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REVERSE HÖLDER INEQUALITIES AND APPROXIMATION

SPACES

JOAQUIM MARTÍN∗ AND MARIO MILMAN

Abstract. We develop a simple geometry free context where one can for-

mulate and prove general forms of Gehring’s Lemma. We show how our re-
sult follows from a general inverse type reiteration theorem for approximation

spaces.

1. Introduction

Reverse Hölder inequalities play an important role in the theory of weighted
norm inequalities for classical operators and PDEs. Recall that given a fixed cube1

Q in Rn, and 1 < p < ∞, we say that a nonnegative measurable function w ∈
Lp(Q) satisfies a Reverse Hölder inequality (w ∈ RHp(Q) = RHp) if there exists
b ∈ (1,∞) such that for all subcubes Q′ ⊂ Q, we have

(1.1)
1

|Q′|

∫
Q′
w(x)pdx ≤ b

(
1

|Q′|

∫
Q′
w(x)dx

)p
.

Reverse Hölder inequalities have a crucial self improving property discovered by
Gehring (“Gehring’s Lemma” cf. [6]-Lemma 3 page. 270)), namely if w ∈ RHp

then there exists ε = ε(w) > 0 such that for q ∈ (p, p+ε) it follows that w ∈ Lq(Q),
and moreover there exists a positive constant c = c(p, b, n) such that

(1.2)

(
1

|Q|

∫
Q

w(x)qdx

)1/q

≤ c
(

1

|Q|

∫
Q

w(x)pdx

)1/p

.

In other words w ∈ RHp ⇒ w ∈ RHq, for some q(w) > p.
Gehring’s celebrated result plays an important role in the theory of quasiconfor-

mal mappings, weighted norm inequalities and its applications to PDEs and func-
tional analysis (cf. [9], [12], [2], and the references quoted therein). In [17] reverse
Hölder inequalities were studied using real interpolation by means of reinterpreting
the condition (1.1) in terms of Peetre’s K− functionals as follows

(1.3)
K(t1/p, w;Lp(Q), L∞(Q))

t1/p
≤ cK(t, w;L1(Q), L∞(Q))

t
, 0 < t < |Q| .

In [17] it was then shown that (1.3) has a self improving property that leads to
(1.2). In this manner Gehring’s Lemma can be understood in the general setting
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of interpolation theory as a sort of inverse reiteration theorem. The K−functional
approach is a natural extension of the classical proof of Gehring’s Lemma, based on
Calderón-Zygmund decompositions and the Hardy-Littlewood maximal operator.
Indeed, recall that

K(t, f ;L1(Q), L∞(Q))

t
� (Mf)∗(t), 0 < t < |Q| ,

where M is the usual maximal operator of Hardy-Littlewood associated with Q,

Mf(x) = sup
x∈Q′⊂Q

1

|Q′|

∫
Q′
|f(y)| dy.

Moreover, it is of interest to note that the K−functional method can be exploited
to give new higher integrability results even when the Hardy-Littlewood maximal
operator is not well behaved (cf. [16], [14]). For example, if the underlying measure
is not doubling the corresponding K− functionals are equivalent to rearrangements
of maximal operators associated with packings (cf. ([1], [16])), which, unlike the
corresponding maximal operator of Hardy-Littlewood, are bounded on Lp.

Reverse Hölder inequalities have been studied in a number of different contexts
(e.g. “parabolic type”, “homogeneous spaces”, etc.) and in each case the underly-
ing geometric considerations must be adapted accordingly. Interest in alternative
formulations of RHp inequalities also comes from recent research on vector valued
weights (cf. [11], [22]).

These consideration have led us to investigate “geometry free” contexts where
one can define and study reverse Hölder inequalities which have Gehring’s self im-
proving property. Note that (1.3) can be considered as a somewhat complicated
“geometry free”, definition of RHp(Q). In this note we consider simpler, “geometry
free” formulations of reverse Hölder inequalities which are associated with the the-
ory of approximation spaces. In the classical setting a formulation of our conditions
can be given as follows,

(1.4)

∫
Ω

[w(x)− t]p+ dµ(x)

tp
≤ C

∫
Ω

[w(x)− t]+ dµ(x)

t
, t ≥ t0,

for some t0 > 0, where [x]+ = max(x, 0), and C is a constant independent of t.

Condition (1.4) can be thus seen as a variant of the Hardy-Littlewood-Polya order2.
It is easy to prove that (1.4) has Gehring’s self improving property, in fact we show
the following (cf. Section 3 for a simple direct proof)

Lemma 1. Let (Ω, µ) be σ−finite non atomic measure space and let w ∈ L1(Ω) be
a nonnegative function such that for some t0 > 0 (1.4) holds for all t ≥ t0. Then,
there exists b > 0 such that∫

Ω

w(x)pdµ(x) ≤ b
∫

Ω

w(x)dµ(x),

and moreover there exists ε = ε(b, p), and c = c(p, q) such that for q ∈ (p, p + ε),
w ∈ Lq(Ω) and, ∫

Ω

w(x)qdµ(x) ≤ c
∫

Ω

w(x)pdµ(x).

2Recall that w ≺ µ iff and only for all t > 0 we have
∫
Ω [w(x) − t]+ dµ(x) ≤

∫
Ω [µ(x) − t]+ dµ(x)

(cf. [7]).
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Furthermore, if t0 =
(∫

Ω
w(x)pdµ(x)

)1/p
and (1.4) holds for all t ≥ t0, then∫

Ω

w(x)qdµ(x) ≤ c
(∫

Ω

w(x)pdµ(x)

)q/p
.

We actually show that a proof of this result can be obtained by an analysis of
ideas in Gehring’s classical paper [6]. We were led to formulate our results compar-
ing [6] (cf. also [13]) with the methods associated with the theory of approximation
spaces and the “error of approximation” functional of Peetre and Sparr (cf. [20], [3])
and the K−functional approach in [17]. In Section 4 we prove generalized forms of
Lemma 1 in the context of approximation spaces, emphasizing its connection with
reiteration formulae of Holmstedt-Nilsson type (cf. [19]) 3.

Theorem 1. Let X = (X0, X1) be a pair of cj−quasi-normed abelian groups and
suppose that f satisfies a Gehring condition (i.e. f ∈ Ga,r

4). Then there exists
α′ > α such that for all q > 0,

E(f, t,X0, Eα′,q(X)) ≤ c̃tα
′
E(f, t,X0, X1).

In other words, f ∈ Ga,r ⇒ f ∈ Ga+ε,q, q > 0.

