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We use the ALEPH Collaboration data on vector and axial-vector spectral functions to test simple du-
ality properties of QCD in the large Nc limit, which emerge in the approximation of a minimal hadronic
ansatz of a spectrum of narrow states. These duality properties relate the short- and long-distance be-
haviors of specific correlation functions, which are order parameters of spontaneous chiral symmetry
breaking, in a way that we find well supported by the data.
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At first sight, the hadronic world predicted by QCD
in the limit of a large number of colors Nc [1] may
seem rather different from the real world. The hadronic
spectrum of vector and axial-vector states, observed, e.g.,
in e1e2 annihilations and in t decays, has certainly
much more structure than the infinite set of narrow states
predicted by large Nc QCD [2] �QCD`�. There are,
however, many instances in particle physics where one is
interested only in certain weighted integrals of hadronic
spectral functions. In these cases, it may be enough to
know a few global properties of the hadronic spectrum;
one does not expect the integrals to depend crucially
on the details of the spectrum at all energies. Typical
examples of that are the coupling constants of the effective
chiral Lagrangian of QCD at low energies, as well as
the coupling constants of the effective chiral Lagrangian
of the electroweak interactions of pseudoscalar particles
in the standard model, which are needed to understand
K physics in particular (see, e.g., the review article in
Ref. [3] and references therein). It is in these examples
that the hadronic world predicted by QCD` may provide
a good approximation to the real hadronic spectrum. If
so, QCD` could then become a useful phenomenological
approach for understanding nonperturbative QCD physics
at low energies.

There are indeed a number of successful calculations
which have already been made within the framework of
QCD` (see Ref. [4] and references therein). The picture
that emerges from these applications is one of remarkable
simplicity. It is found that, when dealing with Green’s
functions that are order parameters of spontaneous chi-
ral symmetry breaking, the restriction of the infinite set
of large Nc narrow states to a minimal hadronic ansatz,
which is needed to satisfy the leading short- and long-
distance behaviors of the relevant Green’s functions, pro-
vides already a very good approximation to the observables
one computes. The purpose of this Letter is to investi-
gate this minimal hadronic ansatz approximation in a case
where one can compare, in detail, the theoretical predic-
tions to the phenomenological results evaluated with ex-
perimental data.
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Of particular interest for our purposes is the correlation
function (Q2 � 2q2 $ 0 for q2 spacelike)

P
mn
LR �q� � 2i

Z
d4x eiqx�0jT �Lm�x�Rn�0�y� j0� , (1)

with color singlet currents

Rm�Lm� � d�x�gm 1
2 �1 6 g5�u�x� . (2)

In the chiral limit, mu,d,s ! 0, this correlation function has
only a transverse component,

P
mn
LR �Q2� � �qmqn 2 gmnq2�PLR�Q2� . (3)

The self-energy-like function PLR�Q2� vanishes order by
order in perturbative QCD (pQCD) and is an order pa-
rameter of spontaneous chiral symmetry breaking for all
values of Q2; therefore, it obeys an unsubtracted dispersion
relation,

PLR�Q2� �
Z `

0
dt

1
t 1 Q2

1
p

ImPLR�t� . (4)

In QCD` the spectral function 1
p ImPLR�t� consists of

the difference between an infinite number of narrow vector
and axial-vector states, together with the Goldstone pole of
the pion:

1
p

ImPLR�t� �
X
V

f2
V M2

V d�t 2 M2
V �

2 F2
0d�t� 2

X
A

f2
AM2

Ad�t 2 M2
A� . (5)

The low Q2 behavior of PLR�Q2�, i.e., the long-distance
behavior of the correlation function in Eq. (1), is governed
by the chiral perturbation theory:

2Q2PLR�Q2�jQ2!0 � F2
0 1 4L10Q2 1 O �Q4� , (6)

where F0 is the pion coupling constant in the chiral limit,
and L10 is one of the coupling constants of the O � p4�
effective chiral Lagrangian. The high Q2 behavior of
PLR�Q2�, i.e., the short-distance behavior of the cor-
relation function in Eq. (1), is governed by the operator
product expansion (OPE) of the two local currents in
Eq. (1) [5],
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lim
Q2!`

Q6PLR�Q2� �

∑
24p2 as

p
1 O �a2

s �
∏

�cc�2, (7)

which implies the two Weinberg sum rulesZ `

0
dt ImPLR�t� �

X
V

f2
V M2

V 2
X
A

f2
AM2

A 2 F2
0 � 0 ,

(8)

Z `

0
dt t ImPLR�t� �

X
V

f2
V M4

V 2
X
A

f2
AM4

A � 0 , (9)

as well as the sum rule [6]X
V

f2
V M6

V 2
X
A

f2
AM6

A � �24pas 1 O �a2
s �� �cc�2.

