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Abstract

In the present paper we will prove, under the assumption that the Soulé
regulator is not zero, that the predicted p-valuations for the L-function
L(E+, k + 2) for k ≥ 0 coming from the Bloch-Kato conjecture are true,
where E+ is an elliptic curve defined over Q with complex multiplication
OK the ring of integers of EndQ(E+ ×Q Q)⊗Q.

1 Introduction

In the Bloch-Kato paper [2] is presented a conjecture relating special values
of the L-function of a pure motive or more generally a motivic pair of a va-
rietyin terms of Tamagama mesures coming from exponential maps of Galois
representations of the motivic pair. After a reciprocity law (sketching in Perrin-
Rieu-Fontain paper [7]) the Bloch-Kato conjecture is rewrite in terms of the
values of the Deligne regulator (Beilinson conjecture) and Soulè regulator [9].
This last conjecture relates the value of L-function to the construction of a space
inside K-theory and the computacion of the Deligne and Soule regulator (for
precise estatement see next section).
There are only basically two cases that is can be proved. The first correspon to
the trivial motive that it corresponds the Riemann zeta function (see [2]6). The
second knowing case is basically for elliptic curves with complex multiplication
in some particular case. Bloch-Kato in [2] proved the local Bloch-Kato conjec-
ture for the values of the L-function of an elliptic curve with CM OK that is
defined over Q for regular primes evaluated for s = 2. In an actual work Kings
[11] proved the same result for an elliptic curve defined over the quadratic field
of the field of endomorphism of the CM elliptic curve, but without hypothesis of
regularity. Then the paper proves how with these result one can take the hypote-
sis of regularity on primes and comprove the conjecture for all the values k + 2
with k ≥ 0, with the hypothesis that the Soulé regulator do not kill our element.
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2 The Tamagama number conjecture (d’après
Kato) and the main theorem

The section will give the formulation of the local Tamagama number conjecture
in the formulation of Kato [9],[10]. We review only for our proposes.
Let X/K be a smooth proper variety over a number fiel K with ring of integers
OK . Fix integers m ≥ 0 and r such that m−2r ≤ −3 and r > inf(m, dim(X)).
Let p be a prime number not equal to 2. Denote by S the set of finite primes
of K lying over p or where X has bad reduction. Write OS = OK [1/S]. Define
the Gal(K/K)−modules:

Vp := Hm
et (XK ×K K,Qp(r))

Tp := Hm
et (XK ×K K,Zp(r))

Let j : K → SpecOS and define the p-adic realitations to be

Hi
p := Hi

et(OS , j∗Tp)

Write
Hh,Z := Hm

sing(X ×Q C, (2πi)r−1Z)+

where + denotes the fixed part under Gal(C/R) of the singular cohomology of
X, where the galois group acts on C and on (2πi)r−1. Let

HM := (K2r−m−1(X)⊗Q)(r)

be the r-th Adams eigenspace of the 2r−m−1-th Quillen K-theory of X. There
are regulator maps due to Beilinson and Soulé:

rD : HM ⊗Q R→ Hh,Z ⊗Z R [1]

rp : HM ⊗Q Qp → H1
p ⊗Zp Qp [14]

Define the local Euler factors for a prime p - p in OK

Pp(Vp, s) := detQp(1− FrpNp−s|V Ipp )

be the characteristic polynomial of the geometric Frobenius Frp at p on the
invariants by the inertia group at p in Vp. For p | p

Pp(Vp, s) := detQp(1− ψ−1p Np−s|Dcris(Vp))

where Dcris(Vp) := (Vp⊗QpBcris)
Gal(Qp/Qp) and ψp is the arithmetic Frobenius.

