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Weighted Hardy inequalities and Hardy
transforms of weights

Joan Cerdà and Joaquim Mart́ın

Abstract

Many problems in analysis are described as weigthed norm in-
equalities thet have given rise to different classes of weights, such as
Ap– weights of Mukenhoupt, Bp–weights of Ario and Mukenhoupt, ect.
Our purpose is to show that different classes of weigths are relaterd by
mean of composition with classical transforms. Typical exemples are
Ap–weights as indefinite integrals of Bp−1–weights, and Mp–weights
(for which Hardy transform is bounded) as Hardy transforms of Bp–
weights. We pay special atention to monotonic weights.

1 Introduction

Throughout this paper we shall use the following notacion. To indicate that
T is a bounded operator between X and Y , we write T : X −→ Y . For a
given function space X on R+ = [0,∞), Xd will denote the set of all non–
increasing and nonnegative functions (briefly, decreasing functions) of X. A
weight is a non–zero Lebesgue–measurable and nonnegative function on R+.

In recent years, many problems in Analysis have benn studied in terms of
weigthted norm inequalities, which describe the boundedness of some clas-
sical transforms, such as Hardy and Maximal operators acting on functions
spaces.

These inequalities give reise to several classes of weights. The starting
and better kwon are the Ap classes, that for every p ∈ (1,∞) contain all
weights w such that

sup
I

( 1

|I|

∫
I
w(x) dx

)( 1

|I|

∫
I
w(x)1−p

′
dx
)p−1

<∞, (Ap)
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where the suppremun is taken over all intervals I and p′ = p
p−1 .

It was shown by Mukenhoupt [Mu1] that w ∈ Ap if and only if the Hardy–
Litllewood maximal function M satisfies

M : Lp(w) −→ Lp(w).

We refer to [GR] for the description of these weights, and to [Bu] for their
relation with boundedness of classical operators.

In [Mu2], Mukenhoupt also caracterized the weights w such that the
Hardy operator

S1f(t) =
1

t

∫ t

0
f(x) dx

is bounded on Lp(w) (1 ≤ p <∞) as the weigths of the class Mp, defined by
the estimates

sup
t>0

( ∫ ∞
t

w(x)

xp
dx
)1/p( ∫ t

0
w(x)−p

′/p dx
)
1/p′ <∞ (Mp)

if 1 < p <∞, and ∫ ∞
t

w(x)

x
≤ Cw(t) (M1)

if p = 1.
In the case of the conjugate Hardy operator, S2f(x) =

∫∞
x f(t) dt

t
,

S2 : Lp(w) −→ Lp(w)

if, and only if

sup
t>0

( ∫ t

0
w(x) dx

)1/p( ∫ ∞
t

w(x)−p
′/p

xp′
dx
)1/p′

<∞ (M∗
p )

when 1 < p <∞, and

S1w(t) :=
1

t

∫ t

0
f(x) dx ≤ Cw(x) (M∗

1 )

when p = 1. These conditions define the classes Mp of weigths.
New classes were introduced by Ario and Munkenhoupt [AM] when solv-

ing the boundedness of the maximal operator of Hardy–Littlewood on Lorentz
spaces. They Observed that this leads to study when

S1 : Ldp −→ Lp(w)
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and proved that, for 1 < p < ∞, this happens if, and only if w satisfies the
condition ∫ ∞

t

w(x)
dx ≤ C

tp

∫ t

0
w(x) dx, (Bp)

which defines the calss Bp (for any p ∈ (0,∞)). If

W (x) =
∫ x

0
w(t) dt,

Soria [So] has shown that (Bp) is equivalent to

1

tp

∫ t

0

xp−1

W (x)
dx ≤ C

1

W (t)
(So1)

and to ∫ ∞
t

W (x)

xp+1
dx ≤ C

W (t)

tp
(So2)

We shall give a new proof of this fact.
Weak tye estimates have also been considered. In [AnM] it was proved

that
S1 : L1(w) −→ L1,∞(w)

if, and only if w lelongs to M1,∞, the class of weights w such taht

∫ ∞
t

(
t

x
)α
w(x)

x
dx ≤ C(α) inf

0≤x≤t
w(x) (M1,∞)

Only this case p = 1 is interesting, since S1 : Lp(w) −→ Lp,∞(w) if, and
only if S1 : Lp(w) −→ Lp(w) when p > 1 ([AnM, Theorem 3]).