(10)

In fact, as pointed out in Ref. [6], in QCD` there exist
an infinite number of Weinberg-like sum rules. In full
generality, the moments of the PLR spectral function with
n � 3, 4, . . . ,Z `

0
dt tn21

∑
1
p

ImPV �t� 2
1
p

ImPA�t�
∏

�

X
V

f2
V M2n

V 2
X
A

f2
AM2n

A , (11)

govern the short-distance expansion of the PLR�Q2�
function,

PLR�Q2�jQ2!` �

µX
V

f2
V M6

V 2
X
A

f2
AM6

A

∂
1

Q6

1

µX
V

f2
V M8

V 2
X
A

f2
AM8

A

∂
1

Q8 1 · · · .

(12)

On the other hand, inverse moments of the PLR spectral
function with the pion pole removed [which we denote by
ImP̃A�t�] determine a class of coupling constants of the
low-energy effective chiral Lagrangian. For example,Z `

0
dt

1
t

∑
1
p

ImPV �t� 2
1
p

ImP̃A�t�
∏

�

X
V

f2
V 2

X
A

f2
A � 24L10 . (13)

Moments with higher inverse powers of t are associated
with couplings of composite operators of higher dimen-
sion in the chiral Lagrangian. Tests of the two Weinberg
sum rules in Eqs. (8) and (9) and of the L10 sum rule in
Eq. (13), in a different context from the one we are inter-
ested in here, have often appeared in the literature (see,
e.g., Refs. [7] and [8] for recent discussions where earlier
references can also be found).

The minimal hadronic ansatz which satisfies the two
Weinberg sum rules in Eqs. (8) and (9) is a spectrum of
one vector state V , one axial-vector state A, and the Gold-
stone pion, with the ordering [6] MV , MA. In this ap-
proximation, PLR�Q2� has a very simple form
2Q2PLR�Q2� �
F2

0

�1 1
Q2

M2
V

� �1 1
Q2

M2
A
�

(14)

�
M2

AM2
V

Q4

F2
0

�1 1
M2

V

Q2 � �1 1
M2

A

Q2 �
. (15)

This equation shows, explicitly, a remarkable short-
distance % long-distance duality [9]. Indeed, with gA

defined so that M2
V � gAM2

A and z � Q2

M2
V

, the nonlocal
order parameters corresponding to the long-distance
expansion for z ! 0, which are couplings of the effective
chiral Lagrangian, i.e.,

2Q2PLR�Q2�jz!0 � F2
0 	1 2 �1 1 gA�z

1 �1 1 gA 1 g2
A�z2 1 · · ·
 , (16)

are correlated to the local order parameters of the short-
distance OPE for z ! ` in a very simple way:

2Q2PLR�Q2�jz!` � F2
0

1
gA

1
z2

Ω
1 2

µ
1 1

1
gA

∂
1
z

1

µ
1 1

1
gA

1
1

g2
A

∂
1
z2 1 · · ·

æ
;

(17)

in other words, there is a one-to-one correspondence be-
tween the two expansions by changing

gA %
1
gA

and zn
%

1
gA

1
zn12 . (18)

The moments of the PLR spectral function, when evalu-
ated in the minimal hadronic ansatz approximation, can be
converted into a very simple set of finite energy sum rules
(FESR’s), corresponding to the OPE in Eq. (17):

M2 �
Z s0

0
dt t2 1

p
ImPLR�t� � 2F2

0M4
V

1
gA

, (19)

M3 �
Z s0

0
dt t3 1

p
ImPLR�t� � 2F2

0M6
V

1 1
1
gA

gA
,

(20)

