UAB
 Universitat Autònoma de Barcelona

Dipòsit digital de documents

 de la UABThis is the submitted version of the journal article:
Martín i Pedret, Joaquim; Cerdà Martín, Joan Lluís. «Weigthed Hardy's inequalities and Hardy transforms of weights». Studia Mathematica, Vol. 139, Issue 2 (2000), p. 189-196. DOI 10.4064/sm-139-2-189-196

This version is available at https://ddd.uab.cat/record/272286
under the terms of the © ${ }_{\text {COPYRIGHt }}^{\mathbb{N}}$ license

Weighted Hardy inequalities and Hardy transforms of weights

Joan Cerdà and Joaquim Martín

Abstract

Many problems in analysis are described as weigthed norm inequalities thet have given rise to different classes of weights, such as $A_{p^{-}}$weights of Mukenhoupt, B_{p}-weights of Ario and Mukenhoupt, ect. Our purpose is to show that different classes of weigths are relaterd by mean of composition with classical transforms. Typical exemples are A_{p}-weights as indefinite integrals of B_{p-1}-weights, and M_{p}-weights (for which Hardy transform is bounded) as Hardy transforms of $B_{p^{-}}$ weights. We pay special atention to monotonic weights.

1 Introduction

Throughout this paper we shall use the following notacion. To indicate that T is a bounded operator between X and Y, we write $T: X \longrightarrow Y$. For a given function space X on $R^{+}=[0, \infty), X^{d}$ will denote the set of all nonincreasing and nonnegative functions (briefly, decreasing functions) of X. A weight is a non-zero Lebesgue-measurable and nonnegative function on R^{+}.

In recent years, many problems in Analysis have benn studied in terms of weigthted norm inequalities, which describe the boundedness of some classical transforms, such as Hardy and Maximal operators acting on functions spaces.

These inequalities give reise to several classes of weights. The starting and better kwon are the A_{p} classes, that for every $p \in(1, \infty)$ contain all weights w such that

$$
\begin{equation*}
\sup _{I}\left(\frac{1}{|I|} \int_{I} w(x) d x\right)\left(\frac{1}{|I|} \int_{I} w(x)^{1-p^{\prime}} d x\right)^{p-1}<\infty, \tag{p}
\end{equation*}
$$

where the suppremun is taken over all intervals I and $p^{\prime}=\frac{p}{p-1}$.
It was shown by Mukenhoupt [Mu1] that $w \in A_{p}$ if and only if the HardyLitllewood maximal function M satisfies

$$
M: L^{p}(w) \longrightarrow L^{p}(w) .
$$

We refer to $[\mathrm{GR}]$ for the description of these weights, and to $[\mathrm{Bu}]$ for their relation with boundedness of classical operators.

In [Mu2], Mukenhoupt also caracterized the weights w such that the Hardy operator

$$
S_{1} f(t)=\frac{1}{t} \int_{0}^{t} f(x) d x
$$

is bounded on $L^{p}(w)(1 \leq p<\infty)$ as the weigths of the class M_{p}, defined by the estimates

$$
\begin{equation*}
\sup _{t>0}\left(\int_{t}^{\infty} \frac{w(x)}{x^{p}} d x\right)^{1 / p}\left(\int_{0}^{t} w(x)^{-p^{\prime} / p} d x\right) 1 / p^{\prime}<\infty \tag{p}
\end{equation*}
$$

if $1<p<\infty$, and

$$
\begin{equation*}
\int_{t}^{\infty} \frac{w(x)}{x} \leq C w(t) \tag{1}
\end{equation*}
$$

if $p=1$.
In the case of the conjugate Hardy operator, $S_{2} f(x)=\int_{x}^{\infty} f(t) \frac{d t}{t}$,

$$
S_{2}: L^{p}(w) \longrightarrow L^{p}(w)
$$

if, and only if

$$
\begin{equation*}
\sup _{t>0}\left(\int_{0}^{t} w(x) d x\right)^{1 / p}\left(\int_{t}^{\infty} \frac{w(x)^{-p^{\prime} / p}}{x^{p^{\prime}}} d x\right)^{1 / p^{\prime}}<\infty \tag{p}
\end{equation*}
$$

