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Modes of Convergence: Interpolation Methods I

Joaquim Mart́ın∗ and Mario Milman

Abstract. In the present paper we explore an approximation theoretic ap-
proach to some classical convergence theorems of real analysis. The back-

ground of this paper is the intuition that some of the usual compactness theo-
rems on various modes of convergence in classical analysis are based on suitable

ways of obtaining good decompositions of functions to exploit rates of approx-

imation, cancellations, or appropriate control of sizes that can be controlled
by the basic functionals of real interpolation.

1. Introduction

A perusal of some of the basic classical results relating norm convergence in
L1, convergence in measure, uniform integrability and weak compactness, suggests
that a common method of analysis could be based on the functionals that govern
the construction of real interpolation spaces. Indeed, real interpolation spaces are
constructed using functionals that quantify precisely appropriate rates of approxi-
mation or best possible splittings of their elements.

In this paper we start the process of analyzing classical real variable convergence
results using the methods of real interpolation. We hope to make the case that the
methods of interpolation theory can be useful in this area and enlarge the scope
and applications of the classical theory1.

In order to explain in more detail what we do let us recall the well known
generalization of Lebesgue’s dominated convergence theorem, due to Vitali, which
states that given {fn}n∈N ⊂ L1, f ∈ L1, then2 (cf. [9] page 180, and Lemma 2
below):

(1.1) fn
L1→ f ⇔ {fn}n∈N is uniformly integrable and fn

m→ f ,

where m→ denotes convergence in measure. Comparing (1.1) with the classical
Lebesgue dominated convergence theorem note that if there exists g ∈ L1 such that
|fn| ≤ g for all n, then we obviously have that {fn}n∈N is uniformly integrable. On
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2 JOAQUIM MARTÍN∗ AND MARIO MILMAN

the other hand it is well known, and easy to see, that uniform integrability does not
imply pointwise domination. In a similar vein if we weaken pointwise domination
to domination in the sense of distribution functions we still get a stronger condition
than uniform integrability3. At this stage enter the K and E functionals of real
interpolation theory for the pair (L1, L∞) (cf. Section 2 below). We have (cf. [2],
[13], and the references therein)

(1.2) K(t, f ;L1, L∞) =

∫ t

0

f∗(s)ds

(1.3) Ẽ(t, f ;L1, L∞) =

∫ ∞
t

λf (s)ds,

where f∗, λf , denote respectively the decreasing rearrangement, and the distribu-
tion function of f . For F ⊂ L1 we let

K(t, F ;L1, L∞) = sup
f∈F

K(t, f ;L1, L∞); Ẽ(t, F ;L1, L∞) = sup
f∈F

Ẽ(t, f ;L1, L∞).

The rôle of the K and E functionals can be seen from the following statements
(for proofs see Lemma 3 below)

(1.4) fn
m→ f ⇔ lim

n→∞
−Ẽ′(t, fn − f) = 0, t > 0

(where Ẽ′ = the derivative of Ẽ).

(1.5) F is uniformly absolutely continuous⇔ lim
t→0

K(t, F ) = 0.

(1.6) F is uniformly integrable⇔ lim
t→∞

Ẽ(t, F ) = 0.

But there is more. Let us say that F ⊂ L1 is K− dominated if there exists g ∈ L1

such that K(t, F ) ≤ K(t, g). Now, if in the usual assumptions of Lebesgue’s domi-
nated convergence theorem we replace pointwise domination by K−domination we
get the following form of the Lebesgue-Vitali theorem (cf. Theorem 8 below)

fn
L1→ f ⇔ {fn}n∈N is K − dominated and lim

n→∞
−Ẽ′(t, fn − f) = 0, t > 0.

Let us show that in this classical context K−domination arises very naturally:
indeed using (3.2) below we readily obtain for 0 < t ≤ 1,

K(t, {fn}n∈N , L1, L∞) ≤ inf
s>0

{
ts+ Ẽ(s, {fn}n∈N )

}
= φ(t).

Now, if {fn}n∈N is L1 bounded then φ is quasi-concave and φ̂, the concave majorant

of φ, is bounded on [0, 1], moreover if lims→∞ Ẽ(s, {fn}n∈N ) = 0 then we readily

see that φ̂(0+) = 0, thus we can write φ̂(t) =
∫ t

0
φ̂′(s)ds, with φ̂′ decreasing (cf.

(3.11) below). Consequently φ̂′ ∈ L1 and

K(t, {fn}n∈N ;L1, L∞) ≤ K(t, φ̂′;L1, L∞).

In other words {fn}n∈N is K−dominated by φ̂′. Note that the functionals asso-
ciated to the real method of interpolation provide us with a constructive method,
via Legendre transformation, to find a K−majorant for {fn}n∈N .

3For example let fn = nχ(0, 1
n logn

), n = 3, ... then {fn} is uniformly integrable, but if g is

such that λfn (t) ≤ λg(t), for all t > 0, n = 2, ... then g /∈ L1 (cf. [6]).
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Once convergence problems have been formulated in this fashion the proofs de-
pend on elementary properties of concave functions, Gagliardo diagrams, and their
Legendre transformations. Moreover, once formulated in the language of interpo-
lation theory the Lebesgue-Vitali theorem can be stated and proved in the general
context of scales of real interpolation spaces4. As an application in Section 6 we
derive versions of the Lebesgue-Vitali theorem in settings as diverse as the theory
of Schatten ideals (non commutative integration), as well as the context of the
variational problems studied by Michelli and Pinkus in [14].

The plan of the paper is as follows. In Section 2 we reformulate in detail
the usual concepts of the classical theory (uniform integrability, uniform absolute
integrability, convergence in measure, etc.) in terms of the K and E functionals.
In Section 3 we review in detail the connection between K and E functionals. In
sections 4 and 5 we consider generalized versions of classical convergence theorems
in the setting of scales of interpolation spaces. In Section 6 we consider applications
including a version of the Lebesgue-Vitali convergence theorem for non commutative
integration as well as version of the same theorem in the context of the variational
problems studied by Michelli and Pinkus [14].

Acknowledgment. We would like to thank Michael Korey for several helpful
suggestions to improve the exposition.

2. Classical Theory

We start our presentation reformulating classical convergence theorems in the
context of the Banach pair (L1, L∞) = (L1(Ω), L∞(Ω)), where (Ω, µ) is a finite
measure space5. Recall that a subset F ⊂ L1 + L∞ = L1, is said to be “ uniformly
integrable” iff ∀ε > 0, ∃δ > 0 such that

sup
f∈F

∫
{|f |>δ}

|f(x)| dµ(x) < ε.

In the literature one also finds the concept of “ uniform absolute continuity”
defined as follows: F ⊂ L1 is uniformly absolutely continuous iff ∀ε > 0, ∃δ > 0
such that for all measurable subset A ⊂ Ω with µ(A) < δ we have

sup
f∈F

∫
A

|f(x)| dµ(x) < ε.

We also recall that a sequence of measurable functions {fn}n∈N “converges in

measure” to a measurable function f , briefly fn
m→ f , iff ∀t > 0

(2.1) lim
n→∞

λfn−f (t) = 0,

4As we shall see, in the more general setting of interpolation spaces, K−domination is a
delicate issue, which can be formulated as follows: which pairs of Banach spaces have the property
that K−functionals of its elements generate sufficiently many concave functions? For example

the argument given above shows that the pair (L1, L∞), has this property when the underlying
measure space is [0, 1], the case of general probability measure spaces is also true and can be easily

reduced to the previous case via measure preserving transformations. More generally, the existence
of sufficiently many concave functions associated with a given interpolation pair is connected
with the deep part of real interpolation theory associated with “K−divisibility” (cf. [3] and the
references therein, and Section 3 below).

5Unless otherwise specified all measure spaces in this paper are assumed to be finite measure
spaces.
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where λh(s) = µ{x : |h(x)| > s} is the distribution function of h (by monotonicity
it is easy to see that is enough for (2.1) to be valid a.e. t > 0).

Let us also recall the definition of the decreasing rearrangement of h given by
h∗(s) = inf{t : λh(t) ≤ s}.

We now recall the classical results that motivated of our work6 starting with
the weak compactness theorem of Dunford Pettis [7]:

Lemma 1. Let (Ω, µ) be a finite measure space then

F ⊂ L1 is relatively weakly sequentially compact in L1

⇔ F is uniformly integrable.

