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Abstract

We give an approximation in law of the d�parameter Wiener process

by processes constructed from a Poisson process with parameter in Rd�

This approximation is an extension of previous results of Stroock ������

and Bardina and Jolis�

Key words and phrases� d�parameter Wiener process� Poisson process� weak

convergence�

� Introduction

Let fN �t�� t � R�g be a standard Poisson process� Stroock ����	� proved that

the laws in C�
�� T ��� the Banach space of continuous functions on 
�� T �� of the

processes

zn 
� fzn�t� � n
�
�

Z t

�

����N�sn�ds� t � 
�� T �g�

converges weakly towards the Wiener measure�

The purpose of this paper is to prove this kind of result in Rd
 we prove a

weak convergence of processes constructed from a Poisson process with param�

eter in Rd to a d�parameter Wiener process � Let fN �x�� x � Rd
�g be a Poisson
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process in Rd �see De�nition 	�	�� Then� we consider the processes

yn�s� � n
d
�

Z sd

�

� � �

Z s�

�

�
dY
i��

xi�
d��
� ����N�x�n

�
d ���� �xdn

�
d �dx� � � �dxd� ���

s � �s�� � � � � sd� �
Qd

i��
�� Si�� In Theorem ��� we prove that the laws of such

processes converge weakly to the Wiener measure in C�
Qd

i��
�� Si��� Bardina

and Jolis proved this result in the particular case d � 	�

The proof of Theorem ��� follows the usual methods in the study of weak

convergence� We check that the sequence of laws is tight and identify the limit

of any subsequence weakly convergent� The tightness follows by a standard way

but the study of the limit law requires a characterization of the d�parameter

Wiener process �see Theorem ���� well posed to our problem� This characteri�

zation is one of the keys of our proof�

Notice that in the processes yn appears a factor �
Qd

i�� xi�
d��
� in the inte�

grand� The study of the covariance function of our processes shows us that this

is the needed factor to obtain the weak convergence �see Bardina and Jolis for

a more detailed discussion in the two parameter case��

The paper is organized as follows� Section 	 is devoted to introduce the

necessary notations� de�nitions and some technical results about the Poisson

process� In Section � we state our main result and we give the proof of the two

ingredients
 the tightness and the identi�cation of the limit law�

� Preliminaries

Suppose d � 	 and consider 
�� S� �
Qd

i��
�� Si� � R
d with the usual partial

order� De�ne I� � fs � 
�� S� 
 s� � � � � � sd � �g�

Let ���F � Q� be a complete probability space and let fFs� s � 
�� S�g be a

family of sub����elds of F such that
 Fs� � Fs� for any s
� � s��

Fix t � 
�� S� we also de�ne F�
t 
� F�t��S����� �Sd� �the ���eld generated by the

��past of t� and FT
t 
�

Wd

i��F�S����� �Si���ti�Si�� ���� �Sd� �the ���eld generated by

all the past of t��

	



Given s � t we denote by �sX�t� the increment of the process X over the

rectangle �s� t� �
Qd

i���si� ti� � R
d�

We can give now the de�nitions of the two processes involved in our paper�

De�nition ��� A d	parameter continuous process W � fW �s�� s � 
�� S� �

R
d
�g is called a d	parameter fFtg	Wiener process if it is fFtg	adapted� null

on I� and for any s � t the increment �sW �t� is independent of FT
s and is

normally distributed with zero mean and variance
Qd

i���ti � si��

If we do not specify the �ltration� fFtg will be the one generated by the

process itself completed with the necessary null sets


De�nition ��� An Fs�Poisson process in Rd with intensity � is an adapted�

c�adl�ag process N� � fN��s�� s � Rd
�g� null on I� and such that for all s � t the

