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Continuous-time random walks and traveling fronts

Sergei FedotoVvand VicencMéndeZ
!Department of Mathematics, UMIST — University of Manchester Institute Science and Technology,
Manchester M60 1QD, United Kingdom
2Departament de Medicina, Universitat Internacional de Catalunya, c./Gomera s/n, 08190-Sant Cugat delBételona, Spain
(Received 6 May 2002; published 18 September 2002

We present a geometric approach to the problem of propagating fronts into an unstable state, valid for an
arbitrary continuous-time random walk with a Fisher—Kolmogorov-Petrovski-Piskunov growth/reaction rate.
We derive an integral Hamilton-Jacobi type equation for the action functional determining the position of
reaction front and its speed. Our method does not rely on the explicit derivation of a differential equation for
the density of particles. In particular, we obtain explicit formula for the propagation speed for the case of
anomalous transport involving non-Markovian random processes.
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Recently there has been considerable effort to find the rate Let us introduce thenesoscopiconcentratiom(t,x) of
at which traveling waves propagate into a linearly unstableparticles performing a continuous random walk. The com-
state[1-6]. The main reason for this is that a variety of plete description ofnesoscopidransport processes is given
physical, chemical, and biological phenomena can be exby the joint probability densityb(s,z) of making a jump of
plained in terms of the propagation of local perturbationdengthzin the time intervaks to s+ds[15]. We assume that
into generically unstable states. Examples include the spredfe local growth rate of these particles Fisher—Kolmogorov-
of epidemics[7], population dispersiori8,9], combustion Petrovski-PiskunoVFisher-KPP type[1,23,24, that is,
waves[10], magnetic front§11], etc. However, most of the
work has focused on finding the traveling wave solution for U(ex)nf(n), maxf(n)=f(0), f(1)=0, (1)
a given partial differential, integrodifferential, or difference o=n=1
equation[12]. A comprehensive review of up-to-date meth-

ods can be found in Ref5]. . where the growth rate parametdfex) is a slowly varying
It has been found recentfy13] that themacroscopicdy- function of the space coordinakewith ¢ being a small pa-
namics of propagating fronts are dependent on the choice (?gmeter

the underlying rgndom walk mo'del for tmeesoscopluans— The governing equation fan(t,x) can be written in the
port process. Since the dynamics of fronts are not universgj [15,16
and depend on statistical characteristics of underlyiggo-
scopicrandom processes, it is an important problem to find
the universalrules relating both levels of description. The
aim of this paper is to address this problem.

Most studies involving expliciesoscopialescriptions
of particle transport, so far, have concerned systems with +U(sx)ft\If(s)n(t—s,x)f(n(t—s,x))ds, )
additional simplifying features regarding the random walk, 0
for example, a Markovian character of random processes,
and other as§umpt|on@ee, for 'example, the reviepd]. . whereW (1) is the survival probability that can be written as
Recently, a simple non-Markovian model has been Cons'df'ollows [15]:
ered[14]. Here we are interested in exploring the physical '
properties of those systems of particles which react and dis-
perse according to a general continuous-time random walk t *
(CTRW) [15,16|. During the last two decades CTRW theory Y(t)=1- fo y(s)ds,  §(s)= fﬁwCI)(s,z)dz. (3
has been used as a general and physically based approach to
quantify transport. It has been applied to semiconductors
[17], turbulent diffusion[18], geological material§19],  Here ¥(s) is the waiting time probability density functioin
econophysicg20], and many other¢see the review21]). (PDPF) that plays a very important role in what follows. Re-
However, it is well known that when dispersal and growth/call that f{y(s)ds is the probability that at least one jump is
reaction are coupled processes there may exist travelingiade in the interval (0). Equation(2) describes the balance
wave front solutions. Recent studies have addressed the Twf particles at the positiow at timet. The first term on the
ing conditions for pattern formation in CTRW with growth/ right-hand side of Eq(2) represents the number of particles
reaction[22]. In this paper we present a geometric approachremaining at their initial positiox up to timet. The second
to the problem of propagating waves, derived fromsos- term gives the number of particles arriving»atip to timet
copicprinciples and valid foarbitrary random walk models. from positionz and times and the last term is a production

n(t,x)=‘l’(t)n(0,x)+ftfm d(s,z)n(t—s,x—2z)dzds
0J —>

1063-651X/2002/6€3)/0301024)/$20.00 66 030102-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