Some of our results are new even in the classical case, in particular, although
in the classical context reverse Hölder inequalities are usually not considered for
p < 1, our formalism leads naturally to a suitable interpretation in terms of “reverse
Chebyshev inequalities” (cf. Section 5 below.)

Gehring elements can be characterized directly in terms of indices (cf. [16]) in
particular the following abstract analogue of the A∞ condition will be shown below
(cf. Section 4)

Theorem 2. An element f satisfies a Gα,r Gehring condition ⇔ for all ε > 0
there exists γ = γ(ε) > 1 such that

(1.5)
E(f, γt,X0, X1)

E(f, t,X0, X1)
<

ε

γα
, t ≥ t0.

The connection of these results with BMO will be discussed elsewhere [15].
For the benefit of the reader in Section 2 we review Gehring’s approach to

Gehring’s Lemma and show a number of equivalent formulations in terms of distri-
bution function inequalities. This analysis leads to an elementary proof of Lemma
1 in Section 3.

In conclusion in presenting Gehring’s theory in this general context we also hope
that these ideas could be useful to people working in Approximation Theory.

Acknowledgment. We would like to thank the referee for useful suggestions
to improve the presentation of the paper.

2. Gehring’s Lemma and distribution function inequalities

Gehring’s original ideas play a fundamental role in our development. Therefore
we start by reviewing the relevant part of [6].

3Since the Holmstedt-Nilsson formulae is of independent interest we give a simple direct proof

(cf. Theorem 4 below )
4(cf. Definition 2 below)
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Let (Ω, µ) be a σ−finite non atomic measure space. The distribution function of
a measurable function f is given by

λf (t) = µ {x ∈ Ω; |f(x)| > t} , (t ≥ 0).

We first state a number of known elementary results which shall be used in what
follows.

Lemma 2. Let 0 < q <∞, t0 > 0, and let h be a decreasing function, then

(1) If lim
x→∞

h(x) = 0 and
∫∞
t0
sqd(−h(s)) <∞ then lim

x→∞
xqh(x) = 0.

(2) If
∫∞
t0
sqh(s)ds <∞ then lim

x→∞
xq+1h(x) = 0.

The next result is well known (cf. [23]) we include a proof for the sake of
completeness.

Lemma 3. Let (Ω, µ) be a σ−finite non atomic measure space and w ∈ L0 (Ω, µ)
a weight (i.e. a nonnegative function) then

(2.1)

∫
{w>t}

w(s)rdµ(s) = trλw(t) + r

∫ ∞
t

sr−1λw(s)ds, t, r > 0.

Define hw(t) =
∫
{w>t} w(s)dµ(s), and suppose that for some t0 > 0 we have

hw(t0) <∞, then

(2.2)

∫
{w>t}

w(s)rdµ(s) =

∫ ∞
t

sr−1d(−hw(s)), t > 0, r ≥ 1.

In particular, if r ≥ 1, we have

(2.3)

∫
{w>t}

w(s)rdµ(s) =

∫ ∞
t

sr−1d(−hw(s)) =

∫ ∞
t

srd(−λw(s)).

Proof. (2.1) follows immediately from the well known∫
{w>t}

w(s)rdµ(s) =

∫
Ω

w(s)rχ {w > t} (s)︸ ︷︷ ︸
W r

dµ(s) = r

∫ ∞
0

sr−1µW (s)ds.

Observe that (2.2) is obvious for r = 1. Suppose that r > 1, then∫
{w>t}

w(s)rdµ(s) =

∫
Ω

w(s)r−1χ {w > t} (s)︸ ︷︷ ︸
W r−1

w(s)ds︸ ︷︷ ︸
dµ(s)

= (r − 1)

∫ ∞
0

sr−2λW (s)ds.

A simple computation shows that λW (s) =

{
hw(t) if s < t
hw(s) if s ≥ t , thus∫

{w>t}
w(s)rdµ(s) = (r − 1)

∫ t

0

sr−2hw(t)ds+ (r − 1)

∫ ∞
t

sr−2hw(s)ds.

The result follows integrating by parts the second integral appearing on the right
hand side. It remains to prove the second inequality in (2.3) which we obtain
integrating by parts the second integral on the right hand side of (2.1). �

The next basic elementary real variable result is due to Gehring,
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Lemma 4. ([6] Lemma 1 page 266). Suppose that p ∈ (0,∞), a ∈ (1,∞) and let
t0 > 0. Suppose that h : [t0,∞)→ [0,∞) is decreasing with lim

t→∞
h(t) = 0, and that∫∞

t
spd(−h(s)) ≤ atph(t) for t ∈ [t0,∞) . Then∫ ∞

t0

sqd(−h(s)) ≤ p

ap− (a− 1)q
tq−p0

∫ ∞
t0

spd(−h(s)),

for q ∈ [p, pa/(a− 1)) .

We now briefly review the main steps in Gehring’s proof of (1.2). Suppose that
w ∈ RHp, we want to show that there exists q > p such that w ∈ RHq. Gehring
shows that w satisfies the following estimate (cf. [6], page 268 - (12))

(2.4)

∫
{w>t}

w(s)pds ≤ ctp−1

∫
{w>t}

w(s)ds, t ≥ t0,

where t0 =
(

1
|Q|
∫
Q
w(x)pdx

)1/p

.

Using Lemma 3 it follows that (2.4) is equivalent to

(2.5)

∫ ∞
t

sp−1d(−hw(s)) ≤ ctp−1hw(t), t ≥ t0.

Lemma 4 now implies that we can choose q > p such that

(2.6)

∫ ∞
t0

sq−1d(−hw(s)) ≤ cp,qtq−p0

∫ ∞
t0

sp−1d(−hw(s)),

where cp,q = p−1
c(p−1)−(c−1)(q−1) . Write

(2.7)

∫
Q

w(x)qdx =

∫
{w>t0}

w(s)qds+

∫
{w≤t0}

w(s)qds.

By (2.6),∫
{w>t0}

w(s)qds =

∫ ∞
t0

sq−1d(−hw(s)) ≤ cp,qtq−p0

∫ ∞
t0

sp−1d(−hw(s))ds

= cp,qt
q−p
0

∫
{w>t0}

w(s)pds,

while we obviously have∫
{w≤t0}

w(s)qds =

∫
{w≤t0}

w(s)pw(s)q−pds ≤ tq−p0

∫
{w≤t0}

w(s)pds.

