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Weighted Hardy inequalities and Hardy
transforms of weights

Joan Cerda and Joaquim Martin

Abstract

Many problems in analysis are described as weigthed norm in-
equalities thet have given rise to different classes of weights, such as
Ap— weights of Mukenhoupt, B,~weights of Ario and Mukenhoupt, ect.
Our purpose is to show that different classes of weigths are relaterd by
mean of composition with classical transforms. Typical exemples are
Ap,~weights as indefinite integrals of B,_i-weights, and M,-weights
(for which Hardy transform is bounded) as Hardy transforms of B~
weights. We pay special atention to monotonic weights.

1 Introduction

Throughout this paper we shall use the following notacion. To indicate that
T is a bounded operator between X and Y, we write T': X — Y. For a
given function space X on Rt = [0,00), X% will denote the set of all non—
increasing and nonnegative functions (briefly, decreasing functions) of X. A
weight is a non-zero Lebesgue-measurable and nonnegative function on R*.

In recent years, many problems in Analysis have benn studied in terms of
weigthted norm inequalities, which describe the boundedness of some clas-
sical transforms, such as Hardy and Maximal operators acting on functions
spaces.

These inequalities give reise to several classes of weights. The starting
and better kwon are the A, classes, that for every p € (1,00) contain all
weights w such that

1 1 1—p p—1
sup (m/lw(x) d:v) (m/lw(x) dx) < 00, (Ap)
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where the suppremun is taken over all intervals I and p’ = 2.
p—1

It was shown by Mukenhoupt [Mul] that w € A, if and only if the Hardy—
Litllewood maximal function M satisfies

M : LP(w) — LP(w).

We refer to [GR] for the description of these weights, and to [Bu] for their
relation with boundedness of classical operators.

In [Mu2], Mukenhoupt also caracterized the weights w such that the
Hardy operator

S =7 [ f)da

is bounded on LP(w) (1 < p < c0) as the weigths of the class M, defined by
the estimates

sup (/too w(z) dx) l/p(/otw(x)_p,/p dx)l/p' < 00 (M,)

>0 P

if 1 <p< oo, and

if p=1.
In the case of the conjugate Hardy operator, Sy f(z) = [° f(t) 4,

Sy : LP(w) — LP(w)

if, and only if

t p, [0 w(x) PP 1/p
Sup(/0 w(x)da:)/(/t (>/dx>/ < 00 (M)

t>0 xP

when 1 < p < oo, and
1 t
Sw(t) = 7 /0 f(@) de < Cu(z) (M?)

when p = 1. These conditions define the classes M? of weigths.

New classes were introduced by Ario and Munkenhoupt [AM] when solv-
ing the boundedness of the maximal operator of Hardy—Littlewood on Lorentz
spaces. They Observed that this leads to study when

Sl : LZ — Lp(w)
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and proved that, for 1 < p < oo, this happens if, and only if w satisfies the

condition oo
/ w(x)d:p < —/ w(z) dz, (By)
t tP Jo

which defines the calss B, (for any p € (0,00)). If

Soria [So| has shown that (B,) is equivalent to

1 st Pt 1
— dr < C—— 1
vl W “ = Y (Sol)

and to

/Oow(@da; < Cwﬁ()t) (S02)

xp“‘l -

We shall give a new proof of this fact.
Weak tye estimates have also been considered. In [AnM] it was proved
that
S1: Li(w) — Ly oo(w)

if, and only if w lelongs to M «, the class of weights w such taht

<t w(x) ,
| C)rEE dr < C(a) it w() (Mi0)

Only this case p = 1 is interesting, since Sy : L,(w) — Ly o (w) if, and
only if Sy : L,(w) — L,(w) when p > 1 (JAnM, Theorem 3]).

The corresponding problem for the restriction of S; to decreasing func-
tions was studied in [Nel]. Again, for 1 < p < 00, Sy : L¥(w) — Lpso(w)
if, and only if Sy : Li(w) — Ly(w).

