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Abstract

We give an approximation in law of the d-parameter Wiener process
by processes constructed from a Poisson process with parameter in R¢
This approximation is an extension of previous results of Stroock (1982)

and Bardina and Jolis.
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1 Introduction

Let {N(¢),t € Ry} be a standard Poisson process. Stroock (1982) proved that
the laws in C([0, T]), the Banach space of continuous functions on [0, T}, of the

processes
t
Zn = {Zn(t) = n%/ (_1)N(sn)dsat € [OvT]}v
0

converges weakly towards the Wiener measure.
The purpose of this paper is to prove this kind of result in R%: we prove a
weak convergence of processes constructed from a Poisson process with param-

eter in R¢ to a d-parameter Wiener process . Let {N(z),z € }Rff_} be a Poisson
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process in B¢ (see Definition 2.2). Then, we consider the processes

sq 57 d . 1 1
/ / (H xi)dT(—l)N(xlndwwxd”d)dxl---dl‘d, (1)
0 0 i=1

s = (s1,-+,84q) € ngl[(), S;]. In Theorem 3.1 we prove that the laws of such

[N

yn(s) =n

processes converge weakly to the Wiener measure in C(ngl[(), S;]). Bardina
and Jolis proved this result in the particular case d = 2.

The proof of Theorem 3.1 follows the usual methods in the study of weak
convergence. We check that the sequence of laws is tight and identify the limit
of any subsequence weakly convergent. The tightness follows by a standard way
but the study of the limit law requires a characterization of the d-parameter
Wiener process (see Theorem 3.4) well posed to our problem. This characteri-
zation is one of the keys of our proof.

Notice that in the processes y, appears a factor (ngl J:Z)d_Tl in the inte-
grand. The study of the covariance function of our processes shows us that this
is the needed factor to obtain the weak convergence (see Bardina and Jolis for
a more detailed discussion in the two parameter case).

The paper is organized as follows. Section 2 is devoted to introduce the
necessary notations, definitions and some technical results about the Poisson
process. In Section 3 we state our main result and we give the proof of the two

ingredients: the tightness and the identification of the limit law.

2 Preliminaries

Suppose d > 2 and consider [0, 5] = Hle[(), S;] € R? with the usual partial
order. Define In = {s € [0, 5] : s1 X -+ X 54 = 0}.

Let (€2, 7, Q) be a complete probability space and let {F,, s € [0, 5]} be a
family of sub-o-fields of F such that: F,1 C F,2 for any s! < s2.

Fix ¢ € [0, 5] we also define F}! := Ft1,5z,,54) (the o-field generated by the
L-past of t) and FL := Vi, F(s1, Sior,t0,50s1,,54) (the o-field generated by
all the past of ).



Given s < t we denote by A;X(¢) the increment of the process X over the
rectangle (s,t] = Hle(si,ti] C R4,

We can give now the definitions of the two processes involved in our paper.

Definition 2.1 A d-parameter continuous process W = {W(s);s € [0,5] C
R%} is called a d-parameter {F;}-Wiener process if it is {F;}-adapted, null
on Iy and for any s < t the increment A;W (t) is independent of FI and is
normally distributed with zero mean and variance Hle(ti — 8i).

If we do not specify the filtration, {F,} will be the one generated by the

process itself completed with the necessary null sets.

Definition 2.2 An F,—Poisson process in RY with intensity p is an adapted,
cadlag process N, = {N,(s);s € Rff_}, null on Iy and such that for all s <t the
increment A;N,(t) is independent of \/Zc»l:1 F (00, 100,81,00,+ ,00) With a Poisson
law of parameter quzl(ti — s;). Here, we are denoting F (00,0 100,85,00,+++ 100)
= \/xj>0,j¢i F o1y s Bie,80,@ g1y s Ta) -

If we do not specify the filtration, {F;} will be the filtration generated by the
process itself, completed with the null sets of FNu = o{N,(z), x € R¥}. If we

do not specify the intensity, p will be 1.