Define the L-function of X as

LS(Vp, s) :=
∏
p/∈S

Pp(Vp, s)
−1.

independent of the choise of p. Let V ∗p the dual Galois module.
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Conjecture 2.1. ([10]) Let p 6= 2, r, m be as above and let S be the set of
places where X has bad reduction or which lie over p. Assume that

Pp(V ∗p (1), 0) 6= 0

for all p ∈ S and that LS(V ∗p (1), s) has an analytic continuation to all C, then:

1. The maps rD and rp are isomorphisms and H2
p is finite.

2. dimQ(Hh,Z) = ords=0LS(V ∗p (1), s) write this number l.

3. Let η ∈ detZ(Hh,Z) be a Z-basis. There is an element ξ ∈ detQ(HM ) such
that

rD(ξ) = (lims→0s
−lLS(V ∗p (1), s))η

(Beilinson conjecture)

4. Consider rp(ξ) ∈ detQp(H1
p⊗ZpQp). Then rp(ξ) is a basis of the Zp-lattice

detZp(RΓ(OS , Tp))−1

i.e.
[detZp(H1

p ) : rp(ξ)Zp] = #(H2
p ) = detZp(H2

p )

Remark 2.2. The assumption in the conjecture is true for abelian varieties
with CM.

As our limited knowledge of K-theory, we take a weak version of the conjec-
ture,

Conjecture 2.3. ([11]) There is a subspace Hconstr
M in HM such that:

1. rD and rp restricted to Hconstr
M are isomorphisms and H2

p is finite.

2. same as 2) in 2.1.

3. There is an element ξ ∈ detQ(Hconstr
M ) such that

rD(ξ) = (lims→0s
−lLS(V ∗p (1), s))η.

4. The element rp(ξ) is a basis of the Zp-lattice

detZp(RΓ(OS , Tp))−1 ⊂ detQp(RΓ(OS , Vp)[−1])

We are going to state the main result of the paper. For this we will fix our
representation of motive that we will prove some part of the conjecture 2.3. We
take X = E+ an elliptic curve with CM OK where K is a quadratic field, but
we supose E+ is defined over Q. We can consider then E := E+ ×Q K elliptic
curve with CM OK . Let us then denote by

ψ : A∗K → K∗ ⊂ C∗

the CM-character or Serre-Tate character of E and let f be its conductor.
Fix a prime number p. In our situation S is the set of primes in K dividing
NormK/Qfp, for has E precisely bad reduction on the primes dividint f and for
E+ only difer with the ramified primes of K/Q with local L-serie is 1.
Remember the following result of Deuring:
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Theorem 2.4. (see [12]II 10.5)

1. Let LS(E+/Q, s) := LS(Vp, s) be the L-series of the Galois representation
Vp := H1(E+ ×Q Q,Qp) then

LS(E+/Q, s) = LS(ψ, s)

where LS(ψ, s) =
∏

p-pf
1

1− ψp
Nps

2. Let LS(E/K, s) := LS(Vp, s) be the L-series of the Galois representation
Vp := H1(E ×K Q,Qp) then

LS(E/K, s) = LS(ψ, s)2 = LS(ψ, s)LS(ψ, s)

Let TpE
+ = lim←E

+[pn] the Tate-module of E+ aGal(Q/Q)-module. Then
H1(E+ ×Q Q,Zp) ∼= TpE

+(−1) Then for our situation, take m = 1, r = k + 2
with k ≥ 0 and

Hi
p = Hi(Spec(Z[1/S]), TpE(k + 1)) = Hi(Q, TpE(k + 1))

Hh,Z = H1
sing(E

+ ×Q C, (2πi)r−1Z)+

HM = H2
M (E+, k + 2)

where Hi
M (X, j) := (K(X)2j−i ⊗Q)(j). State then the main theorem:

Theorem 2.5. Let p 6= 2, 3 and p /∈ NK/Qf and k ≥ 0. Then, there is a
submodul Rψ ⊂ HM of rank 1 such that:

1. detZp(rD(Rψ)) ∼= L∗S(ψ,−k)detZp(Hh,Z) = L∗S(E+,−k)detZp(Hh,Z) in detZp(Hh,Z⊗
R) and

2. If the map rp is injective on Rψ then:

detZp(rp(Rψ)) ∼= detZp(RΓ(Spec(Z[1/S]), TpE
+(k + 1)))−1.

