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Abstract
In the present paper we will prove, under the assumption that the Soulé
regulator is not zero, that the predicted p-valuations for the L-function
L(E",k +2) for k > 0 coming from the Bloch-Kato conjecture are true,
where ET is an elliptic curve defined over Q with complex multiplication
Ok the ring of integers of Endg(E™ xq Q) ® Q.

1 Introduction

In the Bloch-Kato paper [2] is presented a conjecture relating special values
of the L-function of a pure motive or more generally a motivic pair of a va-
rietyin terms of Tamagama mesures coming from exponential maps of Galois
representations of the motivic pair. After a reciprocity law (sketching in Perrin-
Rieu-Fontain paper [7]) the Bloch-Kato conjecture is rewrite in terms of the
values of the Deligne regulator (Beilinson conjecture) and Soulé regulator [9)].
This last conjecture relates the value of L-function to the construction of a space
inside K-theory and the computacion of the Deligne and Soule regulator (for
precise estatement see next section).

There are only basically two cases that is can be proved. The first correspon to
the trivial motive that it corresponds the Riemann zeta function (see [2]6). The
second knowing case is basically for elliptic curves with complex multiplication
in some particular case. Bloch-Kato in [2] proved the local Bloch-Kato conjec-
ture for the values of the L-function of an elliptic curve with CM Ok that is
defined over QQ for regular primes evaluated for s = 2. In an actual work Kings
[11] proved the same result for an elliptic curve defined over the quadratic field
of the field of endomorphism of the CM elliptic curve, but without hypothesis of
regularity. Then the paper proves how with these result one can take the hypote-
sis of regularity on primes and comprove the conjecture for all the values k + 2
with k > 0, with the hypothesis that the Soulé regulator do not kill our element.
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2 The Tamagama number conjecture (d’apres
Kato) and the main theorem

The section will give the formulation of the local Tamagama number conjecture
in the formulation of Kato [9],[10]. We review only for our proposes.

Let X/K be a smooth proper variety over a number fiel K with ring of integers
Ok. Fix integers m > 0 and r such that m —2r < —3 and r > inf(m, dim(X)).
Let p be a prime number not equal to 2. Denote by S the set of finite primes
of K lying over p or where X has bad reduction. Write Og = Ok|[1/S]. Define
the Gal(K /K) — modules:

Vp = HQ(XK XK K7 Qp(’l“)>
Ty = HJ (XK XK K, Zp(r))
Let j : K — SpecOg and define the p-adic realitations to be
Hy, = Hy(Os, j:Tp)

Write
Hh,Z = H"

sing

(X xqC, (2mi)"*Z)*"

where + denotes the fixed part under Gal(C/R) of the singular cohomology of
X, where the galois group acts on C and on (2mi)"~!. Let

Hy = Koy 1(X) 2 Q)M

be the r-th Adams eigenspace of the 2r —m — 1-th Quillen K-theory of X. There
are regulator maps due to Beilinson and Soulé:

rp:Hy ®R — Hpz ®7R [1]
Tp: Hy ®q Qp — H; ®z, Qp [14]
Define the local Euler factors for a prime p{p in Ok
Py(Vp, s) :=detg, (1 — FryNp~*|V,*)

be the characteristic polynomial of the geometric Frobenius Fr, at p on the
invariants by the inertia group at p in V,. For p | p

PP(VP’ S) = det@p(l - wp_le_s‘Dcris(Vp))

where D..is(V,) = (V, ®q, Bcris)cal(@/(@“ and v, is the arithmetic Frobenius.
Define the L-function of X as

Ls(Vp,s) = H Pp(%vs)_l'
pEsS

independent of the choise of p. Let V¥ the dual Galois module.



Conjecture 2.1. ([10]) Let p # 2, r, m be as above and let S be the set of
places where X has bad reduction or which lie over p. Assume that

P,(V(1),0) #0
for allp € S and that Ls(V, (1), s) has an analytic continuation to all C, then:
1. The maps rp and r, are isomorphisms and H]f is finite.
2. dimg(Hp z) = ords=oLs(V, (1), s) write this number .