We finish this section with a technical lemma. The proof, based in Definition
2.2 and the fact that for Z a random variable with a Poisson law with parameter
A we have E((—1)%) = exp(—2)), is omited. We need to introduce first some

more notation.

Given 21 = (zf,---,2}), 2% = (2%,--- ,2%) in RY we define, for any i €
{1, ,d}, 2} = min(z}, 2?),2}¥? = max(z},22) (we can extend this def-

initions for more than two points). Moreover, for j > i we define x;VZ(i)

as x} when z! > 2% and as x? when z! < z%. The differential dz’ will de-
note the differential dz? - - -dxil in RY and for ¢ € R, 2" + ¢ denotes the point

(8 + e, ,xil + ¢). Finally, when J = (} we consider the usual convention

Zjejxj:()and Hjeijzl.



Lemma 2.3 Let {N,(z),2 € R} be a Poisson process with intensity p in R,
and for j € {1,2,3,4}, 27 € R% Then:

2

(4) E[(_1) i NM)} — exp [_ 24

::]g

x; —|—Hx —QHl‘lAZ}
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i=1

M»

(i7) E[(_1) J=1 N»LW')} — exp {— 2]

j=11 j£k i=1
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3 Weak convergence

Our main result reads as follows.

Theorem 3.1 Let P, be the image law of the process yy, defined in (1), in
the Banach space C([0,S],R) of continuous functions on [0,S5]. Then {P,},
converges weakly, as n tends to infinity, towards the law of a d-parameter Wiener

process on C([0, S],R).

Proof: 1t follows from the tightness proved in Subsection 3.1 and the identifi-

cation of the limit law given in Subsection 3.2. [ ]

In order to simplify the notation, we denote by N, () the random variable
N(a:ln%, e ,xln%). Then, {N,(z),z € R4 ¢} is a Poisson process in R? with

intensity n. Moreover, we can write

/ / sz S 1))

3.1 Tightness

In this section we prove that {P,}, is tight. Using a criterium given by Bickel
and Wichura (1971), it suffices to prove the following lemma.



Lemma 3.2 There exists a positive constant K such that E{(Asyn(t))ﬂ <
K Hle(ti —5;)% forany 0 <s<t< S n>1.

Before the proof we need a technical lemma.

Lemma 3.3 Let X = {X(s),s € [0, 5] C R%} be a continuous process. Assume
that there exists K > 0 such that

E[(Ax(1)"] < B f[t—sl : 2)

for any 0 < s < t < 2s. Then there exists K1 > 0 such that X enjoys (2) for
any 0 < s <t, with Ky instead of K.

Proof: Changing K by K, it is easy to check that X satisfies (2) for any
0 < s <t< 8s. Now, we can give the sketch of the proof for the case s = 0. By
using the inequality (a + b)* < 8a* + 8b* and the continuity of X, we get

oQ

4 et 1y tg \4
El(a0x®)"] < Y e +ME{(A(8_?T““78_%)X(8],1_1,... )]
Jiseesja=1
R 7t )
< K Y HSJ <K, Ht
1, ja=1i=1
The proof of the general case follows the same method. [ ]

Proof of Lemma 3.2: Using Lemma 3.3 we can assume 0 < s < ¢t < 2s. We

have

Bl(aan)] = [ (11 =H*=E[y ?=1Nn(xj)}f[dxj.

st 521501

Notice that

4
i d
2. Nu(e?) E Ao,.,0,5;,0,.,0)Vn(s15,5i-1,@ z+17'75d)i|

El=n= ] <[TEj-0=

Indeed, for z € H 1[5i, ;] we have [0, 2] = A, U B, with

- ()

Ax = ngl[(oa .y 07 Sy 07 .y 0)7 (517 ey i1y Liy Si41y s Sd)] C Ga



where G :=UZ[(0,.,0,5:,0,.,0), (51, -,8i_1,%i; Sit1, -, 5a)]. Moreover B, C G°.
Fixed =7, j € {1,2,3,4}, then U?:1ij and U“;lexj are disjoint. So, the corre-
sponding increments will be independent and we get (3) easily.