when $1<p<\infty$, and

$$
\begin{equation*}
S_{1} w(t):=\frac{1}{t} \int_{0}^{t} f(x) d x \leq C w(x) \tag{1}
\end{equation*}
$$

when $p=1$. These conditions define the classes M^{p} of weigths.
New classes were introduced by Ario and Munkenhoupt [AM] when solving the boundedness of the maximal operator of Hardy-Littlewood on Lorentz spaces. They Observed that this leads to study when

$$
S_{1}: L_{p}^{d} \longrightarrow L_{p}(w)
$$

and proved that, for $1<p<\infty$, this happens if, and only if w satisfies the condition

$$
\begin{equation*}
\int_{t}^{\infty} \underline{w(x)} d x \leq \frac{C}{t^{p}} \int_{0}^{t} w(x) d x \tag{p}
\end{equation*}
$$

which defines the calss B_{p} (for any $p \in(0, \infty)$). If

$$
W(x)=\int_{0}^{x} w(t) d t
$$

Soria [So] has shown that $\left(B_{p}\right)$ is equivalent to

$$
\begin{equation*}
\frac{1}{t^{p}} \int_{0}^{t} \frac{x^{p-1}}{W(x)} d x \leq C \frac{1}{W(t)} \tag{So1}
\end{equation*}
$$

and to

$$
\begin{equation*}
\int_{t}^{\infty} \frac{W(x)}{x^{p+1}} d x \leq C \frac{W(t)}{t^{p}} \tag{So2}
\end{equation*}
$$

We shall give a new proof of this fact.
Weak tye estimates have also been considered. In [AnM] it was proved that

$$
S_{1}: L_{1}(w) \longrightarrow L_{1, \infty}(w)
$$

if, and only if w lelongs to $M_{1, \infty}$, the class of weights w such taht

$$
\int_{t}^{\infty}\left(\frac{t}{x}\right)^{\alpha} \frac{w(x)}{x} d x \leq C(\alpha) \inf _{0 \leq x \leq t} w(x) \quad\left(M_{1, \infty}\right)
$$

Only this case $p=1$ is interesting, since $S_{1}: L_{p}(w) \longrightarrow L_{p, \infty}(w)$ if, and only if $S_{1}: L_{p}(w) \longrightarrow L_{p}(w)$ when $p>1$ ([AnM, Theorem 3]).

The corresponding problem for the restriction of S_{1} to decreasing functions was studied in [Ne1]. Again, for $1<p<\infty, S_{1}: L_{p}^{d}(w) \longrightarrow L_{p, \infty}(w)$ if, and only if $S_{1}: L_{p}^{d}(w) \longrightarrow L_{p}(w)$.

If $p=1$, it is proved in [CGS] that $S_{1}: L_{1}^{d}(w) \longrightarrow L_{1, \infty}(w)$ if, and only if w belongs tho the class $B_{1, \infty}$ defined by the condition

$$
\frac{1}{t} \int_{0}^{t} w(x) d x \leq C \frac{1}{s} \int_{0}^{s} w(x) d x \text { if } s \leq t
$$

i.e. $S_{1} w(t) \leq C S_{1} w(s)$ if $s \leq t$.

Remark 1.1 In the cajse of the conjugate Hardy operator, Neugebauer [Ne2] proved that the property

$$
S_{2}: L_{p}^{d}(w) \longrightarrow L_{p}(w)
$$

doesn't depend on $p \in[1, \infty)$ and it holds if, and only if

$$
\begin{equation*}
\inf _{0}^{t}\left(S_{1} w\right)(x) d x \leq C \inf _{0}^{t} w(x) d x \tag{*}
\end{equation*}
$$

i.e. $S_{1} S_{1} \leq C S_{1} w$.

In his paper [Ne1], Neugebauer presented somo properties of B_{p}-weights suggested by the analogous properties of A_{p}-weights, and gave short proofs of facts such as B_{p} imply $B_{p-\varepsilon}$.