Here L∗(ψ,−k) = lims→−k
L(ψ,s)
s+k .

Remark 2.6. The part 1) of the theorem is proven by Deninger in [5], Beilinson
conjecture for Hecke characters.
The part 2) for k = 0 and regular primes p is proven by Bloch-Kato in [2]. See
the last section for more details and study of the injectivity condition on the
Soulé regulator.

The proof of the theorem will be completed in the following sections. The
idea is descend over E+ the statement of the theorem of E proved over K by
Kings [11], see next section.
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3 The Tamagama number conjecture for E(d’après
Kings)

The point of work of our result is the following result of Kings:

Theorem 3.1 (Kings[11]). Write Op := OK ⊗ Zp. Let p 6= 2, 3 and p - NK/Qf
and k ≥ 0. Then there is an OK submodul R̃ψ ⊂ H2

M (E, k + 2) of rank 1 such
that

1. detOK (rD(R̃ψ) ∼= L∗S(ψ,−k)detOK (H1(E×QC, (2πi)rZ)+) in detOK⊗R(H1(E×Q
C, (2πi)rZ)+ ⊗ R).

2. If rp is injective in R̃ψ then

detOp(rp(R̃ψ)) ∼= detOp(RΓ(OS , TpE(k + 1)))−1.

For our proposes we go to review the element that generates the Kings OK-
subspace R̃ψ, constructed by Deninger for proving the Beilinson conjecture [4]
and we will define our Rψ that will satisfies the conditions of theorem 2.5.
Fix an algebraic differential ω ∈ H0(E,ΩE/K) that we will suppose that lies in
H0(E+,ΩE+/Q). Let Γ its period lattice. We have

E+(C) = E(C)→ C/Γ

z 7→
∫ z

0

ω

with all the time a fixed embedding K ⊂ C. We have Γ = αOK for some α ∈ C∗.
Let Z[E[f]\O] the group of divisors with support in the f-torsion points defined
over K. Then Beilinson defines an Eisenstein symbol map

E2k+1
M : Z[E[f \ 0]]→ H2k+2

M (E2k+1, 2k + 2)

and Deninger constructs a projector

KM : H2k+2
M (E2k+1, 2k + 2)→ H2

M (E, k + 2)

Let K(f) = K(E[f]) the ray class field, and let f a generator of f. Then

Ωf−1 ∈ f−1Γ

defines a divisor over K(f) take then

β := NK(f)/K((Ωf−1)).

Fix also a OK generator γ ∈ H1(E(C),Z) where α is obtained by α =
∫
γ
ω.

Denote by η the OK generator of H1(E ×Q C, (2πi)k+1Z)+ corresponding to
(2πi)kγ under the isomorphism:

H1(E(C), (2πi)k+1Z) ∼= H1(E(C), (2πi)kZ).
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Theorem 3.2 (Deninger [4][5]). Let β and η as above and define

ξ := (−1)k−1
(2k + 1)!

2k−1
Lp(ψ,−k)−1

ψ(f)NK/Qfk
KM ◦ E2k+1

M (β) ∈ H2
M (E, k + 2)

where Lp(ψ,−k) is the Euler factor of ψ at p evaluated at −k. Then

rD(ξ) = L∗S(ψ,−k)η ∈ H1(E ×Q C, (2πi)k+1Z)+.

Moreover we can take η+ a generator of H1(E+ ×Q C, (2πi)k+1Z)+ satysfiying

rD(ξ) = L∗S(ψ,−k)η+

Then is defined R̃ψ := ξOK ⊂ H2
M (E, k + 2).