Assume now x} < 22 <23 <zl foralli€ {l,---,d}. Then (3) is equal to

{—Qn (@; —x?’)—i—(x?—xil)]nsk}

k#i

[ 22=dn[(x? — } ka (@ _733)1_[732]}7

d
d
i=1 k#i k#i

since x‘z <t < 2s; for all i € {1,---,d},j € {1,2,3,4}. Notice that (3) is
symmetric in the variables z}, 22, 23, 2} for each i. So, we get

E“Asyn(t))ﬂ < (4!)d2d_1(nd/d (ﬁle)d_l(l_ﬁ[ 1{x}§xf})

i=lsutid? 521
X exp {—22 dnz v —x} ka} Hdl‘]) ,
i=1 ki j=1
since #? < t; < 2s; < 2z} for all i € {1,---,d}. Integrating now with respect
to 2?,i € {1,---,d}, we can bound it by K(fl'[f_l[s“t,] dz')? and the proof is
completed. ) [ |

3.2 Identification of the limit law

Let {P,,}; be a subsequence of {P,}, (that we will also denote by {P,},)
weakly convergent to some probability P. We have to check that the canonical
process { X (s)[y] := y(s)} is a d-parameter Wiener process under the probability
P.

We will need the following characterization of the d-parameter Wiener pro-
cess. An important point of this characterization is that its quadratic variation
part does not need conditioning on all the past but only on the 1-past. On the
other hand, if we only consider the case in which the filtration is the natural one,
we can avoid to study increments whose left points are in Ig. For the sake of
completeness, we will give the proof of this result, although some ideas involved

in it were also used by Tudor (1980) in the two paramenter case.



Theorem 3.4 Let X = {X(s);s € [0,5] C R4} be a continuous process null
on the axes and let {F;} be its natural filtration. Then the following statements
are equivalent:

(i) X is a d-parameter Wiener process.

(ii) For all 0 < s < t, E(AX)|FF) = 0 and E((AX(t))*|F)) =
[Tt = 50).

Proof:  Obviously (i) implies (7). Let us check now that (%) yields (7). Fixed
0 < 5 < t, consider the process Y (u) := Ay X (u, 2, ,tq), u € [51,51] C Ry,
and the o-fields G, := 7:(1u,52,...,sd)7 u € [s1,51]. Clearly {Y(u),Gy,u € [s1,51]}
is a martingale. Indeed, Y (u) is Gy-adapted and

E(Y(v) =Y (u)|G,) = E(A(u7527...7sd)X(v,t2, -, 1q)|Gu)

= B(E(Aguysay sy X (v, b2, )| FL w)1Gu) = 0.

(u7527"'7

On the other hand,

E((Y(0) =Y()*G) = E((Awsaer o)X (05t 1 1a))*1Gu)
= (v—u)H(ti—si).

Then, Paul Lévy’s theorem gives us that {Y(u),Gy,u € [s1,51]} is a one pa-
rameter Wiener process with variance (v — s1) Hfzz(ti — 8).

So, the increments A, X (¢) = Y (¢1) — Y (s1) are normally distributed with
zero mean and variance ngl(ti — 8).

Let now s € Iy and consider A ;. X (¢) with ¢ > 0. They are centered
gaussian random variables. Taking the limit when ¢ tends to 0, we get that
A X (1) is also a centered gaussian random variable with variance ngl(ti — ;).

Finally, since E(ASX(t)LTsT) = 0 for 0 < s < t, all the increments are

uncorrelated and moreover, independent. [ |
The following proposition gives us the identification of the limit.

Proposition 3.5 Let {P,}, be the laws in C([0, S],R) of processes y,, defined

in (1). Assume that {P,,}; is a subsequence weakly convergent to P. Let X



be the canonical process and let {Fs} be ils natural filtration. Then, for all
0<s<t, Ep(AXO)FT) =0 and Ep((AX(1)%FY) = [T, (t: — 1)

Proof:  We follow the method of the two parameter case (see Bardina and Jolis).
Fixed d > 0 and z!,---, 2™ € [0, S] such that for each j = 1,---,m there exists
ie{l,---,d} such that z/ <s; — 4.