The purpose of this paper is to show taht differents classes of weights are in fact related by means composition with Hardy transforms and indefinite integrals.

In the section 2 the main result states that A_{p}-weigths are the indefinitive integral of B_{p-1}-weights and this fact is used to give easy proofs of some results, such as the above mentined property B_{p} imply $B_{p-\varepsilon}$, froma the properties of A_{p}.

Section 3 is mainly devoted to describe M_{p} as the Hardy transform of B_{p}, and also to see that $M^{1}=S_{1}\left(B^{1}\right)$ and $M^{1, \infty}=S_{1}\left(B^{1, \infty}\right)$.

In the brief section 4 we apply the above results to see that weights such that Calderón's operatos $S=S_{1}+S_{2}$ is L_{p}-bounded are the S_{1}-images of weigths w such that $S: L_{p}^{d}(w) \longrightarrow L_{p}(w)$.

Finally, section 5 is devoted to decribe similar porperties of the special case of monotonic weights, and to give increase and decrease criteria for these weights belong to differents classes.

Cruz-Uribe's work [CU] is an important reference for this secction.

$2 \quad B_{p}$-weigths as derivatives of increasing $A_{p+1}-$ weigths

Theorem 2.1 Let w be a weight on R^{+}ans $0<p \infty$, Then $w \in B^{p}$ if, and only if $W \in A_{p+1}$

Proof As remarked in [So], it easily seen that $w \in B_{p}$ iff

$$
\begin{equation*}
\int_{t}^{\infty} \frac{W(x)}{x^{p+1}} d x \leq C \frac{W(t)}{t^{p}} \tag{So1}
\end{equation*}
$$

since $w \in B_{p}$ iff

$$
\begin{equation*}
\int_{t}^{s} \frac{w(x)}{x^{p+1}} d x \leq C \frac{W(t)}{t^{p}} \quad(s>t) \tag{So11}
\end{equation*}
$$

with

$$
\int_{t}^{s} \frac{w(x)}{x^{p}} d x=\frac{W(s)}{s}-\frac{W(t)}{t}+p \int_{t}^{s} \frac{W(x)}{x^{p+1}} d x
$$

and (So11) is equivalent to (So1). We observe that it follows from (So1) that, for the increasing weight W,

$$
\begin{equation*}
\frac{W(s)}{s^{p}} \leq C \frac{W(t)}{t^{p}} \quad(s>t) \tag{So12}
\end{equation*}
$$

It is Known (cf [CU, Corollary 6.3]) that for an increasing weight W, (So1) holds iff $W \in A_{p+1}$.

As apllications we otain very easy proofs of two know important properties of B_{p} weights from properties of A_{p} weights.

Corollary 2.1 If $w \in B_{p}(0<p<\infty)$, there exists $\varepsilon \in(0, p)$ such that $w \in B_{p-\varepsilon}$

Proof Let $\varepsilon \in(0, p)$ such that $W \in A_{p+1-\varepsilon}(\mathrm{cf}[\mathrm{GR}])$. From Theorem 2.1 we obtain that $w \in B_{p-\varepsilon}$

Remark 2.1 From this propertiy it is easily proved, as in [Ne1; Theorem 6.5]) that, if $w \in B_{p}$ and $\alpha>0, W^{\alpha} \in B_{p \alpha+1}, W^{\alpha}(t)=\alpha \int_{0}^{t} W^{\alpha-1} w$ and $W^{\alpha-1} w \in B_{p \alpha}(N e *)$

Corollary 2.2 Let $p \in(0, \infty)$ and let w be a weight on R^{+}. Then $w \in B_{p}$ if, and only if

$$
\begin{equation*}
\int_{0}^{t} \frac{d x}{W(x)^{1 / p}} \simeq \frac{t}{W(x)^{1 / p}} \tag{So3}
\end{equation*}
$$

Proof (Compare with the proof of the equivalence of (i) and (ii) in [So, Theorem 2.5], where Sagher equivalence and a type condition p imply $p-\varepsilon$ is used).