As we remarked in the Introduction, uniform integrability also plays a rôle in
the Lebesgue-Vitali convergence theorem

Lemma 2. Let (Ω, µ) be a finite measure space, and let {fn}n∈N ⊂ L1, f ∈ L1,
then

fn
L1→ f ⇔ {fn}n∈N is uniformly integrable and fn

m→ f .

A basic result due to Grothendieck (cf. [10]) connecting weak compactness
with approximation properties was also a motivating factor in our research.

Theorem 1. (cf. [10] page 221). Let H be a subset of a Banach space X such
that for every ε > 0 there exists a weakly compact subset H ′ ⊂ X such that for
every x ∈ H, the distance of x to H ′ is < ε. Then H is weakly relatively compact.

In order to reformulate these concepts in terms of rates of approximation let us
first review the definitions of some of the basic functionals of real interpolation. We
consider compatible pairs of Banach spaces A = (A0, A1), that is we assume that
there is a large topological vector space V such that Ai ⊂ V, i = 0, 1, continuously.
Usually we drop the terms “compatible” and “Banach” and refer to a compatible
Banach pair simply as a “pair”.

The K−functional associated with a pair A is defined, for a ∈ A0 +A1 = Σ(A),
t > 0, by

K(t, a) = K(t, a;A0, A1) = inf{‖a0‖A0
+ t ‖a1‖A1

: a = a0 + a1, ai ∈ Ai}.
It is easy to see that K(t, a) is a nonnegative concave increasing function of t > 0,
(and thus also continuous). Furthermore K(t, a+b) ≤ K(t, a)+K(t, b), a, b ∈ Σ(A),
t > 0.

We shall say that the pair A = (A0, A1) is ordered7 if A1 ⊂ A0, continuously
and moreover ‖·‖A0

≤ ‖·‖A1
. In this case, for any a ∈ A0 +A1 = A0, we have

K(t, a;A0, A1) = ‖a‖A0
, ∀t ≥ 1.

The E−functional associated to a pair A is defined by

E(t, a) = E(t, a;A0, A1) = inf{‖a− a0‖A1
: ‖a0‖A0

≤ t}.
The E−functional is a nonnegative convex decreasing continuous function of t > 0
which satisfies E(2t, a+ b) ≤ E(t, a) + E(t, b), a, b ∈ Σ(A), t > 0.

6Another early motivation to our work was Chaumat’s extention of the Dunford-Pettis crite-
rion. The second author is grateful to Aline Bonami and Jacques Chaumat for making [5] available
to us and for several useful conversations. Weak compactness via interpolation methods will be

studied in detail in the sequel to this paper.
7For the most part in this paper we work with ordered pairs of Banach spaces.
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These definitions can be readily extended to subsets F ⊂ A0 +A1, thus we let

K(t, F ) = K(t, F ;A0, A1) = sup
a∈F

K(t, a)

E(t, F ) = E(t, F ;A0, A1) = sup
a∈F

E(t, a).

It will be also convenient to denote by K̃ (resp. Ẽ) the K−functional (resp. the
E−functional) associated with the reverse pair (A1, A0), that is we let

K̃(t, a;A0, A1) = K(t, a;A1, A0) and Ẽ(t, a;A0, A1) = E(t, a;A1, A0).

For the pair (L1, L∞) the correspondingK and Ẽ−functionals are given respectively
by (1.2) and (1.3). Using these explicit computations for the pair

(
L1, L∞

)
we can

reinterpret uniform absolutely continuity, uniform integrability, and convergence in
measure as follows

Lemma 3. Let F ⊂ L1 + L∞ = L1 and {fn}n∈N ⊂ L1, f ∈ L1, then,

(1) F is uniformly integrable ⇔ lim
t→∞

Ẽ(t, F ) = 0.

(2) sup
f∈F
‖f‖L1 ≤ C and F uniformly absolutely continuous ⇔ lim

t→∞
Ẽ(t, F ) =

0.
(3) fn

m→ f ⇔ lim
n→∞

−Ẽ′(t, fn − f) = 0, t > 0.

Proof. To prove 1 observe that∫
{|f |>t}

|f(x)| dµ(x) =

∫ ∞
0

λ(fχ{|f)|>t})(u)du

=

∫ ∞
t

λf (u)du+ tλf (t)

≥ Ẽ(t, f) (by (1.3)).

Thus, if F is uniformly integrable it follows that lim
t→∞

Ẽ(t, F ) = 0. Conversely,

suppose that lim
t→∞

Ẽ(t, F ) = 0 then,

tλf (t) ≤ 2

∫ t

t/2

λf (u)du ≤ 2Ẽ(
t

2
, f).

Consequently,∫
{|f |>t}

|f(x)| dµ(x) =

∫ ∞
t

λf (u)du+ tλf (t) ≤ 3Ẽ(
t

2
, f),

and the uniform integrability of F follows.
2 follows readily from 1 and the fact (cf. [20] Theorem 2, page 3) that F is

uniformly integrable if and only if sup
f∈F

‖f‖L1 ≤ C and F is uniformly absolutely

continuous.
Finally by (1.3) we have

−Ẽ′(t, fn − f) = λfn−f (t) a.e. t > 0,

and by monotonicity 3 follows. �
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Remark 1. If (Ω, µ) is a non-atomic finite measure space, then we have (cf.
[4], [2])

K(t, f ;L1, L∞) = sup
µ(A)=t

∫
A

|f(x)| dµ = sup
µ(A)≤t

∫
A

|f(x)| dµ.

Therefore in this case if F ⊂ L1 + L∞ = L1 we have,

F is uniformly absolutely continuous⇔ lim
t→0

K(t, F ) = 0.

Remark 2. In Theorem 3 below we shall prove, in the general context of in-
terpolation pairs,

lim
t→∞

Ẽ(t, F ) = 0⇔ lim
t→0

K(t, F ) = 0.

Thus for finite measure spaces, the following equivalences hold

(1) F is uniformly integrable,
(2) sup

f∈F
‖f‖L1 ≤ C and F uniformly absolutely continuous,

(3) lim
t→∞

Ẽ(t, F ) = 0,

(4) lim
t→0

K(t, F ) = 0.

Summarizing our discussion we have

F is relatively weakly sequentially compact in L1 ⇔ lim
t→0

K(t, F ) = 0.

and

fn
L1→ f ⇔ lim

t→0
K(t, F ) = 0 and lim

n→∞
−Ẽ′(t, fn − f) = 0, t > 0.

Before we give an extension of these results to the general context of interpo-
lation theory we need to go somewhat deeper into the connections between the K
and E functionals.

3. On the connection between K and E functionals

In this section we review some of the basic properties of the K and E function-
als8. Our basic references here are [11], [2], [13], and [3].

We start recalling some elementary results from [11], [2] and [13]. Given a
pair A we associate with a ∈

∑
(A) a convex subset of R2, Γ(a) (= the Gagliardo

diagram of a) defined by

Γ(a) =
{

(x0, x1) ∈ R2 : ∃ai ∈ Ai s.t. ‖ai‖Ai ≤ xi, i = 0, 1; a = a0 + a1

}
.

Let D(a) be defined by the intersection of the boundary of Γ(a) and the nonnegative
first quadrant:

D(a) = ∂Γ(a) ∩R2
+ = ∂Γ(a) ∩

{
(x0, x1) ∈ R2 : xi > 0, i = 0, 1

}
.

D(a) may contain a semi-infinite vertical segment and/or semi-infinite horizontal
segment. The remainder of the boundary will be the graph of a decreasing convex
function, (we suggest that the reader draws a picture).

8The K−functional was apparently introduced independently by J. Peetre [18] and E. T.

Oklander [17] around 1963, and was developed intensively afterwards by Peetre and his school.

It is frequently refered to as Peetre’s K−functional in order to reflect Peetre’s fundamental and
extensive contributions. Peetre also introduced the E and J functionals and the interpolation

methods associated with these functionals.
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The connection between the points (x0, x1) ∈ D (a) and K (t, a) is given by a
kind of Legendre transform

(3.1) K (t, a) = inf
(x0,x1)∈Γ(a)

{x0 + tx1} = inf
(x0,x1)∈D(a)

{x0 + tx1} ,

i.e. K(t, a) is the x0−intercept of the tangent to D(a) with slope −1/t. This follows
from the fact that K(t, a) is a nonnegative, increasing, concave and continuous
function.

