U " B Diposit digital

n .kf - de documents
Universitat Autbnoma . ’\\fu de la UAB

de Barcelona

This is the accepted version of the journal article:

Bardina i Simorra, Xavier; Rovira, Carles; Tindel, Samy. « Asymptotic evalu-
ation of the Poisson measures for tubes around jump curves». Applicationes
Mathematicae, Vol. 29 (2002), p. 145-156. DOT 10.4064/am29-2-3

This version is available at https://ddd.uab.cat/record /273326
under the terms of the license


https://ddd.uab.cat/record/273326

Asymptotic evaluation of the Poisson
measures for tubes around a jump curves

by
Xavier Bardina', Carles Rovira? and Samy Tindel?

U Departament de Matematiques, Universitat Autonoma de Barcelona
08193 Bellaterra, Barcelona, Spain
e-mail: bardina@mat.uab.es
2 Facultat de Matematiques, Universitat de Barcelona,
Gran Via 585, 08007-Barcelona, Spain
e-mail: rovira@cerber.mat.ub.es
3 Département de Mathématiques, Institut Galilée - Université Paris 13,
Avenue J. B. Clément, 93430-Villetaneuse, France
e-mail: tindel@math.univ-paris13.fr

Abstract

Key words and phrases: Onsager Machlup functionals, Poisson pro-
cess.

! Partially supported by grants CICYT BFM2000-0607, BEM2000-0009, HF1998-0096.
2Partially supported by grants CICYT No. BFM2000-0607 and HF1998-0096 .
3Partially supported by the grant CIES No. 99071.



1 Introduction

This paper deals with the asymptotic evolution of the Poisson measures for
tubes around jump curves.

This problem has been widely studied for Wiener measures. Set {W;}>¢
a Wiener process in R and ¢ € L2([0, 1], R?). Tt is known that

1
PIW = lloe < &) ~ exp (= 55107).

A related problem is the obtention of Onsager-Machlup functionals: given
a process X, we consider a norm || - || and two smooth curves ¢ and 1. If

the
Lo PUX — 9] < ¢)
o P(|IX = ¢[ <e)

exists and can be expressed as:

exo [ [ L0009, o(9)ds = [ L@l v

by some function L(Z,z), this function is called the Onsager-Machlup. For
instance, if X is a diffusion process solution of the stochastic differential
equation

dX () = b(X (t))dt +dW (1), X(0) = 20, X(t) € R?,

where 7y € R? and with some regularity of the coefficient b, for large classes
of norms in Wiener space, and for functions in the Cameron-Martin space,
the Onsager-Machlup function exists and is given by

. 1n 1 <. b
L(b,6) = =5 2 [ — til9)]* = 5 D 74 (9).
i=1 i=1 ¢

(See, for instance [2]).
Our aim is to study this kind of problems when the process N is a standard
Poisson process. That is, we will study, using L! and L? norms,

P{[[N = hl < e},
when A is a jump function, and

P{[[X = ¢ < e},
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where X is a diffusion process of the type

T
Xt:/ X,ds + N,
0

and, given a jump function A, ¢ is the solution of
T
op = / olds + hy.
0

2 Preliminaries
Let (92, F, P) a complete probability space,

Definition 2.1 A Poisson process is a cadlag process N = { N, s € [0,1]},
such that:

e Ny=0.
o Given 0 <ty <ty <---<t, <1 the increments
Ny, — Ny, wNy, , — Ny oy y Ny — Ny Ny
are independent.

e Given s < t, the increment N; — Ny has a Poisson law of parameter

(t—s).

Given a Poisson process, we will denote T1,7T5,...,T,,... the successive
jump points of the Poisson process.

In this situation it is well known the following result (see for instance [1,
Proposition 4.5.6]):

Proposition 2.2 The conditional distribution of (T1,Ts, ..., Ty) given {N; =
k} is the same as that of k increasingly ordered independent random vari-
ables each having the uniform distribution on (0,t]. That is, the conditional
density of the vector (Ty, Ty, ..., Ty) given {N; = k} is

f(Tl,TQ,...,Tk) — k!I{0<t1 <"'<tk<t} .