Definition 3.3. We have the norm map H2
M (E, k+2)→ H2

M (E+, k+2) given
by the action of F∞ such that δ 7→ 1

2 (δ + F∞δ). Then define

Rψ := Norm(R̃ψ)

Corollary 3.4. With the above notation

rD(detZ(Rψ)) = L∗S(E+/Q,−k)detZ(H1(E+(C), (2πi)kZ)))

where S were the set of primes of Q dividing pNK/Qf.

Proof. Only note that Norm(ξ) satisies that rD(Norm(ξ)) = L∗S(E+/Q,−k)η+

for good Galois descens in motivic cohomology, and taking determinants we
conclude.

Remark 3.5. As the good Galois descent for the motivic cohomology ([4]) we
have constructed a one dimensional submodul in HM .

4 The Galois descent for the Soulé regulator

We concentrate in our situation. Denote by G = Gal(K/Q), consider the fol-
lowing Soulé Qp-regulator maps:

rp,K : K2n−2(E)(n) ⊗Qp → H1(GK , H
1(E ×K Q,Qp(n)))

rp,Q : K2n−2(E+)(n) ⊗Qp → H1(GQ, H
1(E+ ×Q Q,Qp(n)))

with 2 < n, where GL means the Galois group Gal(L/L).
We have an action of G in both members of rp,K we are goint to study if the
action is compatible with the descent of the regulator map. For this we rewiew
the construction of the higher regulator map. First of all there is a natural map
φL between K-theory and continous étale theory see [14]

Lemma 4.1. The following diagram commutes with the norm maps:

φK
K2n−2(E)(n) ⊗Qp → H2

cont(E,Qp(n))
↓ ↓

K2n−2(E+)(n) ⊗Qp → H2
cont(E

+,Qp(n))
φQ
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Proof. Is consequence of [6] that says that the regulator is compatible with norm
maps, between K-theory and etale K-theory.

Then to the definition of the p-adic regulator we note that given a Galois
covering X ′ → X with group G′, we have a Hochschild-Serre spetral sequence
in the continous etale cohomology with

Est2 = Hs
cont(G

′, Ht(X ′;Qp(i))

converges to Hr+s
cont(G

′,Qp(i)), using these for GK = G′ and X ′ = E and X = E
is defined the p-adic regulator rp,K by (an the same for the natural elections for
rp,Q):

0

H2
cont(E,Qp(n))0

H2
cont(E,Qp(n))

H2(E,Qp(n))GK

H2
M (E,n)⊗Qp

π

rp,K

H1(GK , H
1(E,Qp(n)))

?

?

?

-

-

���
���

���
���:

where H2
cont(X,Qp(n))0 = ker(H2

cont(X,Qp(n)) res→ H2(X,Qp(n))) and π comes
from the HS-spectral sequence, and observe that n = k+ 2 ≥ 2 in our situation
in particular we have H2(E,Qp(n))GK = 0 (is zero for n 6= 1).

Lemma 4.2. The following diagram commutes:

rp,K
H2
M (E,n)⊗Qp → H1(K,H1(E,Qp(n)))

↓ ↓
H2
M (E+, n)⊗Qp → H1(K,H1(E,Qp(n)))G

rp,Q

where the left vertical map correspons to the norm map and the right vertical
map to the corestriction map

Proof. First of all we note that H1(K,H1(E,Qp(n))) = H1(K,VpE(n+1)) and
as H1(K,VpE

+(n+ 1)) = H1(K,VpE(n+ 1)) we now that the restriction map
in the GQ-mod VpE

+(n+ 1) induces and isomorphism

H1(Q, VpE+(n+ 1)) ∼= H1(K,H1(E,Qp(n)))G = H1(K,VpE(n+ 1))G

for be (#G, p) = 1.
Using the previous lemma we can concentrate only in the continuos etale coho-
mology and as the naturaly of the HS-spectral sequence and the fact that galois
recobrement of E+ is factorized by E, E → E → E+ is proved the result.