M4 �
Z s0

0
dt t4 1

p
ImPLR�t� � 2F2

0M8
V

1 1
1
gA

1
1
g2

A

gA
,

· · · · · · , (21)

where the upper limit of integration s0 denotes the onset
of the pQCD continuum which, in the chiral limit, is com-
mon to the vector and axial-vector spectral functions. It
is important to realize that s0 is not a free parameter. Its
value is fixed by the requirement that the OPE of the corre-
lation function of two vector currents (or two axial-vector
currents) in the chiral limit have no 1�Q2 term, which re-
sults in an implicit equation for s0 [10,11]. In the minimal
hadronic ansatz approximation the onset of the pQCD con-
tinuum, which we call s�

0, is then fixed by the equation
15
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Nc

16p2

2
3

s�
0�1 1 O �as�� � F2

0
1

1 2 gA
. (22)

Also, the moments which correspond to the chiral
expansion in Eq. (16) are given by another simple set
of FESR’s:

M0 �
Z s0

0
dt

1
p

ImP̃LR�t� � F2
0 , (23)

M21 �
Z s0

0

dt
t

1
p

ImP̃LR�t� �
F2

0

M2
V

�1 1 gA�, (24)

M22 �
Z s0

0

dt
t2

1
p

ImP̃LR�t� �
F2

0

M4
V

�1 1 gA 1 g2
A�,

· · · · · · . (25)

We propose to test these duality relations by comparing
moments of the physical spectral function 1

p ImPLR�t� to
the predictions of the minimal hadronic ansatz.

The ALEPH Collaboration at LEP has measured the in-
clusive invariant mass-squared distribution of hadronic t

decays [12] into nonstrange particles. They have been able
to extract from their data both the vector current spectral
function 1

p ImP
exp
V �t� and the axial-vector current spectral

function 1
p ImP

exp
A �t� up to t � 3 GeV2. In fact, in the

real world, the correlation function in Eq. (3) has a non-
transverse term as well, which is dominated by the pion
pole contribution to the axial-vector component. The vec-
tor contribution to the nontransverse term vanishes in the
limit of isospin invariance.

In order to compare the moments of the experimental
spectral function 1

p ImP
exp
LR �t� to those in Eqs. (19)–(21)

and (23)–(25) we still have to correct for the fact that
the FESR’s in these equations apply in the chiral limit
where mu,d ! 0. This we do by exploiting the analyticity
properties of the two-point function PLR in the complex q2

plane. Integration over a standard contour relates weighted
integrals of the spectral function 1

p ImP
exp
LR �t� in a finite

interval on the real axis to integrals of PLR�q2� over a
small circle jq2j � sth and a large circle jq2j � s0:
Z s0

sth

dt f�t� ImPLR�t� �
1
2i

I
jq2j�sth

dq2 f�q2�PLR�q2�

2
1
2i

I
jq2j�s0

dq2 f�q2�PLR�q2� ,

(26)

where the weight function f�q2� is a conveniently chosen
analytic function inside the contour, in our case, simple
powers and inverse powers of q2. The chiral corrections
in the small circle are particularly important in the evalu-
ation of the inverse moments. We have evaluated them
by taking into account the one loop expression of PLR�z�
in chiral perturbation theory [13]. The chiral corrections
16
in the large circle are rather small. They appear as lead-
ing 1�Q2 and next-to-leading 1�Q4 power corrections in
the OPE of PLR�Q2� at large Q2, but their coefficients,
proportional to quark masses, are small [14]. With these
corrections incorporated, we proceed now to the compari-
son we are looking for. This is shown in Figs. 1 and 2
below where we show the various moments as a function
of s0. The six plots in Figs. 1 and 2 show the experimen-
tal moments on the left hand side of Eqs. (19)–(21) and
Eqs. (23)–(25), respectively, as a function of s0, extrapo-
lated to the chiral limit as discussed above and normalized
to the corresponding minimal hadronic ansatz predictions
on the right hand side (rhs).