SERGEI FEDOTOV AND VICENCMENDEZ PHYSICAL REVIEW E66, 030102ZR) (2002

term due to growth(1). To ensure an evolution with the providedG(t,x)>0. This equation is the main result of our

minimal propagation speed we specify the frontlike initial paper. It can be regarded as the generalized Hamilton-Jacobi

condition equation for the action functionab(t,x) determining the
position of a reaction front. Recall that the equation

1, x=<0 @) G(t,x(t))=0 gives the position of the fromt(t) and the

0, x>0. propagation rateu=dx/dt. Until now, no approximations
regarding the random walk have been used; this equation is

We assume that after a long enough time there exists @xactin the limit e —0 and valid forarbitrary CTRW with

traveling wave solution to the integral equati@®) with the  Fisher-KPP growth rates.

initial condition (4). The main problem is to find the rateat Equation(8) can be rewritten in a very useful form in-

which this wave propagates. In this paper we develop &olving the moment generating function for a CTRW. Let us

Hamilton-Jacobi approach to this problem valid for a generalntroduce some new notation, namely, the Hamiltonian func-

CTRW with a Fisher-KPP growth raté). The starting point  tion H and the generalized momentym

for the geometric description of wave propagation is the hy-

perbolic scaling procedutte—t/e, x—Xx/e and the represen- aG G

tation of the rescaled concentratiofi(t,x) =n(t/e,x/&) in H=— St P ©)

the WKB form

n(0x)=

then by using the definitions of the moment generating func-
), G*(tx)=0, (5 Uons

ns(t,x)zex% _S (:'X)

where the action functionab®, describing the logarithmic dAD(H,p)=f f d(s,z)e "SeP*dzds
asymptotic form of the concentration field, has to be found. 0 ==

It follows from Eq. (5) that, as long as the functio@(t,x) .

=IimHOGS(t,x) is positive, the rescaled field®(t,x)—0 B(H)= foﬂl/f(s)estdS- (10)

ase—0. The boundary of the set whe@(t,x)>0 can be
regarded as a reaction front. Therefore, we may argue th
the reaction front position(t) can be determined from the
equationG(t,x(t))=0. The justification of this procedure
for relatively simple reaction-diffusion systems can be found A U(x) .
in Refs.[23,24]. 1-®(H,p)— ——[1—¥(H)]=0. (11
Now we are in a position to derive the equation for the H
function G(t,x). Substitution of Eq.(5) into the rescaled
equation forn®(t,x) gives the equation fo&°(t,x),

1_jt/sJOC @(S,Z)exr{—Gs(t—ss,x—sz)+Gs(t,x)
0 —

€

%quation(S) can be rewritten as an equation for the Hamil-
tonian functionH,

By combining Egs(9) and (11) we arrive at the Hamilton-
Jacobi type equation written in terms of the moment gener-
ating functions of the underlying CTRW,

-

aG

E +U(x)

& dG dG
at " ox

te F{—G“’(t—es,x)wLGg(t,X)
X dzds-U(x) . W(s)ex

]

f(eC%le) dgm The solutionG has to be chosen in a such way tlht=
xf(e )ds=0. (6) —dG/at is the root of Eq.(11) with the largest real part. It

Here we have used the condition that the action functiona?hOUId b.e noted_that since the parameters of(Endo not
G*(t,x)— ast—0 for x>0. Now let us derive the equa- involve time explicitly, we can conclude that the correspond-

tion for G(t,x)=lim _G?®(t,x) by considering the limit ing Hami_ltonian system is copgervgtive, ththE{,p,x)= E.
) ) e—0 . ) . If the jump length and waiting time are independent ran-
—0. Since lim _ f(exp(~=G/¢))=1 providedG*(t,X)>0  dom variables we can write the moment generating function

it follows from Eq. (6) that the limiting function & (H,p) in the decoupled form
G(t,x)=—lime Inn®(t,x) (7) 3 _7 5
m b (H,p)=J(H) (p), (13

obeys the nonlinear integral equation where

1_JWJ°° B (s,2)e (7GIMseliGIMzd7ds— U (x) Y(H)=[qi(s)exp(—Hs)ds,
0 — o

. B(p)=["..p(z)exp(p2)dz,
<

S
1- J Y(z)dz|e” (C/Msds=0, (8)
0

andp(z) is the jump PDF.
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We may consider several examples. First, let us look ap=f(H), wheref(H)=[27(H—U)(H7)? Y%~ . This,
the classical case when the waiting time pdf is of exponentialogether with Eq(20), gives the equation foH, namely, 1
form ¥ (t)=7 texp(t/7) and the jump PDF is Gaussian =Hd In f(H)/dH, the solution of which isH=U(3—y)(2

p(2)=(o\2m) " ‘exp(-Z/20?). Then — )L, From Eq.(20) we readily obtain an explicit expres-
1 sion foru,
P(H) 7R d(p)=1+0p“/2, (14)

and the Hamilton-Jacobi equation takes a classical form cor- U= v UAL- (23 @ N2(p_ \)~1+72 (97
responding to the Fisher-KPP-equati@3,24 T\/E( 7 3= 2=y - (@Y

G  o?[dG)\?