On the other hand, it follows readily from the definitions that the non-vertical
part of the boundary of D(a) is the curve

x0 = r, x1 = E(r, a),

thus we can write (3.1) as

(3.2) K(t, a) = inf
r>0
{r + tE(r, a)} .

Now this means that at the points r > 0 where the derivative of E(r, a) exists
(recall that since E is a convex function the derivative exists except perhaps for at
most a countable number of points) we have

(3.3) −1

t
= E′(r, a), K(t, a) = r − E(r, a)

E′(r, a)
;

where the derivative does not exist, −1/t is between the left and the right derivatives
of E(r, a) thus we can give a meaning to (3.3) by letting E′(r, a) take an appropriate
value between the derivative on the left and on the right.

Similarly, since the non-horizontal part of the boundary of D(a) is the curve

x0 = Ẽ(s, a), x1 = s,

it follows from (3.1)

(3.4) K(t, a) = inf
s>0

{
Ẽ(s, a) + ts

}
thus at the points s > 0 where the derivative of Ẽ(s, a) exists

(3.5) t = −Ẽ′(s, a), K(t, a) = Ẽ(s, a)− Ẽ′(s, a)s;

an as in the previous case we can give a meaning to (3.5) at the points s where

Ẽ′(s, a) does not exist by letting Ẽ′(r, a) take an appropriate value between the
derivative on the left and on the right.

The inverse transform takes us back to the E−functional:

(3.6) E(r, a) = sup
t>0

{
K(t, a)

t
− r

t

}
,

(3.7) Ẽ(s, a) = sup
t>0
{K(t, a)− ts} ;

Hence at the points t > 0 where K ′(t, a) exists we find that

(3.8) r = K(t, a)−K ′(t, a)t, E(r, a) = K ′(t, a);

(3.9) s = K ′(t, a), Ẽ(s, a) = K(t, a)−K ′(t, a)t.

And now using the same argument as above we can give a meaning to K ′(t, a) even
when K(t, a) is not differentiable.
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In particular, K ′ and −Ẽ′ are inverse to each other and K − tK ′ and −1/E′

are inverse.
We consider a simple example of these geometric ideas. Our test pair is(

L1, L∞
)
, combining (1.2), (1.3) and (3.3) we obtain∫ t

0

f∗(s)ds− tf∗(t) =

∫ ∞
f∗(t)

λf (s)ds

a well known and geometrically obvious formula relating
∫ t

0
f∗, f∗, λf .

In the sequel it will be also useful to have at hand some concepts from the
calculus of convex functions (cf. [3]-Chapter 3 and the references quoted therein).

Let Conv denote the cone of all nonnegative concave functions on R+ = (0,∞),
and let MC be the cone of all convex decreasing nonnegative functions on R+.

Given a function f : R+ → R+ ∪ {0} its least concave majorant is defined by

(3.10) f̂ := inf {g ∈ Conv : g ≥ f} .
If the function f : R+ → R+ ∪ {0} satisfies the inequality

f(t) ≤ cmax(1, t), t > 0

then since f does not exceed a certain linear function the set on the right-hand side

of (3.10) is not empty, thus f̂ ∈Conv.
A function f : R+ → R+ ∪ {0} is quasi-concave if

f(t) ≤ max(1,
t

s
)f(s), s, t > 0.

If f is a quasi-concave function then f is equivalent to a concave function, more
precisely we have

(3.11) f ≤ f̂ ≤ 2f.

Similarly, given f : R+ → R+ ∪ {+∞} its greatest convex minorant is defined
by

f̌ := inf {g ∈ MC : g ≤ f} .
Obviously if f(t) 6=∞ at least at a single point, then f̌ 6=∞, thus f̌ ∈MC.

Let f : R+ → R+ ∪ {+∞} , by Legendre transformations we define

f∇(t) := inf
s>0
{f(s) + st} and f4(t) := sup

s>0
{f(s)− st} .

It follows that

(3.12)
(
f4
)∇

= f̂ and
(
f∇
)4

= f̌ .

Let us also recall that K(·, a) ∈ Conv, E(·, a) ∈ MC and

K(·, a) = E(·, a)∇, E(·, a) = K(·, a)4.

We say that a pair A is regular if ∆(A) = A0 ∩ A1 is dense in A0. It follows
(cf. [17]) that A is regular iff lim

t→0
K(t, a) = 0. In particular if A is regular, then

K(t, a) =

∫ t

0

K ′(s, a)ds.

Note that if A is a regular ordered pair then, for all a ∈
∑

(A) = A0, we have

(3.13)

∫ 1

0

K ′(s, a)ds = ‖a‖A0
= sup

t>0
K(t, a).
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Definition 1. We say that F ⊂ Σ(A) is K−bounded (resp E (resp Ẽ)−bounded)
iff ∃M > 0, t0 > 0 such that

K(t0, F ) ≤M
(resp E(t0, F ) ≤M (resp Ẽ(t0, F ) ≤M)).

The next elementary result should be compared with Proposition (2.3.2) of [8].

Lemma 4. F is K−bounded iff F is Ẽ−bounded iff F is E−bounded.

Proof. Suppose that F is Ẽ−bounded, then there exist M > 0, t0 > 0, such
that ∀a ∈ F,

sup
t
{K(t, a)− tt0} = Ẽ(t0, a) ≤M, (by (3.2)).

Therefore,

K(t0, F ) ≤M + t20.

On the other hand, if F is K−bounded then, for some M > 0, t0 > 0, and all
a ∈ F , we have

K(t0, a) ≤M.

It follows that for each a ∈ F we can find a decomposition a = a0 + a1 such that

‖a0‖A0
+ t0 ‖a1‖A1

≤ 2M.

Consequently,

‖a− a0‖A1
≤ 2M

t0
, with ‖a0‖A0

≤ 2M,

and

Ẽ(2M,F ) ≤ 2M

t0
.

Finally observe that since we trivially have that F is K−bounded if and only if F

is K̃ −bounded all the equivalences of the Lemma have been proved. �

Remark 3. Note that if A is an ordered pair then for each fixed t > 0, K(t, .)
defines an equivalent norm on A0. Thus, F ⊂ A0 is K−bounded iff

K(t, F ) = sup
a∈F
‖a‖A0

<∞, t ≥ 1.

4. Uniform Continuity of K and E Functionals

Definition 2. Let A = (A0, A1) be a pair, we shall say that F ⊂ A0 + A1 is
K−uniformly continuous (at 0) iff

lim
t→0

K(t, F ) = 0.

We say that F is E−uniformly continuous (at ∞) iff

lim
t→∞

E(t, F ) = 0.

We say that F is K−dominated iff there exists a ∈ A0 +A1 such that

K(t, F ) ≤ K(t, a), ∀t > 0.

Similar definitions for uniform continuity at other points or other functionals can
be given.
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Remark 4. Obviously K−uniform continuity implies K−boundedness thus by
Remark 3 if the pair is ordered K−uniform continuity implies K(t, F ) <∞, t > 0.
Moreover since K(t, a) is concave, in particular we have K(t, a) ≤ max(1, ts )K(s, a),

which implies that K(t, F ) ≤ max(1, ts )K(s, F ), i.e. K(t, F ) is quasi-concave. If
the pair is regular then K−domination implies K−uniform continuity.

The following results follow directly from the definitions.

Proposition 1. Let A be an ordered pair, and suppose that i : A1 ⊂ A0 is

weakly compact. Then, if F ⊂ A0 is Ẽ−uniformly continuous, F is weakly relatively
compact.

Proof. Let ε > 0 be given and choose δ > 0 so large that

Ẽ(δ, F ) < ε.

Therefore each a ∈ F is at distance less than ε of the A1 ball B(0, δ). We may now
apply Grothendieck’s lemma to conclude (cf. Theorem 1). �

Proposition 2. Let A and B be pairs and let T : A → B be a possibly non-
linear operator such that there exists c > 0 with K(t, Ta;B) ≤ cK(t, a;A), ∀a ∈
Σ(A) (i.e. T is a K−bounded (resp E−bounded) operator). Then if F ⊂ Σ(A)
is K−uniformly continuous (resp E−uniformly continuous) then T (F ) ⊂ Σ(B) is
K−uniformly continuous (resp E−uniformly continuous).