increment �sN��t� is independent of
Wd
i��F������ ���si������ ��� with a Poisson

law of parameter �
Qd

i���ti � si�
 Here� we are denoting F������ ���si������ ���


�
W
xj���j ��i

F�x����� �xi���si�xi������ �xd�


If we do not specify the �ltration� fFtg will be the �ltration generated by the

process itself� completed with the null sets of FN� � �fN��x�� x � Rdg
 If we

do not specify the intensity� � will be �


We �nish this section with a technical lemma� The proof� based in De�nition

	�	 and the fact that for Z a random variable with a Poisson law with parameter

� we have E�����Z� � exp��	��� is omited� We need to introduce �rst some

more notation�

Given x� � �x��� � � � � x
�
d�� x

� � �x��� � � � � x
�
d� in R

d we de�ne� for any i �

f�� � � � � dg� x���i � min�x�i � x
�
i �� x

���
i � max�x�i � x

�
i � �we can extend this def�

initions for more than two points�� Moreover� for j � i we de�ne x
����i�
j

as x�j when x�i � x�i and as x�j when x�i � x�i � The di�erential dxi will de�

note the di�erential dxi� � � �dx
i
d in Rd� and for � � R� xi� � denotes the point

�xi� � �� � � � � xid � ��� Finally� when J � 	 we consider the usual conventionP
j�J xj � � and