If p = 1, it is proved in [CGS] that S; : L¢(w) — Ly o (w) if, and only if
w belongs tho the class B;  defined by the condition

1 st 1 s )
E/o w(x)dr < C’;/O w(x)dr if s<t (B1,o)

Le. Sjw(t) < CSyw(s) if s < t.



Remark 1.1 In the cajse of the conjugate Hardy operator, Neugebauer [Ne2]
proved that the property

Sy L;f(w) — Ly(w)

doesn’t depend on p € [1,00) and it holds if, and only if
t t
i%f (Siw)(x)dx < Ci%fw(x) dx (B*)
1.€. 8151 S CSl’LU

In his paper [Nel], Neugebauer presented somo properties of B,~weights
suggested by the analogous properties of A,~weights, and gave short proofs
of facts such as B, imply B,_..

The purpose of this paper is to show taht differents classes of weights are
in fact related by means composition with Hardy transforms and indefinite
integrals.

In the section 2 the main result states that A,-weigths are the indefini-
tive integral of B,_;—weights and this fact is used to give easy proofs of
some results, such as the above mentined property B, imply B,_., froma the
properties of A,.

Section 3 is mainly devoted to describe M, as the Hardy transform of B,,
and also to see that M' = S;(B') and M5 = S;(B>).

In the brief section 4 we apply the above results to see that weights such
that Calderdén’s operatos S = S; + Sy is L,~bounded are the S;-images of
weigths w such that S : L(w) — Ly(w).

Finally, section 5 is devoted to decribe similar porperties of the special
case of monotonic weights, and to give increase and decrease criteria for these
weights belong to differents classes.

Cruz—Uribe’s work [CU] is an important reference for this secction.

2 B,—weigths as derivatives of increasing A, ,—
weigths

Theorem 2.1 Let w be a weight on R ans 0 < poo, Then w € B? if, and
only if W € A,y



Proof As remarked in [So|, it easily seen that w € B, iff

o W (x) W (t)
/t ;I;p-H dz S 07 (SOl)
since w € B, iff
s w(x W (t
/t ﬂfﬂ) dr < (th)) (s> 1) (Sol1)

with

swla) - Wi(s)  W() /S W (z)

/t xP do = s t +pt Pl

and (Soll) is equivalent to (Sol). We observe that it follows from (Sol)
that, for the increasing weight W,

dx,

W)

sP tp

(s >t) (So012)

It is Known (cf [CU, Corollary 6.3]) that for an increasing weight W, (Sol)
holds iff W € A,1;. O

As apllications we otain very easy proofs of two know important proper-
ties of B, weights from properties of A, weights.

Corollary 2.1 If w € B, (0 < p < o0), there exists ¢ € (0,p) such that
we B, .

Proof Let ¢ € (0, p) such that W € A, (cf [GR]). From Theorem 2.1
we obtain that w € B,_. O

Remark 2.1 From this propertiy it is easily proved, as in [Nel; Theorem
6.5]) that, if w € B, and a > 0, W® € Bpoi1, W(t) = a [y W w and
W lw € B,y (Nex)

Corollary 2.2 Let p € (0,00) and let w be a weight on R*. Then w € B,
if, and only if

/t dx N t
o W(x)/r — W(x)l/r

(So03)



Proof (Compare with the proof of the equivalence of (i) and (ii) in [So,
Theorem 2.5], where Sagher equivalence and a type condition p imply p — ¢
is used).

It is kwonn (See [GR]) that winA, iff w'™7 € A, (for 1 < ¢ < o).
Thus, in our case, W € A,y iff W=D € A ), which means that
Ww-i/p S A1+1/,p.

But for a decreasing weight, w € A, (1 < ¢ < 00) iff

Sup(/otw(x)dx)(/thdx)q—l<oo

t>0

(Cf [CU, Theorem 6.1]), which is the same (M) so Sy : Ly(w) — Lg(w),
this means that

SQ : L1+1/p(W_1/p) — L1+1/p<W_1/p)

and we know (Cf [CM]) that this property is equivalent to (So3) O
Remark 2.2 bis and Corollary 2.3 allow to improve Theorem 2.1:

Preposition 2.1 Let0 < p < oo and 0 < a < 0o, Then w € B, if, and only
if W € Apat

Proof We may assume « # 1.