——+t—| 57| tUX=0, (15) . .

gt 7\ X For the casey=1, Eq.(21) is in agreement with the corre-

sponding classical expression=2(DU)*? where D
= ¢/ 7 is the diffusion coefficient. In the absence of reaction
(U=0), the mean squared displacemé@vSD) of particles

+U(x)=0. (16) grows ag” so that the physical meaning of the expongnis

clear; for a fixed time, the MSD grows monotonically with

Now let us consider a long-tailetLevy) waiting time - It means that the intensity of transport increases with

distribution (t) with the Laplace transforrfiL6] Ong_ can think' ofy as a measure of the tail Ier_wgth qf the
waiting time distributiony(t) (17). When the waiting time

PDF has a long tail it is expected that the mean rate of jumps
m, 0<y=<1l. (17) s lower. That is, waiting time PDF with a long tail decrease

the rate of the spread of the particles and therefore the speed
In this case we have a class of CTRW that are non®f the front, because some particles have long rests before

Markovian and lead to slow anomalous diffusion. The denStarting the following jump. As a result, the speed of the
sity (t) behaves lika~(**1) for larget, and its expectation front, when reaction is present, should also be a monotoni-

diverges when & y<1. If the moment generating function cally increasing function of, thatis,du/dy>0. This ph¥5i'
for the jump PDF ish(p)=1+ o2p?/2, then Eq.(12) takes cal condition, applied to Eq(21), yields U<U =7 (2

while for a generap(z) we have[13]

G 1
_J’__

- - J' eZ(ﬁG/ﬁX)p(z)d 7—1

—o0

P(H)=

the form of the anomalous Hamilton-Jacobi equation —7)/(3—7) and therefore the reaction rate cannot be arbi-
trarily large. The meaning of this condition on the reaction
G |7 G\t o?[4G)\? rate is the same that one can obtained for the hyperbolic
(_ ET> _U(X)T< - ET) Y &) - reaction-diffusion equationsee, for example, Ref§3—-6]).

(18) Moreover,

In a similar fashion one can write the time-fractional

Hamilton-Jacobi equation for the case in which the waiting D [3—y
density(t) is stable with the index of stability. The cor- U<Uma= \EVT'
responding Laplace transform ig(H)=exd —(H7)"] [15].

The solution of all the Hamilton-Jacobi equatidi®), (15),

(18} can be written as It should be noted that, in general, the rate of the propa-

t gationu depends on the explicit behavior of the initial con-
j L(x'(8))ds:x(0)=x,x(t)=0;, (19  dition n(0x) asx—o [1]. In this paper we have considered
0 only the frontlike initial condition(4) for which formulas
_ . : : 20) gives the lower boundary of possible propagation
hereL(q) = —H the L ted : dary o .
aitﬁrli (@) =max{pa-H(p)] is the Lagrangian associated speeds. The Hamilton-Jacobi technique can be easily adopted
: to the nonzero initial conditions of the fornm®(0x)

G(t,x)=min[
x(+)

When the growth rat& is independent of the coordinate

x,G(t,x) corresponds to the action of a free partickEt ~ — €XH~Go(x)/e] (x=0) for which an infinite set of propa-
+px. The propagation rate can then be founfs,13 from  9ation speeds might exist.
three equations: Eq11) and In summary, a Hamilton-Jacobi type equation which de-
scribes themacroscopicdynamics of fronts forarbitrary
dH CTRW with growth/reaction of Fisher-KPP type has been
U= 9p pu=H(p). (20 gerived in terms of thenesoscopigroperties of the motion

of the particles. These properties are related to the probabil-
It turns out that for the long-tailed waiting time distribution ity density functions of jump length and waiting times. We
(17) the propagation rate can be found exactly. From Eq. have derived amxactexpression for the speed of propagat-
(18) we obtain the momentumin terms of the Hamiltonian ing fronts for anomalous transport involving non-Markovian
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random processes. We have shown, in this case, that there This work has been partially funded by the CICYT of the
exists an upper bound for theacroscopigarameters, such MCyT under Grant No. BFM 2000-035)/.M.) and by the
as the reaction rate) and the speed of the front, which  Generalitat de Catalunya under Grant No. SGR-2001-00186
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