Inserting these estimates in (2.7) we get∫
Q

w(x)qdx ≤ cp,qtq−p0

∫
Q

w(x)pdx.

Since t0 =
(

1
|Q|
∫
Q
w(x)pdx

)1/p

it follows that

1

|Q|

∫
Q

w(x)qdx ≤ cp,q
(

1

|Q|

∫
Q

w(x)pdx

)q/p
,

as we wished to show.
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3. A geometry free version of Gehring’s Lemma

Motivated by the discussion in the previous section we introduce the following

Definition 1. Let (Ω, µ) be a σ−finite non atomic measure space and let w be a
nonnegative measurable function. Given 1 < p < ∞ we shall say that w ∈ Gp if
there exist c > 1, t0 > 0, such that for all t ≥ t0 it holds∫

Ω
[w(x)− t]p+ dµ(x)

tp
≤ c

∫
Ω

[w(x)− t]+ dµ(x)

t
.

Remark 1. The connection with the Hardy-Littlewood-Polya order goes somewhat
deeper. As is well known the HLP theory has been extended to measures (cf. [21]
and the references therein), following the analogy further in this direction we say
that a positive measure µ supported on (0,∞) satisfies a Gp condition if there exist
c > 1 such that for all t > 0 we have∫

Ω
[x− t]p+ dµ(x)

tp
≤ c

∫
Ω

[x− t]+ dµ(x)

t
.

If we associate to a given weight w the Lebesgue-Stieltjes measure dλw generated by
its distribution function we recover Definition 1. For more general measure spaces
we should replace the test class of extremal “angle functions” [x− t]p+ by other
suitable classes of continuous convex functions. We shall give more details on this
elsewhere.

The next result establishes the equivalence between Gp and (2.4) and several
other related conditions. As we shall see below (cf. Theorem 6) the result can be
suitably reinterpreted as a reiteration theorem for Gehring conditions!

Theorem 3. The following statements are equivalent

(1) w ∈ Gp.
(2) There exists c0 > 1 such that for all t ≥ t0,∫ ∞

t

sp−1λw(s)ds ≤ c0tp−1

∫ ∞
t

λw(s)ds.

(3) There exists c1 > 1 such that for all t ≥ t0,∫
{w>t}

w(s)pdµ(s) ≤ c1tp−1

∫
{w>t}

w(s)dµ(s).

(4) There exists c2 > 1 such that for all t ≥ t0,∫ ∞
t

sp−1d(−hw(s)) ≤ c2tp−1hw(t).

(5) There exists c3 > 1 such that for all t ≥ t0,∫ ∞
t

sp−1λw(s)ds ≤ c3tpλw(t).

Proof. 1⇒ 2 Recall that∫
Ω

[w(x)− t]p+ dµ = p

∫ ∞
t

(s− t)p−1λw(s)ds.



REVERSE HÖLDER INEQUALITIES 7

If cpt =
(

1
1−2−1/p−1

)
t ≤ s then (s− t)p−1 ≥ 1

2s
p−1, therefore,

p

∫ ∞
cpt

sp−1λw(s)ds ≤ 2

∫
Ω

[w(x)− t]p+ dµ(x)

≤ 2ctp−1

∫
Ω

[w(x)− t]+ dµ(x) (since w ∈ Gp, t ≥ t0)

= 2ctp−1

∫ ∞
t

λw(s)ds.

Adding p
∫ cpt
t

sp−1λw(s)ds to both sides of the previous inequality we obtain

p

∫ ∞
t

sp−1λw(s)du ≤ 2ctp−1

∫ ∞
t

λw(s)du+ p

∫ cpt

t

sp−1λw(s)ds

≤ tp−1(2c+ pcp−1
p )

∫ ∞
t

λw(s)ds (t ≥ t0),

and 2 follows with c0 =
2c+pcp−1

p

p .

2⇒ 3 By Lemma 3 (2.1),∫
{w>t}

w(s)pdµ(s) = tpλw(t) + p

∫ ∞
t

sp−1λw(s)ds

≤ tpλw(t) + pc0t
p−1

∫ ∞
t

λw(s)ds (applying 2)

≤ pc0tp−1(tλw(t) +

∫ ∞
t

λw(s)ds )

= pc0t
p−1

∫
{w>t}

w(s)dµ(s), (By Lemma 3 (2.1))

and we have obtained 3 with c1 = pc0.
3⇒ 4 By Lemma 3 (2.2),∫ ∞

t

sp−1d(−hw(s)) =

∫
{w>t}

w(s)pdµ(s) ≤ c1tp−1

∫
{w>t}

w(s)dµ(s) = c1t
p−1hw(t).

4 ⇒ 5 Applying Lemma 3 (2.3 and 2.1)) twice, we see that condition 4 can be
rewritten as

tpλw(t) + p

∫ ∞
t

sp−1λw(s)ds ≤ c2tp−1

∫
{w>t}

w(s)dµ(s)

= c2t
p−1

(
tλw(t) +

∫ ∞
t

λw(s)ds

)
,

thus ∫ ∞
t

(
psp−1 − c2tp−1

)
λw(s)ds ≤ (c2 − 1) tpλw(t).

If s ≥ c
1
p−1

2 t = Cpt, it follows that psp−1 − c2tp−1 ≥ (p− 1)sp−1, and therefore we
have

(3.1)

∫ ∞
Cpt

sp−1λw(s)ds ≤ 1

p− 1

∫ ∞
t

(
psp−1 − c2tp−1

)
λw(s)ds ≤ c2 − 1

p− 1
tpλw(t).
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Now, we add
∫ Cpt
t

sp−1λw(s)ds to both sides of (3.1) and use the fact that λw is
decreasing to obtain∫ ∞

t

sp−1λw(s)ds ≤

(
c2 − 1

p− 1
+
c

p
p−1

2 − 1

p

)
tpλw(t) = c3t

pλw(t).

5⇒ 1 Combine 5 with the fact that t
2λw(t) ≤

∫∞
t/2

λw(s)ds, to get∫ ∞
t

sp−1λw(s)ds ≤ 2c3t
p−1

∫ ∞
t/2

λw(s)ds.

Adding
∫ t
t/2

sp−1λw(s) to both sides of the inequality we get∫ ∞
t/2

sp−1λw(s)ds ≤ (2c3 + 1)tp−1

∫ ∞
t/2

λw(s)ds (t ≥ t0),

or equivalently,∫ ∞
t

sp−1λw(s)ds ≤ (2c3 + 1)2p−1tp−1

∫ ∞
t

λw(s)ds (t ≥ t0),

but then∫
Ω

[w(x)− t]p+ dµ(x) = p

∫ ∞
t

(s− t)p−1λw(s)ds ≤ p
∫ ∞
t

sp−1λw(s)ds

≤ p(2c3 + 1)2p−1tp−1

∫ ∞
t

λw(s)ds

= p(2c3 + 1)2p−1tp−1

∫
Ω

[w(x)− t]+ dµ(x).