If w € B,, it follows from (Ne * ( and Theorem 2.1 that W € A, 1.

Conversly, if W € A,,+1, we use [CU; Theorem 6.1] that gives for this
increasing weight the estimate

([ i o)t/ + 1 [ (W@ ds)apep+ 1) < ©

with

W < W,
apter ¢ toptl

and we obtain the B, condition

/t dv t
o W(x)V/e — W(t)\/r

m]
Another application of Theorem 2.1 is the following caracterization of the
class By = Up>0B, through class As.



Corollary 2.3 The weight w belongs to By, if, and only if W € Ay i.e.,
W(2t) < CW (t) for some constant C' > 1.

Proof If w € B, then w € A,,, and it belongs to Ay and, conversely,
if the increasing weight W is in A,, then W € A, for some ¢ > 1 (see [CU,
corollary 4.4 and Theorem 3.3]) O

3 M,—weigths as Hardy trnaforms of B,~weigths
Theorem 3.1 If1<p < oo, M, =5:(B,). Le.
S Lg(w) — Ly(w) iff Si:Ly(Siw) — Ly(Siw).

Proof First assume Sjw € M,, i.e. Sy : L,(Siw) — L,(Sjw). In the
case 1 < p < oo, the weight

w(B)(Sw)(B) =

satisfies

(/too w1(p$) dx)l/p</0tw(a;)lp//pdﬂﬁ)l/p’ <C

x
and, W beeing increasing,

t t 1 P
P (2)d :/ S T —
e e = | Gy = v

Thus

o) W / tp' / / ,
(5w () <0

and from (Sol) we obtain w € B,,.
In the case p = 1, the condition w; = Sjw € M; means that

Sowy < Cwy

and then S;Syw; < CSjw. Since Scw is decreasing, Sow < S15w; < CSjw
and w € Bj.

Suppose now that w € B,. If p = 1, this means that Syw < C'Sjw, hence
S9S1w = Sow + Sjw < (C' + 1)S1w and Syw € M.
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In the case 1 < p < oo, to prove that w; = Sjw satisfies

t , /
LD = j/ wilz) 1“’()€ wi(a) 7 da) " < © (1)

we observe that it follows from (Sol), for the first factor we have

1/p
I = / wi (@ 2)'/P < CW(?.

On the other hand, we apply (Nex) with a« = p//p = p’ — 1 to the weight
w := W lw € By to obtain

» , ,
/W MN/fwm _/af <0W@:O%%)

Thus, I11, < CC’ gives 1 O
A similar result holds for the weak type Hardy inequalities:

Theorem 3.2 M o, = S1(Bi1.), i.e.,
Sy L(w) — Ly oo(w) iff Si:Li(S1w) — Ly o (S1w).
Proof If w € B, , from
(Sjw)(z) < C(S1w)(t) (t<x)

we obtain

|7 L)) S < e [T 5 de = s

i T

and S satisfies (M o) with o = 1.
Assume now Sjw € M . Then, as in [AnM; proof of Theorem 2],
L 1Y (Syw) (@) dx < 1Sy inf (S
[ S ds < i) it (S1w)(s) (01 <)

and for y = 2t we obtain

Qlt/tzt (Syw)(z) dx > l /tZt (1 /0 tw(s)ds)dx = hl;(slw)(t).



Hence
(S1w)(t) < inf (Siw)(s)

and w € B . O
As we have recalled in (Bx), for operator S, we only need to consider the
case p = 1.