3. Let n € detz(Hyz) be a Z-basis. There is an element § € detq(Hpr) such
that

TD(S) = (lims—>0571LS(Vp*(1)v 5))77

(Beilinson conjecture)

4. Consider r,(€) € detq, (H)®z,Qp). Then ry(€) is a basis of the Z,-lattice
detz, (RT(Os,T,)) "

- (dety, (HY) : 1p(€)Z,y) = #(HZ) = detz, (H?)

Remark 2.2. The assumption in the conjecture is true for abelian varieties
with CM.

As our limited knowledge of K-theory, we take a weak version of the conjec-
ture,

Conjecture 2.3. ([11]) There is a subspace H{3™*" in Hys such that:
1. rp and ry restricted to H{3"**" are isomorphisms and Hg 18 finite.
2. same as 2) in 2.1.

3. There is an element & € detg(HS3"'") such that
rp(€) = (limsos ™' Ls(Vy (1), ).
4. The element r,(§) is a basis of the Z,-lattice

detz, (RT(0g,T,)) " C detg, (RL(Os,V,)[-1])

We are going to state the main result of the paper. For this we will fix our
representation of motive that we will prove some part of the conjecture 2.3. We
take X = ET an elliptic curve with CM O where K is a quadratic field, but
we supose E7 is defined over Q. We can consider then E := ET xg K elliptic
curve with CM Og. Let us then denote by

YAy - K*CC”

the CM-character or Serre-Tate character of E and let f be its conductor.

Fix a prime number p. In our situation S is the set of primes in K dividing
Normpg qfp, for has E precisely bad reduction on the primes dividint § and for
ET* only difer with the ramified primes of K/Q with local L-serie is 1.
Remember the following result of Deuring;:



Theorem 2.4. (see [12]I] 10.5)

1. Let Ls(E1/Q,s) := Ls(Vp,s) be the L-series of the Galois representation
V, = HY(E' xgQ,Q,) then

Ls(E"/Q,s) = Ls(¢, s)

where Lg(¥,5) = [,y ﬁ

2. Let Ls(E/K,s) := Lg(V,,s) be the L-series of the Galois representation
V, = H'(E xk Q,Q,) then

LS(E/K? 3) = LS(¢7 8>2 = LS(¢7 S)LS($7 8)

Let T,ET = lim E™[p"] the Tate-module of E' a Gal(Q/Q)-module. Then
HY(E* xq Q,Z,) 2 T,E"(—1) Then for our situation, take m =1, r = k + 2
with £ > 0 and

H = HY (Spec(Z[1/5)), T,E(k + 1)) = H'(Q.T,E(k + 1))

Hyz =HL, (BT xqC,(2mi)"~'Z)"

sing
Hy = HY(ET k+2)
where H:,(X,7) = (K(X)2;—; ® Q). State then the main theorem:

Theorem 2.5. Let p # 2,3 and p ¢ Ngjof and k > 0. Then, there is a
submodul Ry C Hyy of rank 1 such that:

1. detzp (TD (Rw)) = Lg(i/), —k)detzp (Hh,Z) = LZ(EJr, —k)detzp (thz) m detzp (Hh,z®
R) and

2. If the map 7, is injective on Ry, then:

detz, (rp(Ry)) = detzp(RF(Spec(Z[l/S]),TpE+(k + 1)))_1.

Here L* (4, —k) = limg_,_y, LS(_’Z;}:).

Remark 2.6. The part 1) of the theorem is proven by Deninger in [5], Beilinson
conjecture for Hecke characters.

The part 2) for k =0 and regular primes p is proven by Bloch-Kato in [2]. See
the last section for more details and study of the injectivity condition on the
Soulé regulator.

The proof of the theorem will be completed in the following sections. The
idea is descend over £ the statement of the theorem of E proved over K by
Kings [11], see next section.



3 The Tamagama number conjecture for F(d’apres
Kings)
The point of work of our result is the following result of Kings:

Theorem 3.1 (Kings[11]). Write Oy := O ® Zy,. Let p # 2,3 and p { Nk of

and k > 0. Then there is an Ok submodul Ry C Hi;(E,k +2) of rank 1 such
that

1. deto, (rp(Ry) = L5 (4, —k)deto, (H (ExqC, (211)"Z) ) in deto, or(H (Exg
C, (2mi)"Z)T @ R).

2. If r, is injective in R, then

deto, (rp(Ry)) = deto, (RT(Os, T,E(k + 1)) 7.