�

We now give the short
Proof of Lemma 1:
Suppose that w satisfies (1.4) for some t0 > 0. Theorem 3 and Lemma 4 show

that following the steps of Gehring’s argument as outlined in the previous section
we readily arrive to the desired result.

Remark 2. (See Lemma 5 below) Note that Gehring’s Lemma 1 holds with the
same proof if we modify condition (1.4) to accommodate constants as follows: there
exist c > 1, γ0, γ1 > 0, t0 > 0, such that for all t ≥ t0 it holds∫

Ω
[w(x)− γ1t]

p
+ dµ(x)

tp
≤ c

∫
Ω

[w(x)− γ0t]+ dµ(x)

t
.

4. E−functional approach to reverse Hölder inequalities

In this section we develop an approximation space approach to Gehring’s Lemma,
and in particular provide proofs of the results stated in the Introduction.

We shall start with a brief review of the necessary background on approximation
spaces (for more information we refer to [3], [4], [19] and the references quoted
therein).

In approximation theory it is important to consider spaces somewhat more gen-
eral than Banach spaces. We indeed consider Abelian groups X equipped with
c−quasi-norms ‖·‖X , where c ≥ 1, this means that ‖·‖X is a real valued function
defined on X such that (note the lack of homogeneity)
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(1) ‖x‖X ≥ 0, and ‖x‖X = 0⇔ x = 0
(2) ‖x‖X = ‖−x‖X
(3) ‖x+ y‖X ≤ c (‖x‖X + ‖y‖X) .

Obviously every Banach space is a 1−quasi-norm abelian group. Given a pair
X = (X0, X1) of cj−quasi-normed abelian groups, and an element f ∈ X0 + X1,
we let

E(f, t;X0, X1) = inf
‖f0‖X0

≤t
‖f − f0‖X1

, 0 < t <∞.

Throughout what follows E(f, t) ≡ E(f, t;X0, X1).
It follows readily that E(f, t) is a decreasing function of t and that for 0 < ε < 1

we have (cf.[3])

(4.1) E(f + g, t) ≤ c1 (E(f, εt/c0) + E(g, (1− ε)t/c0)) .

It is also easy to see that if E(f, t) = 0 for all t > 0 then f = 0, and moreover if
f ∈ X0 with ‖f‖X0

≤ t then E(f, s) = 0 for all s ≥ t.
The approximation space Eα,r (X0, X1) , 0 < α, r <∞, consists of all f ∈ X0+X1

such that

‖f‖Eα,r(X0,X1) =

(∫ ∞
0

(sαE(f, s))
r ds

s

)1/r

<∞.

Example 1. (cf. [20]) Let (Ω, µ) be a σ−finite non atomic measure space. The
(Peetre-Sparr) space L0 consists of all functions with finite support with the 1−quasi-
norm given by

‖f‖L0 = µ({f 6= 0}).
It is readily seen that (cf. [20], [3])

(4.2) E(f, t, L∞, L0) = λf (t),

and

Ep,1
(
L∞, L0

)
≈ (Lp)

p
.

The next reiteration formula will play a crucial role in what follows.

Theorem 4. (Holmstedt-Nilsson type formula (cf. [19])). Let X = (X0, X1) a pair
of cj−quasi-normed abelian groups then

(4.3)
1

cc1(2c0)α

(∫ ∞
2c0t

(sαE(f, s))
r ds

s

)1/r

≤ E(f, t,X0;Eα,r
(
X
)
)

≤ c (2c1)
α

{
tαE(f, t) +

(∫ ∞
t

(sαE(f, s))
r ds

s

)1/r
}
,

where c = min(1, 2
1−r
r ).

Proof. Let g ∈ X0 with ‖g‖X0
≤ t, applying (4.1), with ε = 1/2, we get(∫ ∞

2c0t

(sαE(f, s))
r ds

s

)1/r

≤ cc1
(∫ ∞

2c0t

(
sαE(f − g, s

2c0
)

)r
ds

s

)1/r

+ cc1

(∫ ∞
2c0t

(
sαE(g,

s

2c0
, )

)r
ds

s

)1/r

.
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Note that since ‖g‖X0
≤ t the second integral is 0, therefore(∫ ∞

2c0t

(sαE(f, s))
r ds

s

)1/r

≤ cc1(2c0)α
(∫ ∞

0

(uαE(f − g, u))
r ds

u

)1/r

= cc1(2c0)α ‖f − g‖Eα,r(X) .

Taking infimum over all g ∈ X0 with ‖g‖X0
≤ t the left-most inequality follows.

The remaining inequality can be obtained as follows: for each δ > 0, and u > 0
pick fu ∈ X0 with ‖fu‖X0

≤ u such that ‖f − fu‖X1
≤ (1 + δ)E(f, u). Then,

‖f − ft‖Eα,r(X0,X1) =

(∫ ∞
0

(sαE(f − ft, s)r
ds

s

)1/r

(4.4) ≤ c

[(∫ 2tc1

0

(sαE(f − ft, s))r
ds

s

)1/r

+

(∫ ∞
2tc1

(sαE(f − ft, s))r
ds

s

)1/r
]
.

Note that if s ≤ 2tc1 then

E(f − ft, s) ≤ ‖f − ft‖X1
≤ (1 + δ)E(f, t),

while if s > 2tc1 we have∥∥fs/2c1 − ft∥∥X1
≤ c1

(∥∥fs/2c1∥∥X1
+ ‖ft‖X1

)
≤ c1(s/2c1 + t) ≤ s,

consequently,

E(f − ft, s) ≤
∥∥f − ft − (fs/2c1 − ft)

∥∥
X1
≤ (1 + δ)E(f, s/2c1).

Inserting these estimates in (4.4) we obtain

‖f − ft‖Eα,r(X)

≤ c(1 + δ)

[(∫ 2tc1

0

(sαE(f, t))
r ds

s

)1/r

+

(∫ ∞
2tc1

(sαE(f, s/2c1))
r ds

s

)1/r
]

≤ c(1 + δ) (2c1)
α

[
tαE(f, t) +

(∫ ∞
t

(uαE(f, u))
r du

u

)1/r
]
.