Then we obtain

Corollary 4.3. rp,Q(Rψ) = rp,K(R̃ψ)G=Gal(K/Q)
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5 Relation between determinants

We will go to prove the second part of the main theorem 2.5. The first aim
of these section, suposing that rp is not zero in Rψ prove that we have the
determinant equality

detZp((H1
p := H1(Spec(Z[1/S]), TpE

+(k + 1)))/rp,Q(Rψ)) =

detZp(H2
p := H2(Spec(Z[1/S]), TpE

+(k + 1)).

The second aim will be to obtain the same equality without the hypotesis of the
injectivity of the Soulé regulator.
First of all we observe that Hi

p = Hi(Q, TpE+(k+ 1)) using the result of Serre-
Tate and the action of inertia groups(see [8]). The same observation can be take
for Hi(Spec(OK [1/S]), TpE(k+1)) = Hi(K,TpE(k+1)). Then we can consider
TpE

+(k + 1) as an GK-module and then we have that Hi(K,TpE
+(k + 1)) =

Hi(K,TpE(k + 1)). From the theorem 3.1 we have a comparation of the Op
determinants of Hi(K,TpE

+(k + 1)) and rp,K(R̃ψ), suposing that the Soule
regulator is not zero in ξ. Then coming from this situation we will deduce our
determinant comparision for ours Hi

p. First of all observe the following

Lemma 5.1. Hi(Q, TpE+(k + 1)) = Hi(K,TpE(k + 1))Gal(K/Q)=G

Proof. Is a clasical fact of cohomology of groups that when #G invertible in
TpE

+(k + 1) then the restriction map gives an isomorphism for the invariants.
(see for example Prop 10 [3]), we suppose all the time p 6= 2.

Observe that Hi(K,TpE
+(k + 1)) are Op-modules and also has a G-action,

where the invariants for the last action is calculated in the last lemma. Moreover
Op = OK ⊗ Zp has a G-action coming for acting by σ ⊗ 1 with σ ∈ G

Lemma 5.2. Let αi ∈ Hi(K,TpE
+(k + 1)) and δ ∈ Op, let σ ∈ G then we

have:
σ(δαi) = σ(δ)σ(αi)

Proof. Take F a projective resolution of Zp over ZpGQ the action of σ ∈ G is
induced in the terms of complex

HomGK (F, TpE
+(k + 1))→ HomσGKσ−1=GK (F, TpE

+(k + 1))

by
f 7→ [x 7→ σf(σ−1x)]

The action on TpE(k+ 1) of Op correspon to multiplication by δ for the canon-
ical isomorphism of CM elliptic curves E+[pn](Q) ∼= OK/pn. Then taking a
representant of αi in HomGK (F, TpE

+(k+ 1))i that we will note with the same
name, then

σ(δαi) : x 7→ σ(δf(σ−1x)

as σδσ−1 = δ = σ(δ) we obtain the result.

Take then M a Op-module and a ZpG-module that the G-action satisfies

σ(rm) = σ(r)σ(m)
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for all σ, r and m where σ ∈ G, r ∈ R and m ∈ M . Denote by M+ =
MG the fixed module for the G-action. Write Op = Zp[

√
−D] where D is the

discriminant of K, for be p 6= 2. Writing for the following σ ∈ G \ 1 we obtain
the following decomposition as Zp-modules of M :

M = (
σ + 1

2
)M ⊕ (

1− σ
2

)M

is clear M+ = (σ+1
2 )M we denote by M− = ( 1−σ

2 )M . Observe then
√
−D sends

bijectivily M+ →M− and also M− →M+ for be (D, p) = 1.

Lemma 5.3. We have that the following morphism:

τ : M+ ⊗Zp Op →M

m+ ⊗ (a+ b
√
−D) 7→ am+ + b

√
−Dm+

is an isomorphism of Op-modules

Proof. Define an map from M to M+ ⊗Op by

m = m+ +m− 7→ m+ ⊗ 1 +
1

−D
√
−Dm− ⊗

√
−D

where m = m+ + m− correspon to the Zp-decomposition of M = M+ + M−.
This last map is Op-lineal, and it defines the inverse of τ .