For our proposes we go to review the element that generates the Kings Og-
subspace R~¢,, constructed by Deninger for proving the Beilinson conjecture [4]
and we will define our R, that will satisfies the conditions of theorem 2.5.

Fix an algebraic differential w € H°(E, Qg ) that we will suppose that lies in
HO(ET, Qp+/g). Let T its period lattice. We have

E*(C)=E(C) = C/T
z
z / w
0
with all the time a fixed embedding K C C. We have I' = aOg for some a € C*.

Let Z[E[f] \ O] the group of divisors with support in the f-torsion points defined
over K. Then Beilinson defines an Eisenstein symbol map

XYL B[\ 0] I3 (B 2k + 2)
and Deninger constructs a projector
Kar 2 HAFT2(E?RH 2k 4+ 9) — HY (B k +2)
Let K(f) = K(E[f]) the ray class field, and let f a generator of f. Then
Qf ey 'l
defines a divisor over K (f) take then
B:= Ngy/e (7))

Fix also a O generator v € H*(E(C),Z) where « is obtained by a = fv w.

Denote by 7 the O generator of HY(E xq C, (27i)kT1Z)* corresponding to
(27i)*~ under the isomorphism:

HY(E(C), (2mi)**17) = H'(E(C), (27i)*7Z).



Theorem 3.2 (Deninger [4][5]). Let 8 and n as above and define

e (_1\k—1 (2k + 1)! Lp(ﬂ’ —k’)*l
f = ( 1) 2k71 d](f)NK/ka

where L, (1, —k) is the Euler factor of ¢ at p evaluated at —k. Then

Karo E3711(8) € Hyy (B, k +2)

rp(&) = LE(, —k)n € HY(E x¢g C, (2mi)FHZ)*.
Moreover we can take n* a generator of H(Et xg C, (2mi)**1Z)* satysfiying
rp(§) = Lg(% —k)n*
Then is defined Ry, := EO C Hi,(E,k +2).

Definition 3.3. We have the norm map Hy,(E,k+2) — Hi,(E*, k+2) given
by the action of Fy such that § — %((5 + Fo0). Then define

Ry = Norm(Ry)
Corollary 3.4. With the above notation
ro(deta(Ry)) = Ly(E*/Q, —k)dets(H (E* (C), (27i)2)))
where S were the set of primes of Q dividing pNg /of-

Proof. Only note that Norm(§) satisies that rp(Norm(§)) = L5 (E*/Q, —k)nt
for good Galois descens in motivic cohomology, and taking determinants we
conclude. O

Remark 3.5. As the good Galois descent for the motivic cohomology ([4]) we
have constructed a one dimensional submodul in Hy,.

4 The Galois descent for the Soulé regulator

We concentrate in our situation. Denote by G = Gal(K/Q), consider the fol-
lowing Soulé Q,-regulator maps:

Tp,K : K2n—2(E)(n) ® Qp — Hl(GK7H1(E XK @7 Qp(n)))

rp  Kon—a(ET)™ ©Q, = H'(Go, H'(E* xqQ, Qy(n)))

with 2 < n, where G'1, means the Galois group Gal(L/L).
We have an action of G in both members of r, x we are goint to study if the
action is compatible with the descent of the regulator map. For this we rewiew
the construction of the higher regulator map. First of all there is a natural map
@1, between K-theory and continous étale theory see [14]

Lemma 4.1. The following diagram commutes with the norm maps:

K
K27L—2(E) () ® QP — Hgont(Ev @p (n))
4 {
K2n72(E+)(n) ®Q, — chont(E+’Qp(n))
bq



Proof. Ts consequence of [6] that says that the regulator is compatible with norm
maps, between K-theory and etale K-theory. O

Then to the definition of the p-adic regulator we note that given a Galois
covering X’ — X with group G’, we have a Hochschild-Serre spetral sequence
in the continous etale cohomology with

Egt cont(G/ Ht(X/ Qp( ))

converges to H..'* (G’ Q,(i)), using these for Gy = G’ and X' = F and X = E

cont
is defined the p-adic regulator 7, by (an the same for the natural elections for
Tp,Q):
0

cont( @p( )) — 1(GK’H1(EvQIJ(n)))

HZQ\/[(E’n)®QP cont( Qp( ))

H?(E, Qp(n))“*

where HZ2,,,(X,Qp(n))o = ker(HZ,,,(X,Qy(n)) " H2(X, Qy(n))) and 7 comes
from the HS-spectral sequence, and observe that n =k +2 > 2 in our situation
in particular we have H%(E,Q,(n))“% = 0 (is zero for n # 1).