In this paper, given a standard Poisson process Ny, s € [0, 1] we will con-
sider a diffusion process of the form

t
Xt:/ Xst+Nt, te [0, 1]
0

It is easy to check that the solution of such equation can be written in
terms of the jumps points of the Poisson process as

X(6) =) e (k).
i-1

3 The case of the Poisson process

When we consider a standard Poisson process, we have the following result:

Theorem 3.1 Let {N;, s € [0,1]} be a standard Poisson process and h :
[0,1] — R a jump function with expression

k
hy = Z Iis, 1y(2),
i=1

where 0 < S7 < Sy < -+ < Sk_1 < Sk <1 are the jump points.
Then, for e > 0 small enough,

o

-1

_ c gj a Sk
PIN —hlly < 2} = 2% (¢ = 3 ) = 2% 17 + 0
j=0
and .
PUIN = hll2 < £} = 2% T2 + O+,

Remark 3.2 Notice that the probability depends only on the number of jumps
of the function h.

Proof:
We will only develop the L? case. The proof for the L! norm can be done
using the same arguments.



Since 0 < 57 < Sy < ++- < Sp_1 < S < 1, there exists g9 such that
Siy1—Si>ceforallie{1,...,k—1}, S; >e2and 1 — S > 2. Along the
proof we will consider € < gq.

We have that,

o0 1
P{|N —hlls e} =) P{IN = hll < [N, = j}

.
— .
j=0 I

In order to compute the probabilities involved in the sum we will consider
three cases:

o If j <k, then P{||N — h|ls <e|N; = j} = 0. Indeed, in this case,

1 1
IN —hl5 > /(Nt—ht)ZdtZ/ dt
S

k Sk
= 1—5k>62.

o If j =k, then P{||N — hlj» < ¢|N; = k} = (2¢%)F. We will prove
this result by induction on k. Notice that, if for some i € {1,...,k},
|T;(w) — S;| > &2, it is easy to check that [|[N(w) — h||3 > 2. Otherwise,
if for all 4 € {1,...,k}, |T;(w) — Si| < &? then

k
INW) = hll; =) |Ti = Sil.
=1

So

k
P{|N = hlly < £|Ny = k} = P{) _|Ti — Si| <Ny = k}.

i=1
If £ =1, using Proposition 2.2 we have that
P{|T1 — Sl| S 62|N1 = 1} = P{Sl —52 S T1 S Sl +52|N1 = 1}

51-1—62
= / dt = 22
S1—€2

Assume now that if k£ = n, then

P> |T; - S;| < &Ny = n} = (2e%)".

=1



Consider now k£ = n + 1. Using Proposition 2.2, if € is small enough,

n+1
P T = Si| <INy =n+1}

=1

(n+ 1)ldty - - - dt,q
/{(t1<"'<tn+1)12?=+11 |ti—Si|<e?}

Spy1+€?
= (n+1) / (n! / dt, - - 'dtn)dtn+1
Sn+1—52 {(t1<"-<tn): ?:1 ‘ti—si‘SE2—‘tn+1—Sn+1‘}

but, by hypothesis of induction the last expression is equal to

Sp41+e? "
(n+1)2" / (62— Jtust — Surs])"dtuss
S

n+1_52
2

= (n+1)2"2 /0 (g2 — u)"du

2n+162(n+1)

Y

which is the desired conclusion.

e Finally, if j > k then P{||N — hl|, < e|N; = j} < 2k,
Notice that if for some i € {1,...,k}, |T;(w) — S;| > €? or if for some
ie{k+1,...,5}, 1 = Tj(w) > &%, then |N(w) — hl|3 > 2. Otherwise,
k J
IN@) = hll3 =) |Ti(w) = Sil + D (Tiaa(w) = Ti(w)) (i — k)%,
i=1

i=k+1
where in order to simplify the notation we assume 7, = 1.
But,

v
(]
=
|
:,'j



So, in this case, for £ small enough

P{IN = hllz < [Ny = j}
j

- p{zm — S|+ .Z (1=T3)(2(i — k) — 1) < *|N, = j}

k
< P{Y_ITi= S+ Y (1-T) <INy = j}.
=1

1=k+1

Using the result for the case j = k last expression is equal to

]| /1 /tj /tk+2 o J i
o (2 =N (1 —t;)) dtpsy - dt;
k! 1—e2 J1-(e2—(1-t;)) Y1 ( Z ' ) * !