Finally taking infimum over all ft ∈ X0 with ‖ft‖X0
≤ t we get

E(f, t,X0, Eα,r
(
X
)
) ≤ c(1 + δ) (2c1)

α

{
tαE(f, t) +

(∫ ∞
t

(uαE(f, u)
r du

u

)1/r
}
.

Letting δ → 0 the desired result follows. �

Remark 3. Since (tαE(f, t))
r ≤ C

∫ t
t/2

(sαE(f, s))
r ds
s ≤ C

∫∞
t/2

(sαE(f, s))
r ds
s the

upper estimate in the previous lemma can be rewritten as

(4.5) E(f, t;X0, Eα,r
(
X
)
) ≤ C̃

(∫ ∞
t/2

(sαE(f, s))
r ds

s

)1/r

.

Consider the pair (L∞, L1) and let f = χ(0,1). It is then easy to see that although
we can replace “2t” by “ct”, with c > 1, on the left hand side of (4.3), the formula
does not hold for “t”.
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Remark 4. Notice that (cf. [10], [4]-proposition 3.1.16)

E(f, t;L∞, Lp)p =

∫
Ω

[f(x)− t]p+ dµ(x).

Thus condition (1.4) is equivalent to

E(f, t;L∞, Lp)p ≤ ctp−1E(w, t;L∞, L1).

Moreover since Ep−1,1

(
L∞, L1

)
= (Lp)p (cf. [3] corollary 7.2.3) and

E(f, t;L∞, (Lp)
p
) = inf

‖f0‖L∞≤t
‖f − f0‖pLp =

(
inf

‖f0‖L∞≤t
‖f − f0‖Lp

)p
= E(f, t;L∞, Lp)p,

we can rewrite condition (1.4) as

E(w, t, L∞, Ep−1,1

(
L∞, L1)

)
≤ ctp−1E(w, t;L∞, L1).

The discussion in the previous remark motivates the following

Definition 2. Let X = (X0, X1) be a pair of cj−quasi-normed abelian groups, and
let α, r > 0. We will say that w ∈ X0 + X1 satisfies a Gehring (α, r)−condition
(briefly f ∈ Ga,r = Ga,r(X̄)) if there exists c > 0, t0 > 0, such that

(4.6) E(w, t,X0, Eα,r(X)) ≤ ctαE(w, t), t ≥ t0 > 0.

The next Lemma will be useful in what follows.

Lemma 5. Let X = (X0, X1) be a pair of cj−quasi-normed abelian groups, let w
∈ X0 +X1 and let γ0, γ1,t0 > 0. Then,

(1) w ∈ Ga,r(X̄)⇔
(∫∞
t

(sαE(w, s))
r ds
s

)1/r ≤ crtαE(w, t), t ≥ t0 > 0.

(2) E(w, γ0t;X0, Eα,r(X)) ≤ ctαE(w, γ1t), t ≥ t0 > 0 ⇒ w ∈ Ga,r(X̄).

(3)
(∫∞

γ0t
(sαE(w, s))

r ds
s

)1/r

≤ ctαE(w, γ1t), t ≥ t0 > 0 ⇒ w ∈ Ga,r(X̄).

Proof. 1. Suppose that w ∈ Ga,r(X̄). Applying the Holmstedt-Nilsson formula with

D = c1(2c0)α min(1, 2
1−r
r ) and C = (2c1)

α
min(1, 2

1−r
r ), we see that for t ≥ t0 we

have ∫ ∞
2c0t

(sαE(w, s))
r ds

s
≤ (cDtαE(w, t))

r
.

Adding to both sides
∫ 2c0t

t
(sαE(w, s))

r ds
s , using the fact that E(f, s) is decreasing

and collecting terms, we get(∫ ∞
t

(sαE(w, s))
r ds

s

)1/r

≤
(

(cD)
r

+
(2c0)

r − 1

αr

)1/r

tαE(w, t).

Conversely, adding to both sides of the hypothesized inequality tαE(f, t) and mul-
tiplying by C

C

(
tαE(w, t) +

(∫ ∞
t

(sαE(w, s))
r ds

s

)1/r
)
≤ C (c′ + 1) tαE(w, t),

and applying the Holmstedt-Nilsson formula we arrive to

E(w, t,X0, Eα,r(X)) ≤ C (c′ + 1) tαE(w, t).
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2. By the Holmstedt-Nilsson formula we have∫ ∞
2c0γ0t

(sαE(w, s))
r ds

s
≤ (cDtαE(w, γ1t))

r
.

If 0 < γ0 ≤ 1 we can replace 2c0γ0t by 2c0t in the integral, similarly if γ1 ≥ 1 we
can replace E(w, γ1t) by E(w, t). If γ0 > 1 and 0 < γ1 < 1 then adding to both

sides
∫ 2c0γ0t

tγ1
(sαE(w, s))

r ds
s we have∫ ∞

γ1t

(sαE(w, s))
r ds

s
≤
(
cD +

(2c0γ0)
αr − γαr1

αr

)
tαE(w, γ1t)

r,

or equivalently∫ ∞
t

(sαE(w, s))
r ds

s
≤ γ−α1

(
cD +

(2c0γ0)
r − γr1

αr

)
tαE(w, t)r.

This condition is equivalent, by Part 1, with w ∈ Ga,r(X̄).
Finally to see 3, using the Holmstedt-Nilsson formula we get

E(w,
γ0

2c0
t,X0, Eα,r(X)) ≤

(∫ ∞
γ0t

(sαE(w, s))
r ds

s

)1/r

≤ ctαE(w, γ1t)

and 2 applies. �

Remark 5. The referee has kindly shown to us an example proving that the previous
result does not hold if r < 0. To see this select w such that E(w, t) = t−α(log |t|)β ,
for t ≥ 1, α, β > 0. Then, w ∈ Gα,r for r < −1/β but w /∈ Gα,r for r ≥ −1/β.

Remark 6. Since the E and K functionals can be obtained from each other by
Legendre transformations it is not difficult to see the correspondence between K
and E Gehring conditions. To fix ideas we analyze in detail the pair (L1, L∞).
Suppose that f satisfies a K−Gehring condition (cf. [17]) of the form

(4.7)
K(t1/p, f ;Lp, L∞)

t1/p
≤ cK(t, f ;L1, L∞)

t
.