It is kwonn (See [GR]) that $\omega \operatorname{in} A_{q}$ iff $w^{1-q^{\prime}} \in A_{q^{\prime}}($ for $1 \leq q<\infty)$. Thus, in our case, $W \in A_{p+1}$ iff $W^{1-(p+1)^{\prime}} \in A_{(p+1)^{\prime}}$, which means that $W^{-1 / p} \in A_{1+1 / p}$.

But for a decreasing weight, $w \in A_{q}(1<q<\infty)$ iff

$$
\sup _{t>0}\left(\int_{0}^{t} w(x) d x\right)\left(\int_{t}^{\infty} \frac{w(x)^{1-q^{\prime}}}{x^{q^{\prime}}} d x\right) q-1<\infty
$$

(Cf [CU, Theorem 6.1]), which is the same $\left(M_{p}^{*}\right)$ so $S_{2}: L_{q}(w) \longrightarrow L_{q}(w)$, this means that

$$
S_{2}: L_{1+1 / p}\left(W^{-1 / p}\right) \longrightarrow L_{1+1 / p}\left(W^{-1 / p}\right)
$$

and we know ($\mathrm{Cf}[\mathrm{CM}]$) that this property is equivalent to ($S o 3$)
Remark 2.2 bis and Corollary 2.3 allow to improve Theorem 2.1:
Preposition 2.1 Let $0<p<\infty$ and $0<\alpha<\infty$, Then $w \in B_{p}$ if, and only if $W^{\alpha} \in A_{p \alpha+1}$

Proof We may assume $\alpha \neq 1$.
If $w \in B_{p}$, it follows from (Ne* (and Theorem 2.1 that $W^{\alpha} \in A_{p \alpha+1}$.
Conversly, if $W^{\alpha} \in A_{p \alpha+1}$, we use [CU; Theorem 6.1] that gives for this increasing weight the estimate

$$
\left(\int_{t}^{\infty} \frac{W(x)^{\alpha}}{t^{\alpha p+1}} d x\right) 1 /(\alpha p+1)\left(\int_{0}^{t}\left(W(x)^{\alpha}\right)^{-1 / \alpha p} d x\right) \alpha p /(\alpha p+1) \leq C
$$

with

$$
\frac{W(t)^{\alpha}}{\alpha p t^{\alpha p}} \leq \int_{t}^{\infty} \frac{W(x)^{\alpha}}{t^{\alpha p+1}} d x
$$

and we obtain the B_{p} condition

$$
\int_{0}^{t} \frac{d x}{W(x)^{1 / p}} \simeq \frac{t}{W(t)^{1 / p}}
$$

Another application of Theorem 2.1 is the following caracterization of the class $B_{\infty}=\cup_{p>0} B_{p}$ through class Δ_{2}.

Corollary 2.3 The weight w belongs to B_{∞} if, and only if $W \in \Delta_{2}$ i.e., $W(2 t) \leq C W(t)$ for some constant $C>1$.

Proof If $w \in B_{p}$, then $w \in A_{p+1}$, and it belongs to Δ_{2} and, conversely, if the increasing weight W is in Δ_{2}, then $W \in A_{q}$ for some $q>1$ (see [CU, corollary 4.4 and Theorem 3.3])

$3 M_{p}$-weigths as Hardy trnaforms of B_{p}-weigths

Theorem 3.1 If $1 \leq p<\infty, M_{p}=S_{1}\left(B_{p}\right)$. I.e.

$$
S_{1}: L_{p}^{d}(w) \longrightarrow L_{p}(w) \quad \text { iff } \quad S_{1}: L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right) .
$$