Theorem 3.3 M' = S(B'), i.e.
SQ : L‘li(w) — Ll(w) Zﬁ SQ : L1<Slw) — Ll(Slw)
Proof If w € B! and in

| @)@ de = [T (Saf) @@ e <C [ flapola)da

(f decreasing) we take f = x(0,], se obtain

/Ot (Syw))(z) do < C/Otw(x) da,

which means that Sjw € M.
Conversly, if S;w € M?!,

| r@sisi)@) de = [~ (Sef) @) (Siw)a)de < € [ f@)(Sw))(e) do
when f > 0, and then S;S,w < CS,w, i.e. w € B, O

Corollary 3.1 If Sy : L (w) — Ly, (w) for some py € [1,00), then S, :
L,(S1w) — Lp(Siw), for any p € [1,00).

Proof Since Sy : L{(w) — L;(w) (Remark 1.1), Syw € M' and also
Sy : Ly(S1w) — Ly(S1w) (cf. [BMR, Proposition 2.9 ii). O
If w € Ay, we obtain a converse of corollary 3.4.

Preposition 3.1 If w € Ay, and Sy : L,(S1w) — L,(S1w), for some
p € [1,00), then Sy : Li(w) — Lq(w) for any q € [1,00).



Proof Let 1 < poo and Sy : L,(S1w) — L,(S1w) (the case p = 1 is
contained in Theorem 3.3). Then

. p, oo (Syw)(z —p'/p 1y
(/0 (Slw)(x)dx> / (/t (Srw)( ,)) dx) / <C

xP

and in our case

2t —p'/p 2 —p'/p
/ (Slw)(x/)) de — (/ Wia) ™/ dz > In2W (2t) 777,
t xP t x

Thus

t 1/p C C C
/ (Syw)(z) da) * < - < - < ; -
( 0 ) ( 00 W(m)xp/p da;)l/p (fft W(m)xp/p dx)l/p (In 2)V/P" W (2t)~-1/»

and if follows from condition W € A, that
t
/ (Syw)(z) dz < C'W (1),
0
which is property (Bx) O

Remark 3.1 [t is easy to obtain examples of weights w such that Sy :
Ly(Siw) — Ly(S1w) but Sy : LY(w) #— Ly(w), i.e., Sy : Li(w) /= Lg(w)
for some q € [1,00). It cannot be decreasing (See [CM]).

4 Calderén weights

Another classical operator, which plays an important role in interpolation
theory (cf [BRM]) is the Calderén operator

S =51+ 5.
For 1 < poo, we define C, : 0M,, U M?, i.e. w € C, means that
S=5+5=805:L(w) — Ly(w).
Simylarly, C’g =B, UB?, and w € C’g iff
S Li(w) — Ly(w).
If w € B, it is known that W € A,.
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Theorem 4.1 C, = S1(C2) for any p € [1,0).

Proof If Sy, Sy : LYw) — Ly(w), it follows from Theorem 3.1 and
Corollary 3.4 that Syw € C,,.

Conversely, if Sy, Sy : L,(S1w) — L,(Siw), it follows from Theorem 3.1
that w € B, and by Corollary 2.5 W € Ay, we may apply Proposition 3.5
and also w € B? O

5 Monotonic weights

Increasing and decreasing weights are important in apllications and easy to
work with.

For example, monotonic weight w is an A,—weight (As = Ups14,) iff
it is doubling, i.e. w(2]) < Cw([) if we denote w(F) = [pw(z)dxr and
2] = (c—2r,c+2r) for I = (c—r,c+r). We refer to [CU] for a description
of these weights.

If w is increasing, it is doubling iff S;w ~ w ([CU, Theorem 3.8]) and
then, for 1 < p < oo, the following properties are equivalent:

(i) we A,
(i) w e M,
(iii) [z Pw(x)dz < Ct'Pw(t) (See [CU, Theorem 6.1 and Corollary 6.3])
This properties are also equivalent to
(iv) w € B,

since in the case of an increasing weight, if w € B,

0o C rt
P < — <
/t z Pw(z)dr < tp/o w(x) dx

and we obtain (iii).
For this weights, it follows from S; : L,(w) — L,(w) that

Siw ~ w

since w € A, is doubling and increasing (Cf [CU, Theorem 3.8])
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