Proof. The result follows immediately from

K(t, Ta;B) ≤ cK(t, a;A) ≤ cK(t, F ;A)

sup
b∈T (F )

K(t, b;B) ≤ cK(t, F ;A).

A similar remark proves the assertion on E−uniform continuity. �

Corollary 1. If T : A→ B is a bounded linear operator, then T is K−bounded
(resp E−bounded) and the previous result applies.

The theory of commutators for the real method (cf. [15] and [16] for recent
accounts) provides us with a set of examples. We state here a result in terms of E
functionals, similar results hold for the K method.

Proposition 3. Let A and B be Banach pairs and let T be a bounded operator,
T : A → B, then if F ⊂ Σ(A) is such that limt→∞

∫∞
t
E(s, F ;A)dss = 0, then

[T,ΩE ](F ) is E−uniformly continuous.

Proof. It is known (cf. [15]) that there exist constants c, c′ > 0, such that
∀a ∈ F we have,

E(2ct, [T,Ω]a;B) ≤ c′
∫ ∞
t

E(s, a;A)
ds

s
≤ c′

∫ ∞
t

E(s, F ;A)
ds

s
.

Consequently,

E(2ct, [T,Ω]F ;B) ≤ c′
∫ ∞
t

E(s, F ;A)
ds

s
,

and the result follows. �

In order to establish the connection betweenK−uniform continuity, Ẽ−uniform
continuity and K−domination we need a result from [3]. First some notation from
[3].
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Definition 3. Let I− = (0, 1] . We say that a pair A is Conv−−abundant if
for all ϕ ∈Conv such that lim

t→0
ϕ(t) = 0 there exists x ∈ Σ(A) such that

K(t, x) ≈ ϕ(t), t ∈ I−.

The next result from [3] gives a criterion to determine when a pair is Conv−−abundant.

Theorem 2. (cf. [3] Theorem 4.5.7). Let A = (A0, A1) be a pair. Assume
that there exists a nonzero a0 ∈ Σ(A) such that for all t ∈ I−

K(t, a0) ≈
∫ t

0

K(s, a0)
ds

s
+ t

∫ ∞
t

K(s, a0)
ds

s2
.

Then A is Conv−−abundant.

We now show that, under a Conv− abundance assumption, K−uniform conti-
nuity is equivalent to K−domination.

Theorem 3. Let A = (A0, A1) be a ordered pair, and let F ⊂ Σ(A) then

F is K − uniformly continuous⇔ F is Ẽ − uniformly continuous.

Moreover if A is regular and Conv−−abundant then

F is K − uniformly continuous⇔ F is K − dominated.

For the proof of Theorem 3 we need the following

Lemma 5. Let h be a nonnegative and decreasing function then

lim
t→∞

h(t) = lim
t→0

inf
s>0

(h(s) + st) .

Proof. Since h is decreasing limt→∞ h(t) = inft>0 h(t). For all s > 0, t > 0,

inf
t>0

h(t) ≤ h(s) + st,

therefore,

inf
t>0

h(t) ≤ lim
t→0

inf
s>0

(h(s) + st) .

Conversely, for any s, t > 0,

inf
s>0

(h(s) + st) ≤ h(s) + st,

implies

lim
t→0

inf
s>0

(h(s) + st) ≤ h(s)

lim
t→0

inf
s>0

(h(s) + st) ≤ inf
s>0

h(s).

�

We are now ready for the proof of Theorem 3:

Proof. First assume that F is K−uniformly continuous, then by Remark 4,
K(z, F ) <∞, and by (3.7) we have

(4.1) Ẽ(s, F ) ≤ sup
z>0

{
sup
a∈F

K(z, a)− sz
}

= sup
z>0
{K(z, F )− zs} <∞.
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Furthermore, since Ẽ(t, a) is nonnegative and decreasing it follows that Ẽ(t, F ) is
also nonnegative and decreasing, thus by Lemma 5

lim
t→∞

Ẽ(t, F ) = lim
t→0

inf
s>0

(
Ẽ(s, F ) + st

)
≤ lim
t→0

inf
s>0

{
sup
z>0
{K(z, F )− zs}+ st

}
(by (4.1))

= lim
t→0

[
K(·, F )4

]∇
(t) = lim

t→0
K̂(t, F ) (by (3.12)).

By Remark 4, K(t, F ) is quasi-concave, therefore by (3.11)

K(t, F ) ≤ K̂(t, F ) ≤ 2K(t, F ).

Since F is K−uniformly continuous we see that

lim
t→∞

Ẽ(t, F ) ≤ lim
t→0

K̂(t, F ) ≤ 2 lim
t→0

K(t, F ) = 0.

Conversely by (3.4)

K(t, a) = inf
s>0
{Ẽ(s, a) + ts} ≤ inf

s>0
{sup
a∈F

Ẽ(s, a) + ts}

= inf
s>0
{Ẽ(s, F ) + ts},

hence

K(t, F ) ≤ inf
s>0
{Ẽ(s, F ) + ts} ≤ Ẽ(s, F ) + ts,

which implies

lim
t→0

K(t, F ) ≤ lim
t→0

(
Ẽ(s, F ) + ts

)
= Ẽ(s, F ).

Now, since F is Ẽ−uniformly continuous

lim
t→0

K(t, F ) ≤ lim
s→∞

Ẽ(s, F ) = 0.

Suppose now that A is regular and Conv−−abundant. Since F is K−uniformly con-

tinuous, K(t, F ) is quasi-concave (cf. Remark 4) therefore K̂(t, F ) is well defined.
Furthermore, (cf. (3.11))

lim
t→0

K̂(t, F ) = 0.

Theorem 2 implies the existence of f ∈ Σ(A) such that

K̂(t, F ) ≈ K(t, f), 0 ≤ t ≤ 1,

hence

K(t, F ) ≤ K̂(t, F ) ≈ K(t, f), 0 ≤ t ≤ 1,

as we wished to show. �

We close this section with an abstract version of the La Vallée Poussin Criteria
for uniform integrability.

Theorem 4. Let A be an ordered regular pair, and let F ⊂ A0. Then, the
following are equivalent
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(i) F is Ẽ−uniformly continuous
(ii) ∃φ : (0,∞)→ (0,∞), with lim

t→∞
φ(t) =∞, such that

sup
f∈F

∫ ∞
0

(−Ẽ′(f, s))φ(s)ds = M <∞.

Proof. Suppose that (ii) holds. By our assumption on the pair A, for every
a ∈ A0 we have

lim
t→∞

Ẽ(t, a) = 0.

Thus, for all a ∈ F, ∀δ > 0, we have

Ẽ(δ, a) =

∫ ∞
δ

(−Ẽ′(a, s))ds.

Let ε > 0, and choose δ > 0 such that φ(u) > M
ε , whenever u > δ. Then,

Ẽ(δ, a) ≤ ε

M

∫ ∞
δ

(−Ẽ′(f, a))φ(s)ds ≤ ε.

Taking supremum over all a ∈ F ,

Ẽ(δ, F ) ≤ ε,

as we wished to show.
Conversely, suppose that F is Ẽ−uniformly continuous, we now argue as in

the usual proof of the De La Vallée Poussin criteria (cf. [8]) to construct φ. In

fact, since Ẽ(·, F ) is decreasing and lim
δ→∞

Ẽ(δ, F ) = 0, we can choose δ0 such that

Ẽ(δ0, F ) < 1, then − log Ẽ(δ, F ) is a nonnegative increasing function for δ ≥ δ0 and

lim
δ→∞

− log Ẽ(δ, F ) = ∞. Let φ : (0,∞) → (0,∞) be any continuous function, such

that φ(δ) = 0, ∀ δ ∈ (0, δ0), and φ(δ) ≤ − log Ẽ(δ, F ), if δ ≥ δ0, φ strictly increasing
on (δ0,∞), and lim

δ→∞
φ(δ) = ∞. As a consequence of this construction we see that

Ẽ(φ−1(u), F ) ≤ e−u, for all u > 0. Now, let a ∈ F, then∫ ∞
0

(−Ẽ′(δ, a))φ(δ)dδ =

∫ ∞
0

(−Ẽ′(δ, a))

∫ φ(δ)

0

dudδ

=

∫ ∞
0

∫ ∞
φ−1(u)

(−Ẽ′(δ, a))dδdu

=

∫ ∞
0

Ẽ(φ−1(u), a)du

≤
∫ ∞

0

Ẽ(φ−1(u), F )du

=

∫ ∞
0

e−udu = 1.