To prove that Ep (ASX(t) |.7-"3T) = 0, it suffices to check that, for any bounded
continuous function ¢ : R™ — R, Ep[go(X(zl), ‘e ,X(zm))AsX(t)] = 0. Since
P, = P and taking into account the bound obtained in Lemma 3.2, it suffices to
prove that lim,_, ., Fp, [go(X(zl), .. ,X(zm))AsX(t)] = 0. Notice that using
that ¢ is bounded

|Bp, [p(X (1),  XENAX O] = [E[o(ya(zh) - g (2™) Asyn ()]

= 1B o)+ P E[Aan (01G2] || < K (E(Y)

I —

with ggé = .TT_(; and

5

d
Y, = E[n—/ (L)% (-0 da|grs| = B|(-1)2=s20)]
[T [soti] 521
d d—1
xE{n%(_l)As—st)/ L) F ()™ @drigry].
[T [soti] 521
since A;_sNp(s) is independent of ggé. We have that Y,, converges to zero
in L2 as n tends to infinity because E[(—1)2:-sN(:)] = exp(—2d%n) and the
conditional expectation is L? bounded (see Lemma 3.2).

Let us check now the second part of the Proposition. Following similar

arguments it is enough to check that E((A,y,(t))?|FL) converges in L? to
ngl(ti —8;), as n tends to infinity. To prove it, observe that

0 < E{(E((Asynu))ﬂf;)—ﬁ(tz’—&ﬂ
= B[(B(awmm21) ] - 21%[(@ = ) E((Bapn (1)) + ﬁ(“ )

The following Lemmas, 3.6 and 3.7, will show that the last term converges to 0

when n tends to infinity. The proof is now complete. [ |



Lemma 3.6 For any 0 < s < {, lim, 0 E{(Asyn (t))z} = Hle(ti — i)

Proof: Given ! and 22, Lemma 2.3 implies that E[(—I)E?=1 N"(xj)} is in the

interval

exp{—?nzu‘ —J:1|Hx1V2} exp{—?nzu‘ —J:1|Hx1’\2}

k#1 k#1

Using symmetry arguments it is then easy to check that 2¢1; < F [(Asyn (t)) 2} <

297, where
4,2 d
cod—1
no= ot (TI «= esp [~ 203067 2D TT ]
[Tl lsotid® =1 =1 i=1 ki
d 2
(I] ter<on) [T o
i=1 j=1
4,2 d
fodz1
L I | TR BT 9 CERes | £
[Tl [setil® 21521 i=1 ki

d 2
(T <o) [T a2
i=1 j=1

We will study I;. Notice that

d 2
1 _dm v
Il:Q_d/d H H(/ QnHajk
i [siste] i=1 i=1 84 k#z
X exp {—Qn (F — ) || =3 } ldx})de

k#1

Since 2n([ ], «7) exp [ —2n[(xf — =f) [T l‘;%]}l(—oo,ﬁ)(l’il) is a probability
density that gives and approximation of the identity as n tends to oo, we obtain

that

/ Con([Letyesp [~ onl(o? — o) T[] (o) !

i k#i k#i
tends to (J:Zz)d_Tl Moreover, by the dominated convergence theorem we get
limy, o0 [1 = 2% ngl(ti — 5;). Interchanging the roles of 2} and z? for each i,

we obtain the same result for I5. This fact finishes the proof of the lemma. W



2
Lemma 3.7 For any 0 < s < t,limsup,_, E{(E[(Asyn(t))ﬂfsl}) }
d
< Tz (t = 50)?.
Proof:  For x > s, AgNy (x) = AoNn (81,22, -+, %a) + A(s1,0,-,0)Vn (7).
Then by (é) of Lemma 2.3 we have