Given δ > 0 let f = f0+f1, be a nearly optimal decomposition for the E−functional,
that is if we let s = E(t, f ;L∞, L1), we have ‖f0‖L∞ ≤ t and s ≤ ‖f1‖L1 ≤ (1+δ)s.
Then

(4.8) K(
t

(1 + δ)s
, f ;L∞, L1) ≤ ‖f0‖L∞ +

t

(1 + δ)s
‖f1‖L1 ≤ 2t

(4.9)

K(
(1 + δ)s

t
, f ;L1, L∞) ≤ 2s(1 + δ) (since K(t, f ;X0, X1) = tK(

1

t
, f ;X1, X0)),

combining with (4.7) we get

(4.10)
K(
(

(1+δ)s
t

)1/p

, f ;Lp, L∞)(
(1+δ)s
t

)1/p
≤ c

(
(1 + δ)s

t

)−1

2s(1 + δ).

Therefore we can select a decomposition such that f = g0 + g1, and

‖g0‖Lp +

(
(1 + δ)s

t

)1/p

‖g1‖L∞ ≤ c2s(1 + δ)

(
(1 + δ)s

t

)−1/p′

,
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thus

‖g1‖L∞ ≤ c2s(1 + δ)

(
(1 + δ)s

t

)−1

= c2t,

and

E(2ct, f, L∞, Lp) ≤ ‖g0‖Lp ≤ c2s(1 + δ)

(
(1 + δ)s

t

)−1/p′

,

moreover since s = E(t, f, L∞, L1) we obtain

E(2ct, f, L∞, Lp) ≤ 2c(1 + δ)1−1/p′t1/p′E(t, f, L∞, L1)1−1/p′ ,

raising to the power p and letting δ → 0 we finally get
(4.11)

E(2ct, f, L∞, Ep−1,1(L∞, L1)p = E(2ct, f, L∞, Lp)p ≤ 2ctp−1E(t, f, L∞, Lp).

which by Lemma 5-2 implies that f ∈ Gp−1,1(L∞, L1).

Following [17] the proof of Theorem 1 is based on the Holmstedt-Nilsson formula
above and the following elementary Lemma on differential inequalities (cf. [18] for
similar results.)

Lemma 6. Let h(s) be a decreasing function, α > 0, and suppose that hα(s) =
sαh(s), satisfies

(4.12)

∫ ∞
t

hα(s)r
ds

s
≤ Chα(t)r, t > t0.

Then there exists α′ > α such that for all q > 0, t > t0,∫ ∞
t

hα′(s)
q ds

s
≤ C̃hα′(t)q.

Proof. We first show that (4.12) implies the existence of c, γ > 0 such that for
0 < x ≤ y/2 we have

(4.13) ychα(y) ≤ γxchα(x).

To prove this claim note that by (4.12) there exists c ∈ (0, 1), such that

(4.14)
c

t
≤ − ∂

∂t
log

(∫ ∞
t

hα(s)r
ds

s

)
=

hα(t)rt−1∫∞
t
hα(s)r dss

.

Integrating (4.14) from x to y/2 we get

c log
y

2x
≤ log

(∫∞
x
hα(s)r dss∫∞

y/2
hα(s)r dss

)
,

from where it readily follows that

(4.15)

(
y

2

)c ∫ ∞
y/2

hα(s)r
ds

s
≤ xc

∫ ∞
x

hα(s)r
ds

s
≤ Cxchα(x)r.

On the other hand, since h is decreasing,(
y

2

)c ∫ ∞
y/2

hα(s)r
ds

s
≥
(
y

2

)c ∫ y

y/2

hα(s)r
ds

s
=

(
y

2

)c ∫ y

y/2

sαrh(s)r
ds

s
(4.16)

≥
(
y

2

)c
h(y)ryαr

(
1− (1/2)αr

αr

)
.
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Combining (4.15) and (4.16) we finally obtain

ychα(y)r ≤ γxchα(x)r.

Let q = r(1 + ε), α′ = α+ θ, where ε > −1 and θ ∈ (0, c/r), then,

hα′(s)
q = h(s)r(1+ε)s(α+θ)r(1+ε) = h(s)r(1+ε)sαr(1+ε)sθr(1+ε)

= hα(s)r(1+ε)sθr(1+ε)sc(1+ε)s−c(1+ε) = (schα(s)r)
1+ε

s(rθ−c)(1+ε),

thus, ∫ ∞
x

hα′(y)q
ds

y
=

∫ ∞
x

(ychα(y)r)
1+ε

y(rθ−c)(1+ε) dy

y

=

∫ 2x

x

(ychα(y)r)
1+ε

y(rθ−c)(1+ε) dy

y

+

∫ ∞
2x

(ychα(y)r)
1+ε

y(rθ−c)(1+ε) dy

y

= I + II.

To estimate II we apply (4.13) to obtain

II ≤ (γxchα(x)r)
1+ε
∫ ∞

2x

y(rθ−c)(1+ε)−1dy.

Since rθ − c < 0, we get

II ≤ (Kxchα(x)r)
1+ε (2x)

(rθ−c)(1+ε)

(c− rθ) (1 + ε)
= C ′hα′(x)r(1+ε).

On the other hand,

I =

∫ 2x

x

h(s)r(1+ε)s(α+θ)r(1+ε) dy

y
≤ h(x)r(1+ε)

∫ 2x

x

s(α+θ)r(1+ε) dy

y

≤ C ′′hα′(x)r(1+ε).

The result follows. �

We are now ready to give the
Proof of Theorem 1:
Our starting point is (4.6). By Lemma 5 this is equivalent to∫ ∞

t

(sαE(f, s))
r ds

s
≤ C (tαE(f, t))r.

By Lemma 6, with hα(s) = sαE(f, s) we can select α′ > α such that for all q > 0,(∫ ∞
t

(
sα
′
E(f, s)

)q ds
s

)1/q

≤ Ctα
′
E(f, t),

which again by Lemma 5 is equivalent to

E(f, t,X0, Eα′,q(X)) ≤ c̃tα
′
E(f, t),

as desired.
It is readily seen that elements of an approximation space that satisfy a Gehring

condition belong, as should be expected, to a better approximation space. Indeed
we have
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Theorem 5. Let X = (X0, X1) be a pair of cj−quasi-normed abelian groups and
let f ∈ Eα,r (X0, X1) be such that f ∈ Ga,r then there exists α′ > α such that .for
all q ≥ r

‖f‖Eα′,q(X0,X1) ≤ ct
α′−α
0 ‖f‖Eα,r(X0,X1) .