Taking supremum over all a ∈ F we see that (ii) holds and the desired result is
proved. �

Example 1. For comparison let us recall the classical De La Vallée Poussin
criteria. Let (Ω, µ) be a finite measure space and consider the pair (L1, L∞).
F ⊂ L1 is uniformly integrable iff there exists a finite Orlicz function A such that
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limu→∞
A(u)
u = ∞ and F is a bounded set in the Orlicz space LA. In order to re-

cover this result from Theorem 4 we just need to remark that for an Orlicz function
A, we have, by Fubini’s theorem,∫

Ω

A(|f(x)|)dµ(x) =

∫ ∞
0

λf (t)A′(t)dt

and that limt→∞A′(t) =∞ whenever limt→∞
A(t)
t =∞.

5. Convergence Processes Associated with Derivatives of Functionals

The model result we wish to extend in this section is the Lebesgue-Vitali Lemma
(cf. Lemma 2).

Theorem 5. Let (A0, A1) be an ordered regular pair, let {an}n∈N ⊂ A0 and
a ∈ A0, then

an
A0→ a⇔ {an}n∈N is K−uniformly continuous and lim

n→∞
−Ẽ′(s, a−an) = 0, s > 0.

Proof. Let us start by remarking that in view of (3.5) and (3.9), for any
a ∈ A0,

sup
t>0

t(−Ẽ′(t, a)) = sup
t>0

tK ′(t, a)(5.1)

≤ sup
t

∫ t

0

K ′(s, a)ds (since K ′ decreases)

= sup
t
K(t, a) (since the pair is regular)

= ‖a‖A0
(by (3.13)).

Suppose now that an
A0→ a. Then, by (5.1), ∀t > 0,

−Ẽ′(t, an − a) ≤ 1

t
‖an − a‖A0

and therefore

lim
n→∞

−Ẽ′(t, an − a) = 0.

Let us now prove that {an}n∈N is K−uniformly continuous. Let ε > 0, and choose
n0 large enough so that ‖an − a‖A0

< ε
2 , for n > n0, then ∀t > 0, n > n0, we have

(5.2) K(t, an − a) ≤ ‖an − a‖A0
<
ε

2
.

Now select t0(n0) > 0 sufficiently small so that if t < t0

(5.3) max
n=1....n0

K(t, an − a) +K(t, a) <
ε

2
.

(Note that, since the pair is regular, sets with a finite number of elements are
K−uniformly continuous). Then, combining (5.2) and (5.3) with the triangle in-
equality, we have, for n ∈ N, t < t0,

K(t, an) ≤ K(t, an − a) +K(t, a) < ε,

proving the K−uniform continuity.

Suppose now that lim
n→∞

−Ẽ′(s, a−an) = 0, ∀s > 0 and {an}n∈N isK−uniformly

continuous.
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Let ε > 0 be given and select t0 < 1 so that on account of the K−uniform
continuity we have ∀n ∈ N,

K(t0, an − a) <
ε

2
.

Select n0 such that ∀n > n0,

−Ẽ′(ε
2
, a− an) < t0.

Now, let us write

‖a− an‖A0
=

∫ 1

0

K ′(s, a− an)ds

=

∫
{s∈(0,1) : K′(s,a−an)>ε/2}

K ′(s, a− an)ds

+

∫
{s∈(0,1) : K′(s,a−an)≤ε/2}

K ′(s, a− an)ds

= I + II.

It is plain that

II ≤ ε/2.
To estimate I, let us recall again that the inverse of K ′(s, a− an) is the decreasing

function −Ẽ′(s, a− an), thus we see that

{s : K ′(s, a− an) > ε/2} =
{
s : s < −Ẽ′(ε/2, a− an)

}
.

Therefore,

I =

∫ −Ẽ′(ε/2,a−an)

0

K ′(s, a− an)ds

= K(−Ẽ′(ε/2, a− an), a− an)

≤ K(t0, a− an) (if n > n0, since K increases)

≤ ε/2.

Combining estimates we get that if n > n0,

‖a− an‖A0
≤ ε,

as we wished to show. �

Remark 5. In general the assumptions that the pair (A0, A1) be ordered and
regular cannot be dispensed with. For example, consider the ordered non regular
pair (`∞, `1) and let {an}n∈N ∈ `∞ be defined by

amn =
1

n
, m = 1, 2 . . .

We obviously have

an
`∞→ 0.

However,

K(t, an, `
∞, `1) = tK(

1

t
, an, `

1, `∞) = t

[ 1
t ]∑

m=1

1

n
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([t] := integer part of t). Thus

lim
t→0

sup
n
K(t, an, `

∞, `1) = lim
t→0

sup
n

t [ 1
t ]∑

m=1

1

n

 = 1.

Consider the non-ordered pair
(
L1 [0,∞] , L∞ [0,∞]

)
it is easy to construct a se-

quence {fn}n∈N ⊂ L1 [0,∞] , f ∈ L1 [0,∞] such that

{fn}n∈N is K − dominated and fn
m→ f

but

fn
L19 f.

Effectively, consider fn(t) = 1
nχ[0,n](t), then fn

m→ 0. Moreover

K(t, fn) =

{
t
n , for t < n
1, for t ≥ n

and therefore

K(t, fn) ≤ K(t, f1), n = 1...

but ‖fn‖L1 = 1, n = 1...).

5.1. Reiteration. The classical Lebesgue-Vitali theorem for Lp spaces in-

volves convergence in measure (i.e. fn
m→ f, or −Ẽ′(t, fn − f ;L1, L∞) → 0) while

our formulation requires −Ẽ′(t, fn − f ;Lp, L∞) → 0. In this section we discuss
briefly the rôle of reiteration in the study of convergence in interpolation scales.
We will formulate the results in terms of the Lions-Peetre scale of real interpolation
spaces (cf. [2]). Recall that given a pair A, and 0 < θ < 1, 1 ≤ q ≤ ∞, we let

Aθ,q;K =

{
a ∈ Σ(A) : ‖a‖Aθ,q;K =

{∫ ∞
0

(s−θK(s, a;A))q
ds

s

}1/q

<∞

}
.

If A is an ordered pair Aθ,q;K can be equivalently renormed by

‖a‖Aθ,q;K =

{∫ 1

0

(s−θK(s, a;A))q
ds

s

}1/q

.

Theorem 6. Let A = (A0, A1) be an ordered regular pair, 0 < θ < 1, 1 ≤ q ≤
∞, and let {an}n∈N ⊂ Aθ,q;K , a ∈ Aθ,q;K . Suppose that lim

n→∞
−Ẽ′(s, a−an;A) = 0,

a.e. s > 0, and that {an}n∈N is K − (Aθ,q;K , A1) uniformly continuous, then

an
Aθ,q;K→ a.

Proof. Recall that by Holmstedt’s reiteration formula (cf. [2] Corollary 3.6.2)
we have,

(5.4) K(t, a;Aθ,q;K , A1) ≈

{∫ t1/(1−θ)

0

[
s−θK(s, a;A)

]q ds
s

}1/q

.
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Let ε > 0, and let t0 ∈ (0, 1) to be chosen precisely later, then for all n ∈ N,

‖an − a‖Aθ,q;K =

{∫ 1

0

[
s−θK(s, an − a;A)

]q ds
s

}1/q

≤ c sup
n
K(t0, an − a;Aθ,q;K , A1)+

c

{∫ 1

t
1/(1−θ)
0

[
s−θK(s, an − a;A)

]q ds
s

}1/q

(by (5.4))

= I + II.

Using the fact that {an}n∈N is K − (Aθ,q;K , A1) uniformly continuous choose
t0 ∈ (0, 1) such that

I < ε/2.

On the other hand since K(s, .)/s is decreasing we have

II ≤ cθ,qK(t
1/(1−θ)
0 , an − a;A)t

−1/(1−θ)
0 .

It follows from (5.4) that K−(Aθ,q;K , A1) uniformly continuity implies K−(A0, A1)

uniformly continuity, moreover by hypothesis lim
n→∞

−Ẽ′(s, a − an;A) = 0, s > 0,

therefore Theorem 5 implies that

‖an − a‖A0
→ 0.

