) PZ-) N
MB(3,v). Since {#,7} C D, from (1) and (2) we have that F (P, P_;) €
Moreover, since F'is strategy proof and F' (P) = v we must have F’ (R, P_ ) R’y
Define F(PZ,P_Z) = . Notice that § € MB (7 (P;),v') and v € B(P) N D,
implying that the hypothesis of either Lemma 2 or Lemma 3 is satisfied. Therefore,
we can deduce that SP;y' and by transitivity of P; we can conclude that SP;y. W

3.2. Sufficiency
Assume that I is not strategy proof. Then, there exist i € N, P = (P, ..., P,) €
P, % ... x P, and P! e P, such that

F (P, P_;)PF (P). (3.13)

Denote by P the profile (P!, P_;) and let v = F (P) and 8 = F (P). We want
to show that there exists D € D (i) such that p € B(P)NDNMB(7r(P),7)
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and 7 € AN D. First, notice that § = F (P, P_;) implies that 5 € o(P;), and
therefore, by Lemma 1, we have that 5 € B (P).

Lemma 5. € MB(7(F;),7).

Proof. To show it, assume first that 5, < 74 (P;). We will show that v, < §,.
Since F}, (P) = 3, we have that S = {j € N | 71, (P}) < B,,} € L (B),) and because
i ¢ S wehave that SC {j € N |7, (P) <B,} € Ek (8)) by condition (1) in the
definition of a left-coalition system. Then, clearly Fk( ) < [, which is the
desired result because v, = Fj, (P). Assume that ), > 7 (P;). We will show that
B < - Since Fy, (P) = ), theset S = {j € N | 74 (P;) < B, — 1} ¢ Li (B, — 1)
and because i € S we have that {j € N | 7 (P)) <ﬁk—1} CSé¢Ly(B,—1)
implying that v, = Fj, (P) > 3. Finally, if 8 = 7 (P;) we do not have to prove
anything since the minimal box condition for dimension £ is irrelevant; that is, v,
could be both higher or smaller than 5, = 74 (F;). ®

Lemma 6. There exists D € D (i) such that {v,5} C D.
Proof. We have to show that:

(1) If v, < [, then i is not left dummy at £ for every v, < & < 3, and
(2) If 5, < -y, then i is not right dummy at £ for every 5, < & < ;.

We will show only (1), since the argument to show (2) is the symmetric one
using right instead of left coalitions. Assume v, < 5, (< 7% (P;)). The inequal-
ity B, < 7k (P;) follows from Lemma 5. By condition (3.13) the coalition S =
{j e N|7me(P) <v}={je N\{i} | 7 (P;) <~} is not a member of Ly (7;)
since v, < B, = Fy, (P). However, S = {j € N |74 (P;) <7} € Ly (v,) since
Fy (P) = v, implying that i € S and S\ {i} = S ¢ L}, (7,) which in turn implies
that there exists T C S such that i € T and T' € L} (,) which means that i is not
left dummy at v,. Let v, < & < 3, be arbitrary. By definition of left coalition sys-
tem S € £y, (€) and by condition (3.13) S\ {i} C {j € N | 7. (P}) <&} ¢ L (€).
Therefore, there exists T C S such that i € T and T € L" (£). Hence i is not a
left-dummy agent at &, which shows (1). B

4. Conclusion and Final Remark

We have characterized the maximal domains of preferences under which gener-
alized median voter schemes are strategy-proof. The extent of these domains
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depends on the distribution of power among agents which is implied by each gen-
eralized median voter scheme. It is still an open question whether some form of
single-peakedness is necessary for a domain of preferences to admit some strategy-
proof social choice function (not necessarily a generalized median voter scheme).
An interesting partial answer is provided in Berga and Serizawa [5].
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