Proof First assume $S_{1} w \in M_{p}$, i.e. $S_{1}: L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right)$. In the case $1<p<\infty$, the weight

$$
w_{1}(t)\left(S_{1} w\right)(t)=\frac{W(t)}{t}
$$

satisfies

$$
\left(\int_{t}^{\infty} \frac{w_{1}(x)}{x^{p}} d x\right)^{1 / p}\left(\int_{0}^{t} w(x)_{1}^{-p^{\prime} / p} d x\right) 1 / p^{\prime} \leq C
$$

and, W beeing increasing,

$$
\int_{0}^{t} w_{1}^{-p / p^{\prime}}(x) d x=\int_{0}^{t}\left(\frac{x}{(W(x))^{p / p^{\prime}}} d x \geq \frac{1}{p^{\prime}} \frac{t^{p^{\prime}}}{W(t)^{p / p^{\prime}}} .\right.
$$

Thus

$$
\left(\int_{t}^{\infty} \frac{W(x)}{x^{p+1}} d x\right)^{1 / p}\left(\frac{t^{p^{\prime}}}{W(t)^{p / p^{\prime}}}\right)^{1 / p^{\prime}} \leq p^{\prime / p^{\prime}} C
$$

and from (So1) we obtain $w \in B_{p}$.
In the case $p=1$, the condition $w_{1}=S_{1} w \in M_{1}$ means that

$$
S_{2} w_{1} \leq C w_{1}
$$

and then $S_{1} S_{2} w_{1} \leq C S_{1} w$. Since $S_{2} w$ is decreasing, $S_{2} w \leq S_{1} S_{2} w_{1} \leq C S_{1} w$ and $w \in B_{1}$.

Suppose now that $w \in B_{p}$. If $p=1$, this means that $S_{2} w \leq C S_{1} w$, hence $S_{2} S_{1} w=S_{2} w+S_{1} w \leq(C+1) S_{1} w$ and $S_{1} w \in M_{1}$.

In the case $1<p<\infty$, to prove that $w_{1}=S_{1} w$ satisfies

$$
\begin{equation*}
I_{1} \cdot I_{2}:=\left(\int_{t}^{\infty} \frac{w_{1}(x)}{x^{p}} d x\right)^{1 / p} \cdot\left(\int_{0}^{t} w_{1}(x)^{-p^{\prime} / p} d x\right)^{1 / p^{\prime}} \leq C \tag{1}
\end{equation*}
$$

we observe that it follows from (So1), for the first factor we have

$$
I_{1}:=\left(\int_{t}^{\infty} \frac{w_{1}(x)}{x^{p}} d x\right)^{1 / p} \leq C \frac{W(t)^{1 / p}}{t} .
$$

On the other hand, we apply ($N e *$) with $\alpha=p^{\prime} / p=p^{\prime}-1$ to the weight $\widetilde{w}:=W^{\alpha-1} w \in B_{p^{\prime}}$ to obtain

Thus, $I_{1} I_{2} \leq C C^{\prime}$ gives 1
A similar result holds for the weak type Hardy inequalities:
Theorem 3.2 $M_{1, \infty}=S_{1}\left(B_{1, \infty}\right)$, i.e.,

$$
S_{1}: L_{1}^{d}(w) \longrightarrow L_{1, \infty}(w) \quad \text { iff } \quad S_{1}: L_{1}\left(S_{1} w\right) \longrightarrow L_{1, \infty}\left(S_{1} w\right) .
$$

Proof If $w \in B_{1, \infty}$, from

$$
\left(S_{1} w\right)(x) \leq C\left(S_{1} w\right)(t) \quad(t<x)
$$

we obtain

$$
\int_{t}^{\infty} \frac{t}{x}\left(S_{1} w\right)(x) \frac{d x}{x} \leq C\left(S_{1} w\right)(t) \int_{t}^{\infty} \frac{t}{x^{2}} d x=C\left(S_{1} w\right)(t)
$$

and S_{1} satisfies ($M_{1, \infty}$) with $\alpha=1$.
Assume now $S_{1} w \in M_{1, \infty}$. Then, as in [AnM; proof of Theorem 2],

$$
\frac{1}{y} \int_{t}^{y}\left(S_{1} w\right)(x) d x \leq\left\|S_{1}\right\| \inf _{0 \leq s \leq t}\left(S_{1} w\right)(s) \quad(0<t<y)
$$

and for $y=2 t$ we obtain

$$
\frac{1}{2 t} \int_{t}^{2 t}\left(S_{1} w\right)(x) d x \geq \frac{1}{2 t} \int_{t}^{2 t}\left(\frac{1}{x} \int^{0} t w(s) d s\right) d x=\frac{\ln 2}{2}\left(S_{1} w\right)(t)
$$

Hence

$$
\left(S_{1} w\right)(t) \leq \inf _{0 \leq s \leq t}\left(S_{1} w\right)(s)
$$

and $w \in B_{1, \infty}$.
As we have recalled in $(B *)$, for operator S_{2} we only need to consider the case $p=1$.