Since,

K(t
1/(1−θ)
0 , an − a;A) ≤ ‖an − a‖A0

,

it follows that we can select n0 ∈ N such that for all n > n0 we have

K(t
1/(1−θ)
0 , an − a;A) ≤ εt

1/(1−θ)
0

2cθ,q
.

Combining estimates we see that for all n > n0

‖an − a‖Aθ,q;K < ε,

as desired. �

K−domination can be also sharpened by reiteration.

Proposition 4. Let A be an ordered pair and let F ⊂ A0 be K−dominated by
g ∈ Aθ,q;K . Then, F ⊂ Aθ,q;K , and F is K − (Aθ,q;K , A1) dominated by g.

Proof. Direct consequence of Holmstedt’s reiteration formula. �

Example 2. Let (Ω, µ) be a finite measure space. Suppose that {fn}n∈N ⊂ Lp,

f ∈ Lp. If fn
m→ f, and {|fn|p}n∈N is uniformly integrable then fn

Lp→ f.

Proof. Recall that (cf. [2])

K(t, f ;Lp, L∞) ≈

{∫ tp

0

f∗p(s)ds

}1/p

.

Therefore {|fn|p}n∈N is uniformly integrable iff {fn}n∈N is K−(Lp, L∞) uniformly
continuous. We conclude applying Theorem 6. �



18 JOAQUIM MARTÍN∗ AND MARIO MILMAN

5.2. General Pairs. We consider the modifications that are necessary in or-
der to deal with pairs that are not ordered. We shall consider pairs that are mutually
closed, that is ∀a ∈ Σ(A)

lim
t→∞

K(t, a;A) = ‖a‖A0
, lim
t→0

1

t
K(t, a;A) = ‖a‖A1

.

In fact as we shall see next, the extra condition we need to effect control to prove the
analogue of Theorem 5 in the general case is a uniform condition on the Gagliardo
closure of the sequence (cf. Remark 7 below).

Theorem 7. Let (A0, A1) be a regular and mutually closed pair, let a ∈ A0,
{an}n∈N ⊂ A0, then

an
A0→ a⇔


i) lim

n→∞
−Ẽ′(s, a− an) = 0, s > 0

ii) {an}n∈N is K − uniformly continuous
iii) lim

t→∞
supn

∫∞
t
K ′(s, an − a;A)ds = 0.

Proof. The proof is almost identical to the proof of Theorem 5. To see the
“if part” note that if A is regular and mutually closed then∫ ∞

0

K ′(s, a;A)ds = ‖a‖A0
= sup

t>0
K(s, a;A)

so i) and ii) follow as in Theorem 5, while iii) is proved in the same way as ii). To
see the converse, given ε > 0 by condition iii) ∃t0 > 0 such that ∀n ∈ N∫ ∞

t0

K ′(s, a− an;A)ds <
ε

3
.

By ii) we can choose t1 ≤ t0 so that ∀n ∈ N,

K(t1, an − a) <
ε

3
.

Finally by i) select n0 such that ∀n > n0,

−Ẽ′( ε

3t0
, a− an) < t1.

Now, let us write

‖a− an‖A0
=

∫
{s∈(0,t0) : K′(s,a−an)>ε/3t0}

K ′(s, a− an)ds

+

∫
{s∈(0,t0) : K′(s,a−an)≤ε/3t0}

K ′(s, a− an)ds

+

∫ ∞
t0

K ′(s, a− an)ds

= I + II + III.

Obviously

II ≤ ε/3 and III ≤ ε/3.
Finally I is controlled as in Theorem 5. �

Remark 6. If the pair A is regular and

lim
t→∞

K(t, a;A) = ‖a‖A0
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then the previous theorem remains true. If the pair is ordered then

K(t, a;A) = ‖a‖A0
for all t ≥ 1,

hence condition iii) is obviously satisfied. In this case the condition that the pair
be mutually closed can be dropped. If the pair (A0, A1) is such that the reversed
pair (A1, A0) is ordered (which obvious implies that (A0, A1) is a regular pair) then
K(t, a;A) = t ‖a‖A1

for all t ≤ 1 thus condition i) is equivalent to sup
n
‖an‖A1

<∞.

Remark 7. Note that for a ∈ A0,∫ ∞
t

K ′(s, a;A)ds = ‖a‖A0
−K(t, a;A),

and by mutual closedness we always have

‖a‖A0
−K(t, a;A)→ 0.

Condition (iii) is thus a uniform condition on the Gagliardo norm of {an− a}n∈N .
For suitable pairs this condition can be replaced by a condition on {an}n∈N only.
This is the case, for example, if the pair A satisfies a condition of the form

K ′(s, a0 + a1;A) ≤ c(K ′(s/2, a0;A) +K ′(s/2, a1;A)).

In particular, as is well known, this last condition holds for the pair (L1, L∞) (cf.
also the proof of Theorem 9 below).

6. Applications

6.1. Lebesgue-Vitali Dominated Convergence Theorem.

Theorem 8. Let (Ω, µ) be a finite measure space {fn}n∈N ⊂ L1, f ∈ L1 then

fn
L1→ f

if and only if

{fn}n is K − dominated and fn
m→ f.

Proof. If (Ω, µ) has atoms we can embed (Ω, µ) into a non-atomic measure
space (Ω, µ) (cf. [4], and [1] page 54) such that for all µ−measurable function g on
Ω

g∗µ = g∗µ,

where the subscripts indicate the measure respect to which we take rearrangements.
It follows that

fn
L1(Ω)→ f ⇔ fn

L1(Ω)
→ f.

Therefore without loss of generality we may assume that (Ω, µ) is atom free and
moreover µ(Ω) = 1. Consider now the ordered pair

(
L1 (Ω) , L∞ (Ω)

)
, by Theorem

5 we know that
fn

L1→ f

if and only if

{fn}n is K − uniformly continuous and lim
n→∞

−Ẽ′(t, fn − f) = 0.

By Lemma 3-3, limn→∞−Ẽ′(t, fn − f) = 0, t > 0 iff fn
m→ f. Therefore it re-

mains to show that in the situation at hand K−uniform continuity is equivalent to
K−domination. Using Ryff’s theorem (cf. [1] page 82-86) we can further reduce



20 JOAQUIM MARTÍN∗ AND MARIO MILMAN

ourselves to the case were (Ω, µ) = ([0, 1], dx) in which case the argument we gave
in the Introduction proves the result. An alternative proof can be based through
an application of Theorem 2 and Theorem 3. Indeed, again by Ryff’s theorem we
can choose g to be a measurable function on (Ω, µ) such that (cf. [1] Corollary 7.8
page 86)

g∗µ(t) = t−1/2χ [0, 1] (t).

Then,

K(t, g;L1 (Ω) , L∞ (Ω)) =

∫ t

0

g∗µ(s)ds =

∫ t

0

s−1/2χ[0,1](s)ds.

It follows that

K(t, g) ≈
∫ t

0

K(s, g)
ds

s
+ t

∫ ∞
t

K(s, g)
ds

s2
, 0 < t ≤ 1.

Theorem 2 implies that
(
L1 (Ω) , L∞ (Ω)

)
is Conv−−abundant, therefore we con-

clude the proof applying Theorem 3. �

For infinite measure spaces we have the following result

Theorem 9. Let (Ω, µ) be a measure space, {fn}n∈N ⊂ L1, f ∈ L1 then

fn
L1→ f

if and only if

lim
t→0

sup
n∈N

∫ t

0

f∗n = 0, lim
t→∞

sup
n∈N

∫ ∞
t

f∗n = 0 and fn
m→ f.

Proof. Applying Theorem 7, and (1.2), it only remains to prove that

lim
t→∞

sup
n∈N

∫ ∞
t

f∗n = 0⇔ lim
t→∞

sup
n∈N

∫ ∞
t

(fn − f)∗ = 0,

which follows readily using the well known inequality

(f + g)
∗

(s) ≤ f∗(s/2) + g∗(s/2).

�

Remark 8. In the context of infinite measure spaces the classical condition at
infinity that is imposed on {fn}n∈N reads as follows: for all ε > 0 there exists a set
E of finite measure such that supn

∫
Ec
|fn(x)| dx < ε. In comparing this condition

with the one imposed in Theorem 9 note that for all n ∈ N, we trivially have∫
Ec
|fn(x)| dx ≥

∫∞
|E| f

∗
n(s)ds.