Lemma 4.2. The following diagram commutes:

Tp, K .
Hy(En)@Q, —  HYK,H(E,Qy(n))
X !
Hy(EY,n)®Q, — H'(K ,H'(E,Qy(n)))°
p,Q

where the left vertical map correspons to the norm map and the right vertical
map to the corestriction map

Proof. First of all we note that H'(K, H'(E,Q,(n))) = H' (K, V,E(n+1)) and
as HY(K,V,ET(n+1)) = H'(K,V,E(n + 1)) we now that the restriction map
in the Gg-mod V,E*(n + 1) induces and isomorphism

HY(Q,V,B* (n + 1) = H' (K, H\(E,Q,(n)))¢ = H'(K,V,E(n+1))°

for be (#G,p) = 1.

Using the previous lemma we can concentrate only in the continuos etale coho-
mology and as the naturaly of the HS-spectral sequence and the fact that galois
recobrement of EV is factorized by E, E — E — E7 is proved the result. [

Then we obtain

Corollary 4.3. 7, (Ry) = rp i (Ry) =G E/Q



5 Relation between determinants

We will go to prove the second part of the main theorem 2.5. The first aim
of these section, suposing that r, is not zero in R, prove that we have the
determinant equality

detz, ((H, == H'(Spec(Z[1/S]), T,E* (k +1)))/rp0(Ry)) =

dety, (H, := H*(Spec(Z[1/5)), T,E* (k +1)).

The second aim will be to obtain the same equality without the hypotesis of the
injectivity of the Soulé regulator.

First of all we observe that H) = H*(Q,T,E" (k + 1)) using the result of Serre-
Tate and the action of inertia groups(see [8]). The same observation can be take
for H'(Spec(Ok[1/S]), TyE(k+1)) = H(K,T,E(k+1)). Then we can consider
T,ET(k + 1) as an Gg-module and then we have that H (K, T,E*(k + 1)) =
HY(K,T,E(k +1)). From the theorem 3.1 we have a comparation of the O,
determinants of H'(K,T,E*(k + 1)) and 7, x(R,), suposing that the Soule
regulator is not zero in £. Then coming from this situation we will deduce our
determinant comparision for ours H;,. First of all observe the following

Lemma 5.1. H (Q,T,E*(k+ 1)) = H (K, T,E(k + 1))Fal(K/Q=C

Proof. Is a clasical fact of cohomology of groups that when #G invertible in
T,E" (k + 1) then the restriction map gives an isomorphism for the invariants.
(see for example Prop 10 [3]), we suppose all the time p # 2. O

Observe that H (K, T,E* (k + 1)) are Op-modules and also has a G-action,
where the invariants for the last action is calculated in the last lemma. Moreover
O, = Ok ® Zy, has a G-action coming for acting by c ® 1 with 0 € G

Lemma 5.2. Let o; € H(K,T,E*(k + 1)) and § € O,, let 0 € G then we
have:
o(dey;) = o(d)o(a;)

Proof. Take F' a projective resolution of Z, over Z,Gg the action of o € G is
induced in the terms of complex

Home, (F, TpE+(k: +1)) = Homygro-1=cx (F, TpE+(k: +1))
by
flz— Uf(aflx)}

The action on T,E(k + 1) of O, correspon to multiplication by d for the canon-
ical isomorphism of CM elliptic curves E+[p"](Q) = Ok /p". Then taking a
representant of «; in Home, (F,T,E*(k+1)); that we will note with the same
name, then

o(dcy) x> o(6f(o )
as 0001 = § = o(8) we obtain the result. O

Take then M a Op-module and a Z,G-module that the G-action satisfies

a(rm) = o(r)o(m)



for all o, » and m where ¢ € G, r € R and m € M. Denote by MT =
M€ the fixed module for the G-action. Write O, = Z,[v/—D] where D is the
discriminant of K, for be p # 2. Writing for the following o € G \ 1 we obtain
the following decomposition as Z,-modules of M:

oc+1 1—0o

M= (——)Me(—

M
is clear M+ = (Z£2)M we denote by M~ = (152)M. Observe then v/—D sends
bijectivily M™ — M~ and also M~ — M™ for be (D,p) = 1.
Lemma 5.3. We have that the following morphism:
T Mt ®Zp Op — M
m* ® (a+bvV—D) = amt +bv/—Dm™
is an isomorphism of O,-modules
Proof. Define an map from M to M ® O, by
1
m=mt+m —»mtel+ —D\/fDm* RvV—-D

where m = m™ 4+ m™ correspon to the Z,-decomposition of M = M* + M~.
This last map is Op-lineal, and it defines the inverse of 7. O

Observe then that in this situation we have

det(gpM = (detzp (M+)) ®Z;, Op
then always we have deto, M = p? Oy, for some integer j, then it implies detz, (M 1) =
pZ, saying
deto, M NQ, = dethM+

Moreover consider a exact sequence of Op-moduls M; with the compatibility of
G-action of the ring and the modul

O—)Ml—)M2—>M2/M1—>O
then we have detop,(M2/M;) = deto,(Ma)deto, (M) then
deto, (My/My) = dety, (My /M) @ O,

for be O, flat over Z,.
Consider then the following equality from theorem 3.1:

deto, (H (K, TyE(k+1))/ry(Ry)) = deto, (H' (K, T,E(k+1))) /deto, (rp,x(Ry))

= deto, (H*(K,T,E(k +1)))

We now by the lemma 5.2 that all the Op-modules involucrated in the previous
equation are also G-modules with the compatibility with the action of O,, only
note for rp, x (Ry) comes from be a Op-submodul of H) that is Galois stable.



Corollary 5.4. With the hypotesis that r, k(&) # 0 we have
detzp (H; /7‘,;7@ (’Rw)) = detzp (Hg)
Proof. Only note that we have
H) = H' (K, T,E(k+1))* i=1,2

and

.0(Ry) =15,k (Ry) "
by corollary 4.3. O

We are now interested in the pure motive H?(E, k+ 2). We observe that we
will obtain our theorem 2.5 if we can see

detop']éw = detZPRw ®Zp Op

then will follow for the previous arguments our relation of determinants over
Zy, because the Op-determinant of RT'(Spec(Z[1/S],T,E*(k + 1)) comes from
the Z,-determinant.

For prove the equality of determinants in this subspace of motivic cohomology,
we only note that R, is a O,-module of rank 1, and there is on H?(E, k + 2)
an Z/2-action say F coming from complex conjugation in the second factor of
E* xg K that our generator is fix by F%, and F% acts by complex conjugation
on Oy, then we are in the situation of lemma 5.3 with o = F. For more detail
of these actions on the K-theory, see pag 153-155 in [5].

6 About the non-vanishing of the Soulé regula-
tor

This section wil be only a resum of the knowing conditions that are until now
known about the condition for the no-vanishing for the generator element of
Ry trought the Soulé regulator. In [11] is proved 7, i (§) is not zero proving
then that 7, is injective 7, if H?(Ok[1/5], T,E(k + 1)) is finite.Observe for our
particular case this vanishing will be enought for the injectivity of r, g on Ry
using the corollary 4.3.

About the finiteness of this galois group is a particular case of a conjecture of
Jansen [8] that afirms the finitenes of the latter group. Moreover in our situation
we have the following two results

Theorem 6.1. (/13] 1.5 proposition 3) For fixed p the group
H*(Ok[1/S], T,E(k + 1))
is finite for almost all k

And for a regular prime p (see [14] 3.3.1 for the definition) then
Theorem 6.2. ([14] 3.3.2, [15]cor.2,[8]lem.1) Let p a regular prime for E, then

H*(O[1/8], E[p™](k + 1)) = 0.
From this is obtain then that H?(Ok[1/S], T,E(k + 1)) is finite.

10



Then as a conclusion, we obtain for regular primes that r, g is injective over
R and then is no condition on the second part of theorem 2.5. When p is not
regular, for allmost all twists we obtain that r, g is injective and the condition
in theorem 2.5 is satisfied.
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