Proof. Let f ∈ Ga,r then, by Theorem 1, there exists α′ > α such that for all t ≥ t0
E(f, t,X0, Eα′,r(X)) ≤ c̃tα

′
E(f, t),

therefore by Lemma 5,(∫ ∞
t

(
sα
′
E(f, s)

)r ds
s

)1/r

≤ c′tα
′
E(f, t).

Thus, for t = t0 we have(∫ ∞
t0

(
sα
′
E(f, s)

)r ds
s

)1/r

≤ ctα
′

0 E(f, t0) = ctα
′−α

0 E(f, t0)

(
αr

∫ t0

0

sαr
ds

s

)1/r

≤ ctα
′−α

0

(
αr

∫ t0

0

(sαE(f, s))
r ds

s

)1/r

(since E decreases)

≤ ctα
′−α

0 (αr)
1/r ‖f‖Eα,r(X0,X1) .

On the other hand,(∫ t0

0

(
sα
′
E(f, s)

)r ds
s

)1/r

=

(∫ t0

0

(
sα
′−αsαE(f, s)

)r ds
s

)1/r

≤ tα
′−α

0

(∫ t0

0

(sαE(f, s))
r ds

s

)1/r

.

Combining these estimates we have

‖f‖Eα′,r(X0,X1) ≤ (crαr + 1)
1/r

tα
′−α

0 ‖f‖Eα,r(X0,X1) .

This proves our result for q = r, if q > r the result follows from the trivial inclusion

Eα′,r (X0, X1) ⊂ Eα′,q (X0, X1) .

�

We now prove Theorem 2 which provides us with an intrinsic characterization
of
⋃
Gα,r.

Proof of Theorem 2:
Suppose that f ∈ Gα,r, and let ε > 0. By the proof of Theorem 1 there exists

α′ > α such that for t ≥ t0 the function tα
′
E(f, t) is almost decreasing. Therefore

there exists C > 0 such that for all ξ > 1 we have

(tξ)
α′
E(f, tξ) ≤ Ctα

′
E(f, t)

E(f, tξ)

E(f, t)
≤ C

ξα
1

ξα′−α
.

Thus if we select ξ >
(
C
ε

)1/(α′−α)
, we have

E(f, tξ)

E(f, t)
≤ ε

ξα
,

as we wished to show.
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To prove the converse let ε = 2−1, and select ξ so that (1.5) holds. Note that
since ξ > 1 and E-functionals are decreasing, we can iterate (1.5) and obtain

(4.17)
E(f, ξnt)

E(f, t)
≤ 2−n

ξnα
, n = 1, ....

Now,∫ ∞
t

sαr−1E(f, s)rds =

∞∑
n=0

∫ ξn+1t

ξnt

sαr−1E(f, s)rds ≤
∞∑
n=0

E(f, ξnt)rtαrξnαr
(
ξαr − 1

αr

)

≤
∞∑
n=0

E(f, t)r
2−nr

ξnαr
tαrξnαr

(
ξαr − 1

αr

)
(by (4.17))

Therefore, ∫ ∞
t

sαr−1E(f, s)rds ≤ CtαrE(f, t)r,

as we wished to show.
The condition in Theorem 2 does not depend on r, therefore we have obtained

the following

Corollary 1. There following are equivalent

(1) f ∈ Gα,r for some r > 0
(2) f ∈ Gα,r for all r > 0.

5. Examples and Applications

5.1. Reiteration of Gehring conditions. As pointed out in the previous section,
Theorem 1 applied to the pair (L∞, Lp), gives a new proof of Lemma 1. Let us
apply Theorem 1 to the pair (L∞, L0). Since E(t, w;L∞, L0) = λw(t) (cf. Example
1 (4.2)), we have Ep,1(L∞, L0) = (Lp)

p
. An application of Theorem 4 gives

C

∫ ∞
c1t

spλw(s)
ds

s
≤ E(t, w;L∞, (Lp)

p
) ≤ c

∫ ∞
c2t

spλw(s)
ds

s
.

It follows that w ∈ Gp,1(L∞, L0) iff there exist C > 0, t0 > 0 such that for all t ≥ t0
we have ∫ ∞

t

spλw(s)
ds

s
≤ Ctpλw(t).

The equivalence of the last condition and (1.4) was established in Theorem 3 (see in
particular condition 5). In other words, the content of Theorem 3 is that to prove
Lemma 1 we can apply Theorem 1 using Gehring conditions with either (L∞, L0)
or (L∞, L1) as our “initial pair”. The reiteration formulae

(5.1) L1 = E1,1(L∞, L0), Ep,1(L∞, L0) = (Lp)
p

= Ep−1,1(L∞, L1),

suggests that a general principle is behind this. Indeed, combining the method
of proof of Theorem 3 with the Holmstedt-Nilsson formula we will show a gen-
eral reiteration theorem for Gehring conditions. Let us first recall the following
(known5) reiteration formulae for approximation spaces whose proof, for the sake
of completeness, we shall present below.

5A proof can be obtained combining (3.11.5) and (7.1.7) in [3].
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Lemma 7. Let X = (X0, X1) be a pair of cj−quasi-normed abelian groups then

Eα−β,r(X0, Eβ,r(X)) = Eα,r(X), r > 0, α > β > 0.

We can now state and prove a reiteration theorem for Gehring conditions.

Theorem 6. Let X = (X0, X1) a pair of cj−quasi-normed abelian groups, r > 0,
α > β > 0. Then,

Gα,r(X0, X1) = Gα−β,r(X0, Eβ,r(X)).

Proof. Suppose that f ∈ Gα,r(X0, X1), then there exist c > 0, t0 > 0 such that

E(f, t,X0, Eα,r(X)) ≤ ctαE(f, t), t ≥ t0.

By Lemma 7 we can rewrite this inequality as

(5.2) E(f, t,X0, Eα−β,r(X0, Eβ,r(X))) ≤ ctαE(f, t), t ≥ t0.

We estimate the right hand side of (5.2) using the fact that E(f, t) is decreasing,

tαE(f, t) = tα−β(tβE(f, t,X0, X1)) ≤ ctα−β
(∫ t

t/2

(
sβE(f, t)

)r ds
s

)1/r

.

Estimating the left hand side of (5.2) from below using Holmstedt-Nilsson, and
combining with the last inequality we find(∫ ∞

2c0t

(
sα−βE(f, t,X0, Eβ,r(X))

)r ds
s

)1/r

≤ c′tα−βE(f,
t

4c0
, X0, Eβ,r(X)).