Observe then that in this situation we have

detOpM = (detZp(M+))⊗Zp Op

then always we have detOpM = pjOp for some integer j, then it implies detZp(M+) =
pjZp saying

detOpM ∩Qp = detZpM
+

Moreover consider a exact sequence of Op-moduls Mi with the compatibility of
G-action of the ring and the modul

0→M1 →M2 →M2/M1 → 0

then we have detOp(M2/M1) = detOp(M2)detOp(M1) then

detOp(M2/M1) = detZp(M+
2 /M

+
1 )⊗Op

for be Op flat over Zp.
Consider then the following equality from theorem 3.1:

detOp(H1(K,TpE(k+1))/rp(R̃ψ)) = detOp(H1(K,TpE(k+1)))/detOp(rp,K(R̃ψ))

= detOp(H2(K,TpE(k + 1)))

We now by the lemma 5.2 that all the Op-modules involucrated in the previous
equation are also G-modules with the compatibility with the action of Op, only

note for rp,K(R̃ψ) comes from be a Op-submodul of H1
p that is Galois stable.
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Corollary 5.4. With the hypotesis that rp,K(ξ) 6= 0 we have

detZp(H1
p/rp,Q(Rψ)) = detZp(H2

p )

Proof. Only note that we have

Hi
p = Hi(K,TpE(k + 1))+ i = 1, 2

and
rp,Q(Rψ) = rp,K(R̃ψ)+

by corollary 4.3.

We are now interested in the pure motive H2(E, k+ 2). We observe that we
will obtain our theorem 2.5 if we can see

detOpR̃ψ = detZpRψ ⊗Zp Op

then will follow for the previous arguments our relation of determinants over
Zp, because the Op-determinant of RΓ(Spec(Z[1/S], TpE

+(k + 1)) comes from
the Zp-determinant.
For prove the equality of determinants in this subspace of motivic cohomology,
we only note that R̃ψ is a Op-module of rank 1, and there is on H2(E, k + 2)
an Z/2-action say F ∗∞ coming from complex conjugation in the second factor of
E+×QK that our generator is fix by F ∗∞, and F ∗∞ acts by complex conjugation
on Op, then we are in the situation of lemma 5.3 with σ = F ∗∞. For more detail
of these actions on the K-theory, see pag 153-155 in [5].

6 About the non-vanishing of the Soulé regula-
tor

This section wil be only a resum of the knowing conditions that are until now
known about the condition for the no-vanishing for the generator element of
Rψ trought the Soulé regulator. In [11] is proved rp,K(ξ) is not zero proving
then that rp is injective rp if H2(OK [1/S], TpE(k+ 1)) is finite.Observe for our
particular case this vanishing will be enought for the injectivity of rp,Q on Rψ
using the corollary 4.3.
About the finiteness of this galois group is a particular case of a conjecture of
Jansen [8] that afirms the finitenes of the latter group. Moreover in our situation
we have the following two results

Theorem 6.1. ([13] 1.5 proposition 3) For fixed p the group

H2(OK [1/S], TpE(k + 1))

is finite for almost all k

And for a regular prime p (see [14] 3.3.1 for the definition) then

Theorem 6.2. ([14] 3.3.2, [15]cor.2,[8]lem.1) Let p a regular prime for E, then

H2(OK [1/S], E[p∞](k + 1)) = 0.

From this is obtain then that H2(OK [1/S], TpE(k + 1)) is finite.
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Then as a conclusion, we obtain for regular primes that rp,Q is injective over
Rψ and then is no condition on the second part of theorem 2.5. When p is not
regular, for allmost all twists we obtain that rp,Q is injective and the condition
in theorem 2.5 is satisfied.
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