The corresponding problem for the restriction of S1 to decreasing func-
tions was studied in [Ne1]. Again, for 1 < p < ∞, S1 : Ldp(w) −→ Lp,∞(w)
if, and only if S1 : Ldp(w) −→ Lp(w).

If p = 1, it is proved in [CGS] that S1 : Ld1(w) −→ L1,∞(w) if, and only if
w belongs tho the class B1,∞ defined by the condition

1

t

∫ t

0
w(x) dx ≤ C

1

s

∫ s

0
w(x) dx if s ≤ t (B1,∞)

i.e. S1w(t) ≤ CS1w(s) if s ≤ t.
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Remark 1.1 In the ca¡se of the conjugate Hardy operator, Neugebauer [Ne2]
proved that the property

S2 : Ldp(w) −→ Lp(w)

doesn’t depend on p ∈ [1,∞) and it holds if, and only if

t

inf
0

(S1w)(x) dx ≤ C
t

inf
0
w(x) dx (B∗)

i.e. S1S1 ≤ CS1w.

In his paper [Ne1], Neugebauer presented somo properties of Bp–weights
suggested by the analogous properties of Ap–weights, and gave short proofs
of facts such as Bp imply Bp−ε.

The purpose of this paper is to show taht differents classes of weights are
in fact related by means composition with Hardy transforms and indefinite
integrals.

In the section 2 the main result states that Ap–weigths are the indefini-
tive integral of Bp−1–weights and this fact is used to give easy proofs of
some results, such as the above mentined property Bp imply Bp−ε, froma the
properties of Ap.

Section 3 is mainly devoted to describe Mp as the Hardy transform of Bp,
and also to see that M1 = S1(B

1) and M1,∞ = S1(B
1,∞).

In the brief section 4 we apply the above results to see that weights such
that Calderón’s operatos S = S1 + S2 is Lp–bounded are the S1–images of
weigths w such that S : Ldp(w) −→ Lp(w).

Finally, section 5 is devoted to decribe similar porperties of the special
case of monotonic weights, and to give increase and decrease criteria for these
weights belong to differents classes.

Cruz–Uribe’s work [CU] is an important reference for this secction.

2 Bp–weigths as derivatives of increasing Ap+1–

weigths

Theorem 2.1 Let w be a weight on R+ ans 0 < p∞, Then w ∈ Bp if, and
only if W ∈ Ap+1
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Proof As remarked in [So], it easily seen that w ∈ Bp iff

∫ ∞
t

W (x)

xp+1
dx ≤ C

W (t)

tp
(So1)

since w ∈ Bp iff ∫ s

t

w(x)

xp+1
dx ≤ C

W (t)

tp
(s > t) (So11)

with ∫ s

t

w(x)

xp
dx =

W (s)

s
− W (t)

t
+ p

∫ s

t

W (x)

xp+1
dx,

and (So11) is equivalent to (So1). We observe that it follows from (So1)
that, for the increasing weight W ,

W (s)

sp
≤ C

W (t)

tp
(s > t) (So12)

It is Known (cf [CU, Corollary 6.3]) that for an increasing weight W , (So1)
holds iff W ∈ Ap+1.

As apllications we otain very easy proofs of two know important proper-
ties of Bp weights from properties of Ap weights.