Theorem 3.3 $M^{1}=S_{1}\left(B^{1}\right)$, i.e.

$$
S_{2}: L_{1}^{d}(w) \longrightarrow L_{1}(w) \quad \text { iff } \quad S_{2}: L_{1}\left(S_{1} w\right) \longrightarrow L_{1}\left(S_{1} w\right) .
$$

Proof If $w \in B^{1}$ and in

$$
\left.\int_{0}^{\infty} f(x)\left(S_{1} w\right)\right)(x) d x=\int_{0}^{\infty}\left(S_{2} f\right)(x) w(x) d x \leq C \int_{0}^{\infty} f(x) w(x) d x
$$

(f decreasing) we take $\left.f=\chi_{[} 0, t\right]$, se obtain

$$
\left.\int_{0}^{t}\left(S_{1} w\right)\right)(x) d x \leq C \int_{0}^{t} w(x) d x
$$

which means that $S_{1} w \in M^{1}$.
Conversly, if $S_{1} w \in M^{1}$,
$\left.\left.\left.\int_{0}^{\infty} f(x)\left(S_{1} S_{1} w\right)\right)(x) d x=\int_{0}^{\infty}\left(S_{2} f\right)(x)\left(S_{1} w\right)\right)(x) d x \leq C \int_{0}^{\infty} f(x)\left(S_{1} w\right)\right)(x) d x$
when $f \geq 0$, and then $S_{1} S_{1} w \leq C S_{1} w$, i.e. $w \in B^{1}$.
Corollary 3.1 If $S_{2}: L_{p_{0}}^{d}(w) \longrightarrow L_{p_{0}}(w)$ for some $p_{0} \in[1, \infty)$, then S_{2} : $L_{p}\left(S_{1} w\right) \longrightarrow L p\left(S_{1} w\right)$, for any $p \in[1, \infty)$.

Proof Since $S_{2}: L_{1}^{d}(w) \longrightarrow L_{1}(w)$ (Remark 1.1), $S_{1} w \in M^{1}$ and also $S_{2}: L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right)$ (cf. [BMR, Proposition 2.9 ii]).

If $w \in \Delta_{2}$, we obtain a converse of corollary 3.4.
Preposition 3.1 If $w \in \Delta_{2}$, and $S_{2}: L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right)$, for some $p \in[1, \infty)$, then $S_{2}: L_{q}^{d}(w) \longrightarrow L_{q}(w)$ for any $q \in[1, \infty)$.

Proof Let $1<p \infty$ and $S_{2}: L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right)$ (the case $p=1$ is contained in Theorem 3.3). Then

$$
\left(\int_{0}^{t}\left(S_{1} w\right)(x) d x\right)^{1 / p}\left(\int_{t}^{\infty} \frac{\left.\left(S_{1} w\right)(x)\right)^{-p^{\prime} / p}}{x^{p^{\prime}}} d x\right)^{1 / p^{\prime}} \leq C
$$

and in our case

$$
\int_{t}^{2 t} \frac{\left.\left(S_{1} w\right)(x)\right)^{-p^{\prime} / p}}{x^{p^{\prime}}} d x=\left(\int_{t}^{2 t} \frac{W(x)^{-p^{\prime} / p}}{x} d x \geq \ln 2 W(2 t)^{-p^{\prime} / p} .\right.
$$