Theorem 10. Let {fn}n ⊂ `1, f ∈ `1 then

fn
`1→ f

if and only if

sup
n
‖fn‖`1 <∞, lim

m→∞
sup
n

 ∞∑
j=m

(fn)
∗
j

 = 0 and fn
m→ f.

Proof. Consider the pair
(
`1, `∞

)
, apply Theorem 7 and Remark 6. �
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Theorem 11. Let X be a Banach lattice on a measure space (Ω, µ), such that
the pair (X,L∞) is an ordered regular pair. Let {fn}n∈N ⊂ X, f ∈ X then

fn
X→ f

if and only if

lim
t→∞

sup
n∈N

∥∥∥[|fn| − t]+
∥∥∥
X

= 0, and lim
n→∞

− ∂

∂t

∥∥∥[|fn − f | − t]+
∥∥∥
X

= 0, t > 0,

where [f ]
+

:= max(f, 0)

Proof. It is well known that (cf. [3] Proposition 3.1.16)

Ẽ(t, f ;X,L∞) =
∥∥∥[|f | − t]+

∥∥∥
X
.

Moreover, by Theorem 3, K−uniform continuity is equivalent to Ẽ−uniform con-
tinuity. The desired result now follows from Theorem 5. �

6.2. Lebesgue-Vitali Convergence Theorem for noncommutative Lp

spaces. Let H be a Hilbert space, let S∞ be the space of bounded operators from
H to H. The Schatten ideals of operators Sp are defined as follows: A compact
operator T ∈ S∞ is in the Schatten ideal Sp, 0 < p <∞, if

‖T‖Sp = ‖{sn(T )}n‖lp <∞,

where {sn(T )}n denotes the sequence of eigenvalues, arranged in decreasing order,

of the operator (T ∗ ◦T )1/2 (i.e. sn(T ) = singular or s-numbers of the operator T ).
Define S0 to be the space of operators T ∈ S∞ of finite rank ‖T‖S0

= rank(T )

(this is the analogue of the space L0 of functions with finite support) then

(6.1) sn(T ) = inf
{
‖T −R‖S∞ : ‖R‖S0

≤ n
}

= Ẽ(n, T ;S0, S∞).

Note that the inverse of the function sn(T ) is given by

νn(T ) = inf
{
‖T −R‖S0

: ‖R‖S∞ ≤ n
}

= E(n, T ;S0, S∞).

Moreover, it is well known that

K(t, T, S1, S∞) =

∫ t

0

sT (x)dx

where sT (x) := sn(T ) for n ≤ x < n+ 1, n ≥ 1. Thus

lim
t→∞

K(t, T, S1, S∞) = ‖T‖S1
.

It follows from (6.1) that

sT0+T1(x) ≤ sT0(x/2) + sT1(x/2).

Now applying Theorem 7 to the pair (S1, S∞) we obtain (note that S1 ⊂ S∞).

Theorem 12. Let {Tm}m∈N ⊂ S1, T ∈ S1, then

Tm
S1→ T

if and only if

sup
m∈N

‖Tm‖S1
<∞, lim

k→∞
sup
m∈N

{ ∞∑
n=k

sn(Tm)

}
= 0 and lim

m→∞
νn(Tm−T ) = 0, n ≥ 1.
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We can also apply our method in a slightly more general setting.
Our basic reference in what follows is [19].
Let H a Hilbert space, A a ring of operators on H. A gage on A is a mapping

m : {projections of A} → R+ such that

(1) m(P ) > 0 if P 6= 0, m(0) = 0
(2) m(∪αPα) =

∑
α Pα if PαPβ = 0, α 6= β

(3) m(UPU−1) = m(P ) if U−1 = U∗

(4) every projection in A is
⋃

of m−finite projections.

The triple Γ = (H,A,m) is called a gage space. Given a gage space Γ, we define
the Lp = Lp(Γ), 1 ≤ p ≤ ∞, (non-commutative Lp spaces) by the condition

‖T‖Lp <∞,

where, if (T ∗ ◦ T )1/2 has spectral representation
∫∞

0
λdP (λ), then

‖T‖Lp =

(∫ ∞
0

λpdm(P (λ))

)1/p

.

We can also define L0 with the norm ‖T‖L0 = m(supp T ) where supp T is the
smallest projection P ∈ A such that PT = T. Let

T ?(t) = E(t, T ;L0, L∞) = inf {‖T − S‖L∞ : ‖S‖L0 ≤ t} .
Note that

(T1 + T2)
?

(t) ≤ T ?1 (t/2) + T ?2 (t/2),

Furthermore t→ T ?(t) is the inverse of the function λ→ m(P (λ)), where P (λ) is
the spectral resolution of (T ∗ ◦ T )1/2, and we have

K(t, T ;L1, L∞) =

∫ t

0

T ?(s)ds.

Obviously

lim
t→0

K(t, T ;L1, L∞) = 0 and lim
t→∞

K(t, T ;L1, L∞) =

∫ ∞
0

T ?(s)ds = ‖T‖L1 .

A direct application of Theorem 7 yields

Theorem 13. Let {Tn}n∈N ⊂ L1(Γ), T ∈ L1(Γ) then

Tn
L1(Γ)→ T

if and only if

lim
t→0

sup
n∈N

∫ t

0

T ?n(s)ds = 0, lim
t→∞

sup
n∈N

∫ ∞
t

T ?n(s)ds = 0 and lim
n→∞

m(Pn(λ)) = 0, λ > 0,

where Pn(λ) is the spectral resolution of ((T − Tn)
∗ ◦ (T − Tn))1/2.

6.3. A version of Lebesgue-Vitali in the context of certain variational
problems. As a new application of the methods developed in this paper we now
prove convergence theorems in the context of the theory of variational problems
studied by Micchelli-Pinkus [14]. We start by reviewing the basic definitions of the
Michelli-Pinkus theory.

Let X be a normed space, let T be a compact Haussdorf space and let K ⊂ X,
be a convex subset. We consider a family of real valued functions Gt(x) = G(t, x),
x ∈ X, t ∈ T satisfying
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1

sup
t∈T
|G(t, x)| <∞, x ∈ X.

2 For each t ∈ T,

x→ Gt(x) is convex on K.

3 For any given x, y ∈ K such that G(t, x) < G(t, y) ∀t ∈ T, ∃c > 0 such
that

0 < c ≤ G(t, y)−G(t, x), t ∈ T.
Let us say that x0 ∈ K is a best G−approximation from K if @x ∈ K such

that

G(t, x) < G(t, x0),∀t ∈ T.
Then it is shown in [14] that x0 ∈ K is a best G−approximation if and only if
there exists a nonnegative nontrivial linear functional L on the space B(T ) of real
valued bounded functions defined on T , such that

L(G(., x0)) = min
x∈K

L(G(., x)).

This result reduces G−approximation to minimization of a convex function (namely
L(G(., x))).

If T = {0, 1} then we only have two functionals G1 and G2, say. In this case
to find the best G− approximation is equivalent to the minimization problem

inf{σ1G1(x) + σ2G2(x), σi ≥ 0, i = 1, 2, σ1 + σ2 = 1}.

This leads directly to the definition

(6.2) (G1 +G2) (σ) := inf
x∈K
{G1(x) + σG2(x)}, σ > 0,

as well as the functionals

(6.3) (G1/G2) (σ) := inf
x∈K
{G1(x) : G2(x) ≤ σ},

where σ > µ(G2) = inf
x∈K

G2(x), and

(6.4) (G2/G1) (σ) := inf
x∈K
{G2(x) : G1(x) ≤ σ},

where σ > µ(G1) = inf
x∈K

G1(x).

We can also define these functionals at the left endpoints of their domain of
definition by considering right-limits, i.e.

µ [G1 +G2] = lim
σ→0+

(G1 +G2) (σ) ; µ [G1;G2] = lim
σ→µ(G2)+

(G1/G2) (σ)

(similarly we define µ [G2;G1]).
When thinking about the correspondence with interpolation theory we should

keep in mind that if we fix a ∈ X, and if ‖·‖2 is another norm defined on X, then
letting

G1(x) = ‖a− x‖X , G2(x) = ‖x‖2
we shall be in the usual setting of interpolation theory in which case we recover the
K and E−functionals.