Corollary 2.1 If w ∈ Bp (0 < p < ∞), there exists ε ∈ (0, p) such that
w ∈ Bp−ε

Proof Let ε ∈ (0, p) such that W ∈ Ap+1−ε (cf [GR]). From Theorem 2.1
we obtain that w ∈ Bp−ε

Remark 2.1 From this propertiy it is easily proved, as in [Ne1; Theorem
6.5]) that, if w ∈ Bp and α > 0, Wα ∈ Bpα+1, Wα(t) = α

∫ t
0 W

α−1w and
Wα−1w ∈ Bpα (Ne∗)

Corollary 2.2 Let p ∈ (0,∞) and let w be a weight on R+. Then w ∈ Bp

if, and only if ∫ t

0

dx

W (x)1/p
' t

W (x)1/p
(So3)
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Proof (Compare with the proof of the equivalence of (i) and (ii) in [So,
Theorem 2.5], where Sagher equivalence and a type condition p imply p− ε
is used).

It is kwonn (See [GR]) that ωinAq iff w1−q′ ∈ Aq′ (for 1 ≤ q < ∞).
Thus, in our case, W ∈ Ap+1 iff W 1−(p+1)′ ∈ A(p+1)′ , which means that
W−1/p ∈ A1+1/p.

But for a decreasing weight, w ∈ Aq (1 < q <∞) iff

sup
t>0

( ∫ t

0
w(x) dx

)( ∫ ∞
t

w(x)1−q
′

xq′
dx
)
q − 1 <∞

(Cf [CU, Theorem 6.1]), which is the same (M∗
p ) so S2 : Lq(w) −→ Lq(w),

this means that

S2 : L1+1/p(W
−1/p) −→ L1+1/p(W

−1/p)

and we know (Cf [CM]) that this property is equivalent to (So3)
Remark 2.2 bis and Corollary 2.3 allow to improve Theorem 2.1:

Preposition 2.1 Let 0 < p <∞ and 0 < α <∞, Then w ∈ Bp if, and only
if Wα ∈ Apα+1

Proof We may assume α 6= 1.
If w ∈ Bp, it follows from (Ne ∗ ( and Theorem 2.1 that Wα ∈ Apα+1.
Conversly, if Wα ∈ Apα+1, we use [CU; Theorem 6.1] that gives for this

increasing weight the estimate( ∫ ∞
t

W (x)α

tαp+1
dx
)
1/(αp+ 1)

( ∫ t

0
(W (x)α)−1/αp dx

)
αp/(αp+ 1) ≤ C

with
W (t)α

αptαp
≤
∫ ∞
t

W (x)α

tαp+1
dx,

and we obtain the Bp condition∫ t

0

dx

W (x)1/p
' t

W (t)1/p

Another application of Theorem 2.1 is the following caracterization of the
class B∞ = ∪p>0Bp through class ∆2.
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Corollary 2.3 The weight w belongs to B∞ if, and only if W ∈ ∆2 i.e.,
W (2t) ≤ CW (t) for some constant C > 1.

Proof If w ∈ Bp, then w ∈ Ap+1, and it belongs to ∆2 and, conversely,
if the increasing weight W is in ∆2, then W ∈ Aq for some q > 1 (see [CU,
corollary 4.4 and Theorem 3.3])

3 Mp–weigths as Hardy trnaforms of Bp–weigths

Theorem 3.1 If 1 ≤ p <∞, Mp = S1(Bp). I.e.

S1 : Ldp(w) −→ Lp(w) iff S1 : Lp(S1w) −→ Lp(S1w).

Proof First assume S1w ∈ Mp, i.e. S1 : Lp(S1w) −→ Lp(S1w). In the
case 1 < p <∞, the weight

w1(t)(S1w)(t) =
W (t)

t

satisfies ( ∫ ∞
t

w1(x)

xp
dx
)1/p( ∫ t

0
w(x)

−p′/p
1 dx

)
1/p′ ≤ C

and, W beeing increasing,∫ t

0
w
−p/p′
1 (x) dx =

∫ t

0

( x

(W (x))p/p
′ dx ≥

1

p′
tp
′

W (t)p/p′
.