B[ (5] )17])]

d,2

E{(nd/d ( H x‘zj)d_Tl(—l) 2, AoNg(s1,03, @)

imalsatd® 21 =1

XE{(—l)E?mA(n,D 0y Na( }dey) }

d,2 4
cod—1 .
nZd/ ( I I xl) 2 Tl(x1’2’3’4)T2(x1’2’3’4) I I dx’ (4)
Hle[sl,t,]‘l i=1,7=1 j=1

with Ty (z1234) := E{( 1)231:1 ADNn(517x§7'~~7xﬂ)} and

T2($1727374) = exp |:— 277,( — 51 H z; _|_ _ 51 Hl, 1A2 _ 51)

i#£1 i#£1

><Hajlm]—l—[(xi’—sl)Hx?—l—(x%—sl)Hx — 2z — 1) HxSMH

i#1 i#1 i#1 i#1

We can then divide the integral of (4) into two parts: the integral over the
set D= {(xl, 22,23 2%) € Hl iyt ]t 22 < @M oraPVt < g} for alli €
{2,---,d}} and the integral over D°.

Integral over D°. Given (x!, 22 23 2%) € D, there exists | € {2,---,d}
such that z{V% > " and }¥* > /2. Using (iii) of Lemma 2.3 we can bound
Ty(234) by
exp [ =20 ([l = 2t + @ =N T i + @8 = s0) @ = o) TT 1)

i#1 i1,
m (2 OB (4)

where z;, 2;”, z;”), ;") denotes the usual reordenation of z}, z? x?, }. Notice

that we have bounded by 1 the other terms obtained from (¢i¢) of Lemma 2.3.
On the other hand, by similar arguments and Lemma 2.3 ((¢%), (i47)),

223 < [Lexp [ 20l — o) 4 o 2 [T ]

i=2 k#i

10



Notice that we can bound the integrand in (4), over the set D¢, by a symmetric
function on x}, #?, z? and z} for all i. So, by some changes of variables we can

bound the integral given in (4), over the set D¢, by

K / H/ nexp[—2n(zx} — & )Hsk]dl‘?)
d s,,t

k#i
H/ nexp[—2n(z? — x; )Hsk]dx )/ nexp[—2n(xf — xj) Hsk]dxll
i#l ki 51 k£l
x exp[—2n(x] — s1)(x} — xf) H sk]dxf(H dx})dz?
k#£1,0 k£l

that clearly goes to zero by dominated convergence.

Integral over D. Fixed | € {2,...,d+ 1}, assume first that z1VZ < 23" for
alli € {2,---,1—1}and 2?¥* < 2% for alli € {l,--- ,d}. Using (ii) of Lemma
2.3 we get Ty (z1 23Ty (21234) = exp[—2n Ry (2123 1)] where

d
123 Hl, _|_Hx _|_Hx _|_Hgg —QHx —QHx3A4
i=1
_ _ - d
—251(1_[ xll + fo — QHl‘lAZ)(H x? + Hx? — 2H$3A4).
i=2 i=2 i=2 =l i=l =l

Using again Lemma 2.3, we have Ry(xb%3%) = Z] 1 By j(2b%31) with

d d i-1 d
L | Sl | D |
i=2 i=l k=1 k=i+1
-1 i-1 d )
4 Z H$3A4 i l‘?|( H $ZV4(2)),
i=1 k=1 k=it1
-1 d '
Rya(zb23%) = Z 212 5)) Hl,lm 22 — 2} H xi”(l))’
=2 k=141
d d '
Ryg(ah®h) = ) (2™ = s1)( va?’“ ol = (I =),
i=[ k=141
-1 i1 -1 '
Rua(a™®Y = s S ([ e)la? -l [T =)
i=2 k=2 k=it1
d d
X [ 1VZ H +ka—2Hx3A4
k=l k=l k=l

11



R175(x1’2’3’4) _ Z H xSM H l‘k + H l‘k _9 H xlAZ
d

X Hajz’\ﬂx?—xﬂ( H xZV4(i)).
k=l

k=141
Notice that all the terms appearing in the above decomposition are nonnegative

1,2,3.4) is nonnegative).