It will be convenient also to assume that G1, G2 are bounded below, so that
without loss one may assume that both functionals are nonnegative.
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Now to these functionals we associate a Gagliardo diagram

(6.5) Γ =
{

(y1, y2) ∈ R2 : Gi(x) ≤ yi, i = 1, 2, for some x ∈ K
}
.

In the next Lemma we collect results from [14] showing that the behavior of
these functionals is almost identical to the behavior of the E −K−functionals of
interpolation theory.

Lemma 6. ([14]-Theorem 2.2, Proposition 2.3)

(1) (G1/G2) (σ) is decreasing convex on its domain of definition and contin-
uous on the interior.

(2) (G1/G2) (σ) = µ(G1) if σ > µ [G2;G1] .
(3) (G2/G1) ((G1/G2) (σ)) = σ for σ ∈ (µ (G2) , µ [G2;G1]) .
(4) (G1 +G2) (σ) = inf

t>µ(G1)
(t+ σ (G2/G1) (t)) = inf

t>µ(G2)
(tσ + (G1/G2) (t)).

(5) For t > µ (G1)

(G2/G1)(t) = sup
σ>0

(
(G1 +G2) (σ)− t

σ

)
.

(6) If µ (G2) = 0

(G1/G2)(t) = sup
σ>0

((G1 +G2) (σ)− σt) .

(7) (G1 + G2) (σ) is a increasing continuous concave function, (G1+G2)(σ)
σ is

decreasing. Furthermore if there exists x∗ ∈ K such that G2(x∗) = 0,
then (G1 +G2) (σ) is bounded.

(8) µ [G1 +G2] = lim
σ→0+

(G1+G2) (σ) = µ (G1) and lim
σ→∞

(G1+G2)(σ)
σ = µ (G2) .

Proof. Except for 6 all other statements are contained in ([14]-Theorem 2.2,
and Proposition 2.3). To see 6 using the second equality in 4, (3.12) and the fact
that (G1/G2) is convex, we see that

sup
σ>0

(
inf
s>0

(sσ + (G1/G2) (s))− σt
)

=
(

(G1/G2)
∇
)4

(t) = (G1/G2) (t).

�

In what follows we assume that

(1) (G1/G2) (σ) and (G2/G1) (σ) are finite.
(2) ∃x∗ ∈ K such that G2(x∗) = 0, (this condition implies that G1 +G2 and

G1/G2 are well defined on [0,∞)).

In this context we have a perfect analogue of (3.5)-(3.8)

Lemma 7. The following relations hold

(6.6) σ = (G1/G2)
′
(s); (G1 +G2) (σ) = (G1/G2) (σ)− σ (G1/G2)

′
(s).

(6.7) s = (G1 +G2)′(σ); (G1/G2) (s) = (G1 +G2)(σ)− s(G1 +G2)′(σ).

We can give a meaning to (6.6) and (6.7) even when the derivative does not ex-
ist using a suitable values between the left and right derivative of (G1/G2) and
(G1 +G2) . In particular (G1 +G2)′ and − (G1/G2)

′
are inverse to each other.
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Proof. Note that (6.6) and (6.7) will follow from (3.5) and (3.8) (cf. [11]
and [13]) if we can prove that there exists a pair A = (A0, A1) such that for some
g ∈ A0 +A1 and ∀σ > 0

(G1 +G2) (σ) = K(σ, g;A) and (G1/G2) (σ) = Ẽ(σ, g;A).

This can be seen as follows. Since (G1 +G2) is concave, and the K−functional for
the pair (L∞, L∞( 1

t )) reproduces concave functions (cf. [3] prop. 3.1.17), we have

(G1 +G2) (σ) = K

(
σ, (G1 +G2);L∞, L∞

(
1

t

))
.

Moreover,

Ẽ

(
σ, (G1 +G2);L∞, L∞

(
1

t

))
= sup

s>0
((G1 +G2)(s)− σs)

= (G1/G2)(σ) (by Lemma 6-6).

�

If we combine the previous Lemma with Theorem 5 we get

Theorem 14. Let {Gn1}n∈N , G2 be convex nonnegative functions on a subset
K of a given linear space X. Suppose that ∃x∗ ∈ K such that G2(x∗) = 0, and for
all n ∈ N inf

x∈K
{Gn1 (x) : G2(x) ≤ σ} is well defined. Then if 0 < σ0 <∞,

(1)

lim
σ→0

sup
n∈N

[(Gn1 +G2) (σ)− µ(Gn1 )] = 0

lim
n→∞

−(Gn1/G2)′ (σ) = 0, ∀σ > 0

⇒ lim
n→∞

[(Gn1 +G2) (σ0)− µ(Gn1 )] = 0

(2) lim
n→∞

[(Gn1 ) (x∗)− µ(Gn1 )] = 0⇒

 lim
σ→0

sup
n∈N

[(Gn1 +G2) (σ)− µ(Gn1 )] = 0

lim
n→∞

−(Gn1/G2)′ (σ) = 0, ∀σ > 0

(3) If there exists σ∗ > 0 such that (Gn1 +G2) (σ) = (Gn1 +G2) (σ∗) ∀σ ≥ σ∗
then if 0 < σ0 ≤ σ∗,

lim
n→∞

[(Gn1 +G2) (σ0)− µ(Gn1 )] = 0⇔

 lim
σ→0

sup
n∈N

[(Gn1 +G2) (σ)− µ(Gn1 )] = 0

lim
n→∞

−(Gn1/G2)′ (σ) = 0, ∀σ ∈ (0, σ∗)
.

Before outlining the proof we discuss a few examples.

(1) Let X = (X0, X1) be a pair, and let {an}n∈N ⊂ X0, a ∈ X0, K = X0+X1,
Gn1 (x) = ‖(an − a)− x‖X0

and G2(x) = ‖x‖X1
then (Gn1 + G2) (σ) =

K(σ, an − a;X) and (Gn1/G2) (σ) = Ẽ(σ, an − a;X). Moreover, in this
case x∗ = 0, since

G2(0) = ‖0‖X1
= 0,

then by Lemma 6-8,

µ(Gn1 ) = lim
σ→0

(Gn1 +G2) (σ) = lim
σ→0

K(σ, an − a;X)

where

µ(Gn1 ) = inf
x∈X1

‖(an − a)− x‖X0
= d(an − a,X0 ∩X1

X0
)
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(here d ≡distance), and

(Gn1 +G2) (σ) ≤ ‖an − a‖X0
= (Gn1 ) (0) .

Then the right hand side of 1 is equivalent to

lim
n→∞

[
K(σ0, an − a)− d(an − a,X0 ∩X1

X0
)
]

= 0,

while the left hand side of 2 is equivalent to

lim
n→∞

[
‖an − a‖X0

− d(an − a,X0 ∩X1
X0

)
]

= 0.

(2) If the pair (X0, X1) is ordered (in which case can take K = X1) then

(Gn1 +G2) (σ) = ‖an − a‖X0
= (Gn1 ) (0) , ∀σ ≥ 1

and now 1 and 2 are equivalent.

(3) If the pair (X0, X1) is ordered and regular then d(an−a,X0 ∩X1
X0

) = 0,
and in this case the result includes Theorem 5.

(4) In the setting of Micchelli-Pinkus (cf. [14] chapter 3) we can also consider
Gn1 (g) = ‖f − T ∗ng‖X∗ and G2(g) = ‖g‖Y ∗ .

Proof. The proof is a small modification of the proof of Theorem 5. We
indicate briefly the changes needed leaving the details to the interested reader.

1. For a fixed 0 < σ0 <∞ we write

(Gn1 +G2) (σ0)− µ(Gn1 ) =

∫ σ0

0

(Gn1 +G2)′(ξ)dξ.

Now we finish as in Theorem 5.
To see 2 we apply Lemma 7 to get

sup
σ

[−σ(Gn1/G2)′ (σ)] = sup
σ

[
σ (Gn1 +G2)

′
(σ)
]

≤ sup
σ

∫ σ

0

(Gn1 +G2)
′
(ξ)dξ (since (Gn1 +G2)′ decreases)

≤ sup
σ

[(Gn1 +G2) (σ)− µ(Gn1 )]

≤ (Gn1 ) (x∗)− µ(Gn1 ) (since (Gn1 +G2) (σ) ≤ (Gn1 ) (x∗) ).

We may now continue as in Theorem 5. �
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