Thus ( ∫ ∞
t

W (x)

xp+1
dx
)1/p( tp

′

W (t)p/p′
)1/p′

≤ p′
1/p′

C

and from (So1) we obtain w ∈ Bp.
In the case p = 1, the condition w1 = S1w ∈M1 means that

S2w1 ≤ Cw1

and then S1S2w1 ≤ CS1w. Since S2w is decreasing, S2w ≤ S1S2w1 ≤ CS1w
and w ∈ B1.

Suppose now that w ∈ Bp. If p = 1, this means that S2w ≤ CS1w, hence
S2S1w = S2w + S1w ≤ (C + 1)S1w and S1w ∈M1.
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In the case 1 < p <∞, to prove that w1 = S1w satisfies

I1.I2 :=
( ∫ ∞

t

w1(x)

xp
dx)1/p.

( ∫ t

0
w1(x)−p

′/p dx
)1/p′

≤ C (1)

we observe that it follows from (So1), for the first factor we have

I1 :=
( ∫ ∞

t

w1(x)

xp
dx)1/p ≤ C

W (t)1/p

t
.

On the other hand, we apply (Ne∗) with α = p′/p = p′− 1 to the weight
w̃ := Wα−1w ∈ Bp′ to obtain

Ip
′

2 :=
∫ t

0

xp
′−1

W (x)α(x)
dx '

∫ t

0

xp
′−1∫ x

0 w̃(s) ds
dx =

∫ t

0

xp
′−1

W̃ (x)
≤ C ′

tp
′

W̃ (t)
= C ′

tp
′

Wα(t)

Thus, I1I2 ≤ CC ′ gives 1
A similar result holds for the weak type Hardy inequalities:

Theorem 3.2 M1,∞ = S1(B1,∞), i.e.,

S1 : Ld1(w) −→ L1,∞(w) iff S1 : L1(S1w) −→ L1,∞(S1w).

Proof If w ∈ B1,∞, from

(S1w)(x) ≤ C(S1w)(t) (t < x)

we obtain ∫ ∞
t

t

x
(S1w)(x)

dx

x
≤ C(S1w)(t)

∫ ∞
t

t

x2
dx = C(S1w)(t)

and S1 satisfies (M1,∞) with α = 1.
Assume now S1w ∈M1,∞. Then, as in [AnM; proof of Theorem 2],

1

y

∫ y

t
(S1w)(x) dx ≤ ‖S1‖ inf

0≤s≤t
(S1w)(s) (0 < t < y),

and for y = 2t we obtain

1

2t

∫ 2t

t
(S1w)(x) dx ≥ 1

2t

∫ 2t

t
(
1

x

∫ 0

tw(s) ds) dx =
ln 2

2
(S1w)(t).

8



Hence
(S1w)(t) ≤ inf

0≤s≤t
(S1w)(s)

and w ∈ B1,∞.
As we have recalled in (B∗), for operator S2 we only need to consider the

case p = 1.

Theorem 3.3 M1 = S1(B
1), i.e.

S2 : Ld1(w) −→ L1(w) iff S2 : L1(S1w) −→ L1(S1w).

Proof If w ∈ B1 and in∫ ∞
0

f(x)(S1w))(x) dx =
∫ ∞
0

(S2f)(x)w(x) dx ≤ C
∫ ∞
0

f(x)w(x) dx

(f decreasing) we take f = χ[0, t], se obtain∫ t

0
(S1w))(x) dx ≤ C

∫ t

0
w(x) dx,

which means that S1w ∈M1.
Conversly, if S1w ∈M1,∫ ∞

0
f(x)(S1S1w))(x) dx =

∫ ∞
0

(S2f)(x)(S1w))(x) dx ≤ C
∫ ∞
0

f(x)(S1w))(x) dx

when f ≥ 0, and then S1S1w ≤ CS1w, i.e. w ∈ B1.

Corollary 3.1 If S2 : Ldp0(w) −→ Lp0(w) for some p0 ∈ [1,∞), then S2 :
Lp(S1w) −→ Lp(S1w), for any p ∈ [1,∞).

Proof Since S2 : Ld1(w) −→ L1(w) (Remark 1.1), S1w ∈ M1 and also
S2 : Lp(S1w) −→ Lp(S1w) (cf. [BMR, Proposition 2.9 ii]).