Q
j�J xj � ��

�



Lemma ��� Let fN��x�� x � R
dg be a Poisson process with intensity � in Rd�

and for j � f�� 	� �� �g� xj � Rd
 Then


�i� E
h
����

P�
j�� N��x

j�
i
� exp

h
� 	��

dY
i��

x�i �
dY
i��

x�i � 	
dY
i��

x���i �
i
�

�ii� E
h
����

P�
j�� N��x

j�
i
� exp

h
� 	�


�X
j��

�
dY

i��

x
j
i � � 	

X
j ��k

�
dY
i��

x
j�k
i ��

��
X
j ��k ��l

�
dY
i��

x
j�k�l
i �� ��

dY
i��

x����	��i ��
i

�iii�
dY
i��

x�i �
dY

i��

x�i � 	
dY
i��

x���i �
dX
i��

�
i��Y
k��

x���k �jx�i � x�i j�
dY

k�i��

x
����i�
k ��

�iv�
dY
i��

x�i �
dY

i��

x�i � 	
dY
i��

x���i �
dY
i��

x���i �
dY
i��

x���i �

� Weak convergence

Our main result reads as follows�

Theorem ��� Let Pn be the image law of the process yn� de�ned in ���� in

the Banach space C�
�� S��R� of continuous functions on 
�� S�
 Then fPngn

converges weakly� as n tends to in�nity� towards the law of a d	parameter Wiener

process on C�
�� S��R�


Proof
 It follows from the tightness proved in Subsection ��� and the identi��

cation of the limit law given in Subsection ��	�

In order to simplify the notation� we denote by Nn�x� the random variable

N �x�n
�
d � � � � � x�n

�
d �� Then� fNn�x�� x � Rd

�g is a Poisson process in Rd with

intensity n� Moreover� we can write

yn�s� � n
d
�

Z sd

�

� � �

Z s�

�

�
dY

i��

xi�
d��
� ����Nn�x�dx�

��� Tightness

In this section we prove that fPngn is tight� Using a criterium given by Bickel

and Wichura ������� it su�ces to prove the following lemma�

�



Lemma ��� There exists a positive constant K such that E
h�
�syn�t�

��i
�

K
Qd

i���ti � si��� for any � � s � t � S� n � ��

Before the proof we need a technical lemma�

Lemma ��� Let X � fX�s�� s � 
�� S� � Rdg be a continuous process
 Assume

that there exists K � � such that

E
h�
�sX�t�

��i
� K

dY
i��

�ti � si�
�� �	�

for any � � s � t � 	s� Then there exists K� � � such that X enjoys ��� for

any � � s � t� with K� instead of K


Proof
 Changing K by �K� it is easy to check that X satis�es �	� for any

� � s � t � �s� Now� we can give the sketch of the proof for the case s � �� By

using the inequality �a� b�� � �a� � �b� and the continuity of X� we get

E
h�
��X�t�

��i
�

�X
j����� �jd��

�j������jdE
h�
�� t�

�j�
���� �

td

�jd
�X�

t�

�j���
� � � � �

td

�jd��
�
��i

� �K
�X

j����� �jd��

dY
i��

�ji
��ti
�ji

��
� K�

dY
i��

t�i �

The proof of the general case follows the same method�

Proof of Lemma �
�
 Using Lemma ��� we can assume � � s � t � 	s� We

have

E
h�
�syn�t�

��i
� n�d

Z
Q

d
i�� 
si�ti�

�

�

d��Y
i���j��

x
j
i �

d��
� E

h
����

P�
j�� Nn�x

j�
i �Y
j��

dxj�

Notice that

E
h
����

�P

j��
Nn�x

j�i
�

dY
i��

jE
h
����

�P

j��
��������si������	

Nn�s����si���x
j
i �si�����sd�

i
j� ���

Indeed� for x �
Qd

i��
si� ti� we have 
�� x� � Ax 
Bx� with

Ax 
� 
di��
��� �� �� si� �� �� ��� �s�� �� si��� xi� si��� �� sd�� � G�

�



where G 
� 
di��
��� �� �� si� �� �� ��� �s�� �� si��� ti� si��� �� sd��� Moreover Bx � Gc�

Fixed xj� j � f�� 	� �� �g� then 
�j��Axj and 

�
j��Bxj are disjoint� So� the corre�

sponding increments will be independent and we get ��� easily�

Assume now x�i � x�i � x	i � x�i for all i � f�� � � � � dg� Then ��� is equal to

dY
i��

exp
h
� 	n
�x�i � x	i � � �x�i � x�i ��

Y
k ��i

sk

i

�
dY
i��

exp
h
� 	��dn
�x�i � x�i �

Y
k ��i

x�k � �x�i � x	i �
Y
k ��i

x	k�
i
�

since x
j
i � ti � 	si for all i � f�� � � � � dg� j � f�� 	� �� �g� Notice that ��� is

symmetric in the variables x�i � x
�
i � x

	
i � x

�
i for each i� So� we get

E
h�
�syn�t�

��i
� ����d	d��

�
nd
Z
Q

d
i�� 
si�ti�

�

�
dY

i��

x�i �
d���

dY
i��

�fx�
i
	x�

i
g�

� exp
h
� 	��dn

dX
i��


�x�i � x�i �
Y
k ��i

x�k�
i �Y
j��

dxj
��
�

since x�i � ti � 	si � 	x�i for all i � f�� � � � � dg� Integrating now with respect

to x�i � i � f�� � � � � dg� we can bound it by K�
R
Q

d
i��
si�ti�

dx��� and the proof is

completed�

��� Identi�cation of the limit law

Let fPnigi be a subsequence of fPngn �that we will also denote by fPngn�

weakly convergent to some probability P � We have to check that the canonical

process fX�s�
y� 
� y�s�g is a d�parameter Wiener process under the probability

P �

We will need the following characterization of the d�parameter Wiener pro�

cess� An important point of this characterization is that its quadratic variation

part does not need conditioning on all the past but only on the ��past� On the

other hand� if we only consider the case in which the �ltration is the natural one�

we can avoid to study increments whose left points are in I�� For the sake of

completeness� we will give the proof of this result� although some ideas involved

in it were also used by Tudor ������ in the two paramenter case�

�



Theorem ��� Let X � fX�s�� s � 
�� S� � Rd
�g be a continuous process null

on the axes and let fFtg be its natural �ltration
 Then the following statements

are equivalent


�i� X is a d	parameter Wiener process


�ii� For all � � s � t� E
�
�sX�t�jFT

s

�
� � and E

�
��sX�t���jF�

s

�
�Qd

i���ti � si��

Proof
 Obviously �i� implies �ii�� Let us check now that �ii� yields �i�� Fixed

� � s � t� consider the process Y �u� 
� �sX�u� t�� � � � � td�� u � 
s�� S�� � R��

and the ���elds Gu 
� F�
�u�s����� �sd�

� u � 
s�� S��� Clearly fY �u��Gu� u � 
s�� S��g

is a martingale� Indeed� Y �u� is Gu�adapted and

E
�
Y �v� � Y �u�jGu� � E

�
��u�s����� �sd�X�v� t�� � � � � td�jGu�

� E
�
E
�
��u�s����� �sd�X�v� t�� � � � � td�jF

T
�u�s����� �sd�

�
jGu
�
� ��

On the other hand�

E
�
�Y �v� � Y �u���jGu� � E

�
���u�s����� �sd�X�v� t�� � � � � td��

�jGu�

� �v � u�
dY
i��

�ti � si��

Then� Paul L�evy�s theorem gives us that fY �u��Gu� u � 
s�� S��g is a one pa�

rameter Wiener process with variance �u� s��
Qd

i���ti � si��

So� the increments �sX�t� � Y �t�� � Y �s�� are normally distributed with

zero mean and variance
Qd

i���ti � si��

Let now s � I� and consider �s��X�t� with � � �� They are centered

gaussian random variables� Taking the limit when � tends to �� we get that

�sX�t� is also a centered gaussian random variable with variance
Qd

i���ti�si��

Finally� since E
�
�sX�t�jFT

s

�
� � for � � s � t� all the increments are

uncorrelated and moreover� independent�

The following proposition gives us the identi�cation of the limit�

Proposition ��	 Let fPngn be the laws in C�
�� S��R� of processes yn de�ned

in ���
 Assume that fPnigi is a subsequence weakly convergent to P 
 Let X

�



be the canonical process and let fFsg be its natural �ltration
 Then� for all

� � s � t� EP

�
�sX�t�jFT

s

�
� � and EP

�
��sX�t���jF�

s

�
�
Qd

i���ti � si��

Proof
 We follow the method of the two parameter case �see Bardina and Jolis��

Fixed 	 � � and z�� � � � � zm � 
�� S� such that for each j � �� � � � �m there exists