Thus

$$
\left(\int_{0}^{t}\left(S_{1} w\right)(x) d x\right)^{1 / p} \leq \frac{C}{\left(\int_{t}^{\infty} \frac{W(x)^{-p^{\prime} / p}}{x} d x\right)^{1 / p}} \leq \frac{C}{\left(\int_{t}^{2 t} \frac{W(x)^{-p^{\prime} / p}}{x} d x\right)^{1 / p}} \leq \frac{C}{(\ln 2)^{1 / p^{\prime}} W(2 t)^{-1 / p}}
$$

and if follows from condition $W \in \Delta_{2}$ that

$$
\int_{0}^{t}\left(S_{1} w\right)(x) d x \leq C^{\prime} W(t)
$$

which is property $(B *)$
Remark 3.1 It is easy to obtain examples of weights w such that S_{2} : $L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right)$ but $S_{2}: L_{p}^{d}(w) \nrightarrow L_{p}(w)$, i.e., $S_{2}: L_{q}^{d}(w) \nrightarrow L_{q}(w)$ for some $q \in[1, \infty)$. It cannot be decreasing (See [CM]).

4 Calderón weights

Another classical operator, which plays an important role in interpolation theory ($\mathrm{cf}[\mathrm{BRM}]$) is the Calderón operator

$$
S=S_{1}+S_{2}
$$

For $1 \leq p \infty$, we define $C_{p}: 0 M_{p} \cup M^{p}$, i.e. $w \in C_{p}$ means that

$$
S=S_{1}+S_{2}=S_{1} \circ S_{2}: L_{p}(w) \longrightarrow L_{p}(w) .
$$

Simylarly, $C_{p}^{d}:=B_{p} \cup B^{p}$, and $w \in C_{p}^{d}$ iff

$$
S: L_{p}^{d}(w) \longrightarrow L_{p}(w)
$$

If $w \in B_{p}$ it is known that $W \in \Delta_{2}$.

Theorem 4.1 $C_{p}=S_{1}\left(C_{p}^{d}\right)$ for any $p \in[1, \infty)$.
Proof If $S_{1}, S_{2}: L_{p}^{d}(w) \longrightarrow L_{p}(w)$, it follows from Theorem 3.1 and Corollary 3.4 that $S_{1} w \in C_{p}$.

Conversely, if $S_{1}, S_{2}: L_{p}\left(S_{1} w\right) \longrightarrow L_{p}\left(S_{1} w\right)$, it follows from Theorem 3.1 that $w \in B_{p}$ and by Corollary $2.5 W \in \Delta_{2}$, we may apply Proposition 3.5 and also $w \in B^{p}$

5 Monotonic weights

Increasing and decreasing weights are important in apllications and easy to work with.

For example, monotonic weight w is an A_{∞}-weight $\left(A_{\infty}=\cup_{p>1} A_{p}\right)$ iff it is doubling, i.e. $\omega(2 I) \leq C \omega(I)$ if we denote $\omega(E)=\int_{E} w(x) d x$ and $2 I=(c-2 r, c+2 r)$ for $I=(c-r, c+r)$. We refer to [CU] for a description of these weights.

If w is increasing, it is doubling iff $S_{1} w \simeq w([\mathrm{CU}$, Theorem 3.8]) and then, for $1<p<\infty$, the following properties are equivalent:
(i) $w \in A_{p}$
(ii) $w \in M_{p}$
(iii) $\int_{t}^{\infty} x^{-p} w(x) d x \leq C t^{1-p} w(t)$ (See [CU, Theorem 6.1 and Corollary 6.3])

This properties are also equivalent to
(iv) $w \in B_{p}$
since in the case of an increasing weight, if $w \in B_{p}$

$$
\int_{t}^{\infty} x^{-p} w(x) d x \leq \frac{C}{t^{p}} \int_{0}^{t} w(x) d x \leq \frac{C w(t)}{t^{p-1}}
$$

and we obtain (iii).
For this weights, it follows from $S_{1}: L_{p}(w) \longrightarrow L_{p}(w)$ that

$$
S_{1} w \simeq w
$$

since $w \in A_{\infty}$ is doubling and increasing ($\mathrm{Cf}[\mathrm{CU}$, Theorem 3.8])