If w ∈ ∆2, we obtain a converse of corollary 3.4.

Preposition 3.1 If w ∈ ∆2, and S2 : Lp(S1w) −→ Lp(S1w), for some
p ∈ [1,∞), then S2 : Ldq(w) −→ Lq(w) for any q ∈ [1,∞).
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Proof Let 1 < p∞ and S2 : Lp(S1w) −→ Lp(S1w) (the case p = 1 is
contained in Theorem 3.3). Then

( ∫ t

0
(S1w)(x) dx

)1/p( ∫ ∞
t

(S1w)(x))−p
′/p

xp′
dx
)1/p′

≤ C

and in our case∫ 2t

t

(S1w)(x))−p
′/p

xp′
dx =

( ∫ 2t

t

W (x)−p
′/p

x
dx ≥ ln 2W (2t)−p

′/p.

Thus( ∫ t

0
(S1w)(x) dx

)1/p
≤ C( ∫∞

t
W (x)−p′/p

x
dx
)1/p ≤ C( ∫ 2t

t
W (x)−p′/p

x
dx
)1/p ≤ C

(ln 2)1/p′W (2t)−1/p

and if follows from condition W ∈ ∆2 that∫ t

0
(S1w)(x) dx ≤ C ′W (t),

which is property (B∗)

Remark 3.1 It is easy to obtain examples of weights w such that S2 :
Lp(S1w) −→ Lp(S1w) but S2 : Ldp(w) 6−→ Lp(w), i.e., S2 : Ldq(w) 6−→ Lq(w)
for some q ∈ [1,∞). It cannot be decreasing (See [CM]).

4 Calderón weights

Another classical operator, which plays an important role in interpolation
theory (cf [BRM]) is the Calderón operator

S = S1 + S2.

For 1 ≤ p∞, we define Cp : 0Mp ∪Mp, i.e. w ∈ Cp means that

S = S1 + S2 = S1 ◦ S2 : Lp(w) −→ Lp(w).

Simylarly, Cd
p := Bp ∪Bp, and w ∈ Cd

p iff

S : Ldp(w) −→ Lp(w).

If w ∈ Bp it is known that W ∈ ∆2.
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Theorem 4.1 Cp = S1(C
d
p ) for any p ∈ [1,∞).

Proof If S1, S2 : Ldp(w) −→ Lp(w), it follows from Theorem 3.1 and
Corollary 3.4 that S1w ∈ Cp.

Conversely, if S1, S2 : Lp(S1w) −→ Lp(S1w), it follows from Theorem 3.1
that w ∈ Bp and by Corollary 2.5 W ∈ ∆2, we may apply Proposition 3.5
and also w ∈ Bp

5 Monotonic weights

Increasing and decreasing weights are important in apllications and easy to
work with.

For example, monotonic weight w is an A∞–weight (A∞ = ∪p>1Ap) iff
it is doubling, i.e. ω(2I) ≤ Cω(I) if we denote ω(E) =

∫
E w(x) dx and

2I = (c− 2r, c+ 2r) for I = (c− r, c+ r). We refer to [CU] for a description
of these weights.

If w is increasing, it is doubling iff S1w ' w ([CU, Theorem 3.8]) and
then, for 1 < p <∞, the following properties are equivalent:

(i) w ∈ Ap

(ii) w ∈Mp

(iii)
∫∞
t x−pw(x) dx ≤ Ct1−pw(t) (See [CU, Theorem 6.1 and Corollary 6.3])

This properties are also equivalent to

(iv) w ∈ Bp

since in the case of an increasing weight, if w ∈ Bp∫ ∞
t

x−pw(x) dx ≤ C

tp

∫ t

0
w(x) dx ≤ Cw(t)

tp−1

and we obtain (iii).
For this weights, it follows from S1 : Lp(w) −→ Lp(w) that

S1w ' w

since w ∈ A∞ is doubling and increasing (Cf [CU, Theorem 3.8])
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