The horizontal bands on these plots correspond to
the induced error of the minimal hadronic ansatz pre-
dictions from the input values: F0 � 87 6 3.5 MeV,
MV � 748 6 29 MeV, and gA � 0.50 6 0.06. These
are the values favored by a global fit of the minimum

FIG. 1. Plot of the experimental moments in Eqs. (19), (20),
and (21) normalized to the minimal hadronic ansatz predictions
on the rhs.
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FIG. 2. Plot of the experimental moments in Eqs. (23), (24),
and (25) normalized to the minimal hadronic ansatz predictions
on the rhs.

hadronic ansatz to low-energy observables [11]. The
moments Mn, with the experimental error propagation
included, are the curved bands in the figures.

The remarkable feature which the curves in Figs. 1 and
2 show is that, within errors, there is a crossing of all the
experimental moments with the minimal hadronic ansatz
band that takes place in the same s0 region, around s0 �
1.4 GeV2 rather close indeed to the s�

0 value which follows
from Eq. (22): s�

0 � �1.2 6 0.2� GeV2 [15]. We have
also checked that for the second Weinberg sum rule in
Eq. (9), not shown in the figures. In fact, the agreement for
the inverse moments is excellent. This is due to the fact
that inverse moments put more and more weight on the
low-energy tail of the spectral function, which is known to
be dominated by the r resonance [16]. By contrast, the
positive moments are very sensitive to the cancellations
between opposite parity hadronic states; this is why the
experimental curves show larger and larger oscillations as
one increases the power of the moment. In spite of that,
it is quite impressive that, when restricted to the s0 region
of duality, the experimental moments agree well with the
minimal hadronic ansatz prediction, even for rather large
powers which correspond to vacuum expectation values of
operators of higher and higher dimension in the OPE. It
would be interesting to see how this would affect current
determinations of these condensates.

We conclude that the experimental data from ALEPH
is consistent with the simple pattern of duality properties
between short and long distances which follow from the
minimal hadronic ansatz of a narrow vector and axial-
vector states plus the Goldstone pion in large-Nc QCD.

This work is supported in part by TMR, EC Contract
No. ERBFMRX-CT980169 (EuroDaøne). The work of
S. P. is also supported by CICYT-AEN99-0766.

[1] G. ’t Hooft, Nucl. Phys. B72, 461 (1974); B75, 461 (1974).
[2] E. Witten, Nucl. Phys. B79, 57 (1979).
[3] A. Pich, in Probing the Standard Model of Particle Inter-

actions, Proceedings of the Les Houches Summer School,
Session LXVIII, edited by R. Gupta, A. Morel, E. de
Rafael, and F. David (North-Holland, Amsterdam, 1999).

[4] M. Knecht, S. Peris, and E. de Rafael, Nucl. Phys. (Proc.
Suppl.) B86, 279 (2000); S. Peris and E. de Rafael, Phys.
Lett. B 490, 213 (2000).

[5] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979); B147, 447 (1979).

[6] M. Knecht and E. de Rafael, Phys. Lett. B 424, 335 (1998).
[7] M. Davier, A. Höcker, L. Girlanda, and J. Stern, Phys. Rev.

D 58, 096014 (1998).
[8] C. A. Dominguez and K. Schilcher, Phys. Lett. B 448, 93

(1999).
[9] E. de Rafael, Nucl. Phys. (Proc. Suppl.) B74, 399 (1999).

[10] R. Bertlmann, G. Launer, and E. de Rafael, Nucl. Phys.
B250, 61 (1985).

[11] S. Peris, M. Perrottet, and E. de Rafael, J. High Energy
Phys. 05, 011 (1998); M. Golterman and S. Peris, Phys.
Rev. D 61, 034018 (2000).

[12] ALEPH Collaboration, R. Barate et al., Z. Phys. C 76, 15
(1997); Eur. Phys. J. C 4, 409 (1998).

[13] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142
(1984); E. Golowich and J. Kambor, Nucl. Phys. B447,
373 (1995).

[14] E. Floratos, S. Narison, and E. de Rafael, Nucl. Phys. B155,
115 (1979); P. Pascual and E. de Rafael, Z. Phys. C 12, 127
(1982).

[15] A second crossing at s0 � 2.4 GeV2 is less certain due to
the current error bars in the data.

[16] J. J. Sakurai, Currents and Mesons (University of Chicago
Press, Chicago, 1969).
17