—(e2= )y (1- 1)) i=k+1
— 2k52j
Thus,
1

ZP{“N_ hlla < e|Ny :]}?

=0

P{IN = hll2 < e}

2k

_ 2k€715k_'_|_0(52k+2),

which completes the proof of the theorem.

4 The case of diffusion Poisson process

Theorem 4.1 Given N = {Nj, s € [0,1]|} a standard Poisson process, and
given a jump function h; = Zle Iig,1y(t), t€[0,1], 0 <5 <--- <5 <1,
consider the diffusion process

t
Xt:/ Xsd8+Nt, tE[O,l]
0

and the jump curve
t
o :/ ¢lds + hy, t€0,1].
0
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Then, for e > 0 small enough,

k
P{||X — ¢>h||1 <e) = 2k6—1% I O(gk-}-l)
and
o2k

The solution of such equations can be expressed, using the jump points
of the Poisson process and the jump function, as

oo

X(t) =Y e (1)

i=1
and

k
o = e s ().
i=1

As in the case of Poisson process, we can assume that there exists e > 0
such that Sy —S; > ¢, foralli e {1,...,k—1}, Sy > e and 1 — S > 3.
Before the proof of the theorem we will see a previous lemmas.

Lemma 4.2 (a) Fized o < ey, if there exists i € {1,...,k} such that |S; —
Ti| > o2, then

1X = "5 > Cra?
where Cy denotes an universal constant.

(b) There exists e1 > 0, depending only on k, such that fired o < ey, if
for some i >k, Ty <1 and 1 —T; > o2, then

IX = ¢"5 > Caa®

where Cy 1s another universal constant.

Proof:
We prove first a). Consider n :=inf{i € {1,...,k}: [S;—T;| > o?}, then
Sn+a?
IX-dz [ X - P



If we denote .

dn = Z(G_Ti — G_Si) + [{Tn<5n}6_Tn,

=1

the last integral is equal to

Sn S +a?
/ e d dt + / e*(d, — e 5m)dt
S S

n—a? n

= d—j(QZSn — 62(Sn—a2)) —|— (dn _;SR)Z_ (625n+a2 — eQS’n)
d2 dn _ ,—=Sn)\2 —25, -2

> [?”4_%]2&226 a2>%a2

using that for 0 < y < z, e* —e¥ > (2 — y) and that for all a,b € R,
a2 4 p2 > atb)?
i 2 .

Let us prove now b). We can assume that |S; — T;| < o? for all i €
{1,...,k}. Notice

k o0
doo(t) = | (e =€)+ > e (1)
=1 i=k+1

> e et — ka2 > e — ka2

Then

1 1
IX - 62 > / X(1) — (0)dt = / | d (1)

—a2 1—a2
(e7! — ka?)?

>
- 2

(62 _ 62(1—a2)) > C’gaz,

using similar arguments as in the proof of a) and for o small enough.
O

Remark 4.3 Notice that from Lemma 4.2 we can assume, for e small enough,
that for all i,l € {1,...,k} such thati <1, S; <T; and T; < S;.

Proof of Theorem 4.1:
As in the case of Poisson process we only develop the L? case.



We have that

e -1
P{IX —¢"|; <e} =) P{IX - ¢"]l < [N, :j}% .

J=0

As in the case of Poisson process, to compute the probabilities involved
in the sum we will consider three cases:

o If j <k, then
P{|X - "2 <e|N1 =3} =0 (1)
for € small enough by Lemma 4.2.
o If j = k, we will proof that P{||X — ¢"||, < ¢|N, = k} = (2e?)F +
O(62k+2).
Notice first that by Lemma 4.2 we only need to consider the w such
that |S; — Ty(w)| < & for all i € {1,...,k}.