i � f�� � � � � dg such that zji � si � 	�

To prove that EP

�
�sX�t�jFT

s

�
� �� it su�ces to check that� for any bounded

continuous function 
 
 Rm �� R� EP

�

�X�z��� � � � � X�zm���sX�t�

�
� �� Since

Pn
w

 P and taking into account the bound obtained in Lemma ��	� it su�ces to

prove that limn
�EPn

�

�X�z��� � � � � X�zm���sX�t�

�
� �� Notice that using

that 
 is bounded

jEPn

�

�X�z��� � � � � X�zm���sX�t�

�
j � jE

�

�yn�z

��� � � � � yn�z
m���syn�t�

�
j

� jE
h

�yn�z

��� � � � � yn�z
m��E

�
�syn�t�jG

n
s��

�i
j � K

�
E�Y �

n �
� �
� �

with Gns�� � FT
s�� and

Yn 
� E
h
n

d
�

Z
Q

d
i��
si�ti�

�
dY

i��

xi�
d��
� ����Nn�x�dxjGns��

i
� E

h
�����s��Nn�s�

i

�E
h
n

d
� �����s��Nn�s�

Z
Q

d
i��
si�ti�

�
dY

i��

xi�
d��
� ����Nn�x�dxjGns��

i
�

since �s��Nn�s� is independent of Gns��� We have that Yn converges to zero

in L� as n tends to in�nity because E
�����s��Nn�s�� � exp��		dn� and the

conditional expectation is L� bounded �see Lemma ��	��

Let us check now the second part of the Proposition� Following similar

arguments it is enough to check that E
�
��syn�t���jF�

s

�
converges in L� toQd

i���ti � si�� as n tends to in�nity� To prove it� observe that

� � E
h�
E
�
��syn�t��

�jF�
s

�
�

dY
i��

�ti � si�
��i

� E
h�
E
�
��syn�t��

�jF�
s

���i
� 	

dY
i��

�ti � si�E
�
��syn�t��

�
�
�

dY
i��

�ti � si�
��

The following Lemmas� ��� and ���� will show that the last term converges to �

when n tends to in�nity� The proof is now complete�

�



Lemma ��
 For any � � s � t� limn
�E
h�
�syn�t�

��i
�
Qd

i���ti � si��

Proof
 Given x� and x�� Lemma 	�� implies that E
h
����

P�
j�� Nn�x

j �
i
is in the

interval

exp
h
� 	n


dX
i��

jx�i � x�i j
Y
k ��i

x���k �
i
� exp

h
� 	n


dX
i��

jx�i � x�i j
Y
k ��i

x���k �
i
�

Using symmetry arguments it is then easy to check that 	dI� � E
h�
�syn�t�

��i
�

	dI�� where

I� 
� nd
Z
Q

d
i�� 
si�ti�

�

�

d��Y
i���j��

xji �
d��
� exp

h
� 	n

dX
i��


�x�i � x�i �
Y
k ��i

x�k�
i

��
dY
i��

�fx�
i
	x�

i
g�

�Y
j��

dxj

I� 
� nd
Z
Q

d
i�� 
si�ti�

�

�

d��Y
i���j��

x
j
i �

d��
� exp

h
� 	n

dX
i��


�x�i � x�i �
Y
k ��i

x�k�
i

��
dY
i��

�fx�
i
	x�

i
g�

�Y
j��

dxj�

We will study I�� Notice that

I� �
�

	d

Z
Q

d
i�� 
si�ti�

�
dY
i��

x�i �
� d��

�

dY
i��

�Z x�i

si

	n�
Y
k ��i

x�k�

� exp
h
� 	n
�x�i � x�i �

Y
k ��i

x�k�
i
�x�i �

d��
� dx�i

�
dx��

Since 	n�
Q

k ��i x
�
k� exp

h
� 	n
�x�i � x�i �

Q
k ��i x

�
k�
i
�����x�i �

�x�i � is a probability

density that gives and approximation of the identity as n tends to�� we obtain

that Z x�i

si

	n�
Y
k ��i

x�k� exp
h
� 	n
�x�i � x�i �

Y
k ��i

x�k�
i
�x�i �

d��
� dx�i

tends to �x�i �
d��
� � Moreover� by the dominated convergence theorem we get

limn
� I� �
�
�d

Qd
i���ti � si�� Interchanging the roles of x�i and x�i for each i�

we obtain the same result for I�� This fact �nishes the proof of the lemma�

�



Lemma ��� For any � � s � t� lim supn
�E
h�
E
h�
�syn�t�

��
jF�

s

i��i
�
Qd

i���ti � si��


Proof
 For x � s���Nn�x� � ��Nn�s�� x�� � � � � xd� � ��s������� ���Nn�x��

Then by �i� of Lemma 	�� we have

E
h�
E
h�
�syn�t�

��
jF�

s

i��i

� E
h�
nd
Z
Q

d
i�� 
si�ti�

�

�

d��Y
i���j��

x
j
i �

d��
� ����

P�
j�� ��Nn�s��x

j
����� �x

j

d
�

�E
h
����

P�
j�� ��s� ������ ��	

Nn�x
j �
i �Y
j��

dxj
��i

� n�d
Z
Q

d
i��
si�ti�

�

�

d��Y
i���j��

x
j
i �

d��
� T��x

����	���T��x
����	���

�Y
j��

dxj ���

with T��x
����	��� 
� E

h
����

P�
j�� ��Nn�s��x

j
����� �x

j

d
�
i
and
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that clearly goes to zero by dominated convergence�

Integral over D
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Notice that all the terms appearing in the above decomposition are nonnegative

�for instance� �iv� of Lemma 	�� yields that R����x
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plus some terms that we have seen that go to zero�

Integrating �rst with respect to dx�i � i � f	� � � � � l��g and dx
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the limit when �� � of the last integral is equal to
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�dx	 and the

proof is now completed�
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