Therefore by Lemma 5-3 f ∈ Gα−β,r(X0, Eβ,r(X)).
Conversely, suppose that f ∈ Gα−β,r(X0, Eβ,r(X̄)), then for all t ≥ t0, we have

E(f, t,X0, Eα,r(X)) ≤ c̃tα−βE(f, t,X0, Eβ,r(X)).

By the Holmstedt-Nilsson formula, and the fact that (a+ b)
r ≤ ar+br if 0 < r < 1,

or 21−r (a+ b)
r ≤ ar + br if r ≥ 1, we arrive to∫ ∞

2c0t

(sαE(f, s))
r ds

s
≤ b′′

{
tαrE(f, t)r + t(α−β)r

∫ ∞
t

(
sβE(f, s

)r ds
s

}
.

Adding
∫ 2c0t

t
(sαE(f, t))

r ds
s to both sides of the inequality and collecting terms we

get ∫ ∞
t

(sαE(f, s))
r ds

s
≤ dtαrE(f, t)r + b′′t(α−β)r

∫ ∞
t

(
sβE(f, s)

)r ds
s∫ ∞

t

sαr
(

1− b′′ t
(α−β)r

s(α−β)r

)
E(f, s)r

ds

s
≤ dtαrE(f, t)r.

At this point note that
(

1− b′′ t
(α−β)r

s(α−β)r

)
≥ 1

2 if s ≥ (2b′′)
1

(α−β)r t , therefore∫ ∞
(2b′′)

1
(α−β)r t

sαrE(f, s)r
ds

s
≤ 2dtαrE(f, t)r.

Therefore once again by Lemma 5-3 we see that f ∈ Gα,r(X0, X1). �
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We now give the proof of Lemma 7:
Let f ∈ Eα−β,r(X0, Eβ,r(X)). By Theorem 4 we have

‖f‖rEα−β,r(X0,Eβ,r(X)) =

∫ ∞
0

(
sα−βE(f, t,X0, Eβ,r(X))

)r ds
s

≥ c
∫ ∞

0

(
sα−β

(∫ ∞
2c0s

(
zβE(f, z)

)r dz
z

)1/r
)r

ds

s

≥ c
∫ ∞

0

(
s(α−β)r

∫ 4c0s

2c0s

(
zβE(f, z)

)r dz
z

)
ds

s

≥ c
∫ ∞

0

s(α−β)r (2c0s)
βr
E(f, 4c0s)

r ds

s

≥ c′ ‖f‖rEα,r(X) .

Conversely suppose that f ∈ Eα,r(X), then by Theorem 4 we find

‖f‖Eα−β,r(X0,Eβ,r(X)) =

(∫ ∞
0

(
sα−βE(f, s,X0, Eβ,r(X))

)r ds
s

)1/r

≤ c

(∫ ∞
0

s(α−β)r

(
sβE(f, s) +

(∫ ∞
s

(
zβE(f, z)

)r dz
z

)1/r
)r

ds

s

)1/r

≤ c

((∫ ∞
0

(sαE(f, s))
r ds

s

)1/r

+

(∫ ∞
0

(
s(α−β)r

∫ ∞
s

(
zβE(f, z)

)r dz
z

)
ds

s

)1/r
)
.

Integrating by parts the right-most integral we get∫ ∞
0

(
s(α−β)r

∫ ∞
s

(
zβE(f, z)

)r ds
z

)
ds

s
=

∫ ∞
0

sαrE(f, s)r
ds

s
,

since the integrated term vanishes on account of the fact that f ∈ Eα,r(X). Thus,
we find that

‖f‖Eα−β,r(X0,Eβ,r(X)) ≤ c

((∫ ∞
0

(sαE(f, s))
r ds

s

)1/r

+

(∫ ∞
0

sαrE(f, s)r
ds

s

)1/r
)

≤ c ‖f‖Eα,r(X) .

as we wished to show.

5.2. Reverse Chebyshev Inequalities. In this section we consider “Generalized
Reverse Chebyshev Inequalities” (cf. [5]) of the form

(5.3)

∫
{w>t}

w(s)ds ≤ ctθ
∫
{w>t}

w1−θ(s)ds, θ ∈ (0, 1].

Recall that for 0 < θ ≤ 1 the usual Chebyshev, and easily verified, inequalities state

(5.4) tλw(t) ≤ tθ
∫
{w>t}

w1−θ(s)ds ≤
∫
{w>t}

w(s)ds.

And easy application of Hölder’s inequality shows that (5.3) is equivalent to

(5.5)

∫
{w>t}

w(s)ds ≤ ctλw(t).
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To see that (5.5) has a self improving property, first note that by Lemma 3-(2.1)

tλw(t) +

∫ ∞
t

λw(s)ds =

∫
{w>t}

w(s)ds ≤ ctλw(t)∫ ∞
t

λw(s)ds ≤ (c− 1)tλw(t),

which in terms of E-functional inequalities means that

E(w, t;L∞, L1) = E(w, t;L∞, E1,1(L∞, L0)) ≤ (c− 1)tE(w, t;L∞, L0).

It follows that w ∈ G1,1(L∞, L0), thus by Theorem 5 there exists ε > 0 such
that w ∈ G1+ε,1(L∞, L0). Applying Theorem 5 we have the result of [5]: if w ∈
L1 = E1,1

(
L∞, L0

)
then w ∈ E1+ε,1

(
L∞, L0

)
=
(
L1+ε

)1+ε
. We further have

(‖w‖L1+ε)
1+ε ≤ ctε0 ‖f‖L1 .

Therefore if (5.5) holds for t ≥ t0 = ‖f‖L1 , we get

‖w‖L1+ε ≤ c ‖f‖L1 .

Compare with [5]. The result we presented here is stronger in as much as it shows
the improvement at the level of the E−functionals as well:∫ ∞

t

sελw(s)ds ≤ c̃t1+ελw(t).

In view of Lemma 5 we also can also treat inequalities of the form∫
{w>t}

w(s)ds ≤ ctθ
∫
{w>γt}

w1−θ(s)ds, 0 < γ < 1.

Remark 7. We can also consider inequalities of the form

(5.6) tθ
∫
{w>t}

w1−θ(s)ds ≤ ctλw(t).

By Lemma 3-(2.1) and the Holmstedt-Nilsson formula (5.6) is equivalent to

E(t, w, L∞, L1−θ) = E(t, w, L∞, E1−θ,1(L∞, L0)) ≤ c̃t1−θE(t, w, L∞, L0).

Thus these inequalities also have the self improving property.
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