Using the expressions of X and ¢" involving the jump points, we have
that if N1 = k,

1
X —¢"5 = / (D (e iy (1) — 51, 1) (1))
0
X(e_T’lI[Tl,l) (t) - e_SlI[Shl) (t)))dt

k
= %[Z {G_Ti—Tl(ez - 62(Ti\/Tl)) _ e—Ti—S’l(GQ N 62(Ti\/51))
i,l=1

_67Si7T1(62 _ GZ(SiVTl)) + 675‘1‘751(62 _ 62(SiVSl))}]

k
- %[Z [T Tt 9e2=Ti=5t 95l (9)
il=1

42 Si=St _ €|5i—55\}].

Notice that if we put 6; := T; — S;,

e2-Si=S1 4 2 Ti-Ti _ 9,2-T;=S

— 62—Si—51(1 4 6—(5i—(5l o 26—5i)
((51 + (5[) 1

2
— 2-(Si+5) (5_ 5+ el 53677}),

' 2
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using Taylor’s decomposition, where 7;,7;, € [—22—21, 25—21]

On the other hand, by Remmark 4.3, for the other term involved in the
sum (2) we have three situations

— If 7 <[ then,
9elTi=Sil _ oITi=Ti| _ |Si=Si]
= esl_si( — 70 970 1)

_ 651—&( . 5! - 51’ _ (61 - 5i)2

2 2
el + 51'2€ni )v

where 77,77, € [—22—?,22—21].
—Ifi=1
2elTi=Sil _ oITi=Til _ ISi—5i]
= 2elTi=5i _ 9
= 2|6z| + (52-2677?,

where n? € [—28—21,22—21].

— Finally, if + > [, then

2elTi=Sil _ ITi=Ti| _ ISi=Si]

— 651'751( _ 651'751 + 2651‘ _ 1)

= SiS(6; 46— @_Twe"il + 02,
where 7,77, € [—22—21,2(5/,—21].
So, when N; = k,
k
1X = "5 =D I8+ 2, (3)
i=1

11



where

k

2
Z — Z 672(51'«}*5'1) (@6”3’1 — (5?6”11)
i,l=1
SF Y TR k) i T
=1 i<l

C— 6% 4 4
+ Z 651'*51 ( _ @eni,l + (5?67” )] .

1>

Fixed w, by part a) of Lemma 4.2, if || X (w) — ¢"|]2 < & we get |T}(w) —

Si| < é—zl for alli € {1,...,k}. Then |Z(w)| < 6k2(‘3—42 and we get from
1
(3) and using the results proved in Theorem 3.1
k i
P{IX — ¢"la <INy =k} < P |6 <+ 614:2@|N1 =k}
i

i=1
2 252 k k_2k 2k+2
= (2¢%(1 + 6k @)) < 2% 4 ¢ e (4)
1

where ¢, ; depends only on £ and C}.

On the other hand, fixed w such that Y% | |6;] < & we clearly have
|Z(w)| < 6k?c*. So, again from (3) we get

k
P{|X = ¢l < [Ny =k} > P{) _|6:] < £* — 6k%* N, = k}

=1

2
— (2%(1 — 6k>=

E))k > okg2k Ck’262k+2 (5)
1

where ¢, » depends only on £ and C5.

Putting together (4) and (5) we obtain

P{|IX = ¢"l> < e|Ny = k} = (2¢)" + O(7%). (6

~—

e To deal with the case j > k notice that, again by Lemma 4.2, if || X (w) —
¢"|l> < e then |T;(w)—Si| < & foralli € {1,...,k} and [1-Tj(w)| < &

12



foralli € {k+1,...,j}. So, using Proposition 2.2 we have

P{|X = ¢"[l2 < e|N1 = j}

2 2
< < — — < — =
Pi{max [T = Sil < &h 0 max 1= Tif < 53N = j}
G12ke2
~ckeiTR

and then

Z P{|X — ¢"|l> < e[y —J}—

j=k+1
Z e~ 19k 2] _ 6*12'“9 ~2k+2 | -
=t cres” creg™ O (1 - e2Ch)

Putting together (1), (6) and (7) we finish the proof of the theorem.
|
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