(for instance, (iv) of Lemma 2.3 yields that Ry 4(x

Fix p > 0, consider the set F,; := {|z? —z}!| < pforalli € {2,---,] —
1}, et — 22| < pforallie {l---,d}}. It is easy to check, using (iv) of Lemma
2.3, that on the set Fg, we get Ry(z"»%*) > pmin;{s; [1;2 155} Then, by
dominated convergence we get that the integral (4) over the set DN F7,, tends
to zero when n goes to infinity. So, it is enough to study what happens over

Dn le.
On the other hand, Ry 1(z%%%) is bigger than or equal to

|x1_x1|Hx1/\2+Z Hl‘lAZ |l‘ _$1|+Z H$3A4 1 3|

i=l k#i i=1 k#i
Observe that using again Lemma 2.3, Ry 4(x1%3*) is greater than or equal to
-1 d d ] 1 d
1A2Y,.2 1 3ndy 3 1A2
i=2 1<k <I—1,k#i k=l j=l k I k=j+1
Finally,
-1
21234 212 21A2) (2 1
Rya(zm™ E — 51) H x|y — 2
1=2 2<k,k#1
Following similar computations for Ry 3(x'%3%) and Ry s5(zb?31), we get
d
21234 Z}:HxlAZ ) 1|+§:Hx3/\4 ]
i=1 k#{ i=1 k#{
-1 d j-1 d
212 1 3 3A4 1A2
_512:5:( H )|1’ - ||1’ _%|(Hl‘k )( H z")
1=2 j=I 2<k<I-1,k#i k=l k=j+1
d -1 j-1 d
—5 § :E : Hx1A2 1||l‘ —l‘3| H l‘SA4 H xéAZ)‘
1=l j=2 k=2 k=j+1 k=141

Then, for any p < (d % min; j219{s; Hk#’]’l tk} (for any p > 0 if d = 2),

doing some changes of variables the integral (4) over the set D is bounded by

12



d+1 -1

v Z <l - 2> / _ [si,tiJINF, A | ) H Liss<orcot <oty

=2 1=l
-1 d—1
Xl{x1<x2}1{x3<x4}( Hx x? H z; + p)x Hx x? +p)) xlxl)
i=1 1=2
d
xexp [ = 2n( S ([ eh)e? - oh) + ST -
i=1 ki i=1 k#i
-1 d j-1 d
S0 T et I o
i=2 j=l 2<k<i-1,k#i k=l k=j+1
d -1 j-1 i-1 d
—slzz ka xf —x3)( H z2)( H xi))}dﬁdr‘ldrldl‘g, (5)
i=l j=2 k=2 k=j+1 k=it+1

plus some terms that we have seen that go to zero.

Integrating first with respect to dz?,i € {2,---,I—1}and dz},i € {l,--- ,d},
and using the approximation of the identity as in Lemma 3.6 to integrate with re-
spect the rest of components of 2% and x*, we can bound the lim sup as n — oo of
(5) by S0 (1) e o Gl 2®) T2 Lr oy T, Lo e,
where G does not depend on n and lim,_0 Gi(p, z',2%) = 1, for each I. So,
the limit when p — 0 of the last integral is equal to fnle[s“tl]Q dz'dz3 and the

proof is now completed. [ |

References

Bardina, X., Jolis, M. Weak approximation of the Brownian Sheet from a

Poisson process in the plane, Bernoulli (to appear).

Bickel, P.J., Wichura, M.J., 1971. Convergence criteria for multiparameter sto-
chastic processes and some applications, Ann. Math. Stat. 42, 1656-1670.

Stroock, D., 1982. Topics in Stochastic Differential Equations (Tata Institute

of Fundamental Research, Bombay.) Springer Verlag.

Tudor, C., 1980. Remarks on the martingale problem in two dimensional time

parameter, Rev. Roum. Math. Pures et Appl. 25, 1551-1556.

13



