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ABSTRACT 
Motivation: Motif-prediction algorithm capabilities for the analysis of bacterial regulatory 
networks and the prediction of new regulatory sites can be greatly enhanced by the use of 
comparative genomics approaches. In this study we make use of a consensus-building algorithm 
and comparative genomics to conduct an in-depth analysis of the LexA-regulon of gamma 
proteobacteria, and we use the inferred results to study the evolution of this regulatory network and 
to examine the usefulness of the control sequences and gene contents of regulons in phylogenetic 
analysis. 
Results: We show, for the first time, the substantial heterogeneity that the LexA regulon of gamma 
proteobacteria displays in terms of gene content and we analyze possible branching points in its 
evolution. We also demonstrate the feasibility of using regulon-related information to derive sound 
phylogenetic inferences. 
Availability: Complementary analysis data and both the source code and the Windows-executable 
files of the consensus-building software are available at http://www.cnm.es/~ivan/RCGScanner/.  
Contact: ivan.erill@cnm.es; jordi.barbe@uab.es. 
 
INTRODUCTION 
 
The structure and function of bacterial regulons is becoming a widely accepted source of 
information in the understanding of bacterial physiology and genetics. In essence, a prokaryote 
regulon can be defined as a network of genes under synchronized transcriptional control by a 
regulatory protein, or set of proteins, that recognizes a specific binding-motif in the promoter region 
of the genes it exerts control upon. Protein binding to the operator site may repress or activate 
transcription of the regulated genes, thus establishing a negative or positive control. This defining 
property of regulons, the binding of the regulatory protein to a specific recognition sequence in the 
operator site, has been repeatedly used in in silico analyses to predict new regulon members (Lewis 
et al, 1994; Fernández de Henestrosa et al., 2000; Rodionov et al., 2001) and even to predict 
previously unreported regulon structures in little-studied species (Gelfand et al., 2000a; McGuire et 
al., 2000). From the first systematic attempts at defining the informational properties of regulatory 
regions and the possibility of predicting new regulatory sites by statistically assessing their binding-
affinity (Berg and von Hippel, 1987; Berg, 1988), regulatory motif prediction algorithms have 
evolved fast and have diversified into four main groups, each based on a distinct statistical 
approach: consensus building algorithms (Stormo and Hartzell, 1989), expectation maximization 
algorithms (Lawrence et al., 1990), Gibbs sampling-method algorithms (Lawrence et al., 1993) and 
oligonucleotide frequency analysis (van Helden et al., 1998). Although none of these methods 
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strictly requires a priori experimental knowledge to work, all of them have been optimized to make 
use of such heuristics, typically conveyed in the form of experimentally determined regulatory 
motifs or members of the regulon for a given bacterial genome (Bailey and Elkan, 1995; McCue et 
al., 2001; Rodionov et al., 2001). More recently, the use of experimental cues to enhance the 
predicting capabilities of these methods has been assisted by the large-scale introduction of 
microarray gene-expression experiments (Courcelle et al., 2001; Khil and Camerini-Otero, 2002), 
which have provided a boon of experimental background to motif-prediction algorithms. Moreover, 
with the assumption that regulons and regulatory motifs are well-conserved structures among 
related species (Gelfand et al., 2000b), the wealth of information provided by completely sequenced 
genomes has also been recently tapped in comparative genomics analyses (Gelfand et al., 2000b; 
McGuire et al., 2000, McCue et al., 2001; Tan et al., 2001; Rajewsky et al., 2002) that make use of 
known regulon structures in related genomes to strengthen and focus motif-prediction algorithms. 

The assumption that regulon structure is well conserved among related bacterial species is not a 
bold one. Although regulon members are susceptible to lateral-gene transfer (LGT), the regulon as a 
whole and its regulatory protein tend to be quite stable from an evolutionary viewpoint (Gelfand et 
al., 2000b), a fact that is most acute in the case of closely related species, where regulatory motifs 
are often conserved (McGuire, Hugues, 2000). Regulon conservation has been recently confirmed 
(Makarova et al., 2001; Rodionov et al., 2001) and positively exploited in the aforementioned 
comparative genomics assays. Furthermore, the evolutionary stability of a regulon can be correlated 
with its gene contents (Rajewsky et al., 2002) and the occurrence of self-regulation (Roy et al., 
2002). It seems evident that, in the case of a large and self-regulated gene network, regulon 
structure (s.c. regulatory protein, regulon functional-core genes and regulatory motifs) will tend to 
be preserved because a mutation either in the gene encoding the regulatory protein or its operator 
region, will often lead to severe deregulation and, thus, to a substantial disruption in cellular 
equilibrium. A well-known and documented (Walker, 1994) case of such a large and self-regulated 
network is the LexA-regulon of the gamma-proteobacteria Escherichia coli, the fundamental 
component of the DNA damage-inducible SOS response (Radman, 1984). The LexA-governed 
network of E. coli has been shown to regulate up to 30 genes (Fernández de Henestrosa et al., 
2000), with the LexA protein repressing the system (including the lexA gene) by binding to a 16-
mer consensus sequence CTG-N10-CAG (the LexA box) in the promoter region of regulated genes 
(Walker, 1984). Upon DNA damage, ssDNA-activated RecA promotes LexA auto-hydrolysis 
(Little, 1984), triggering derepression of the system, and activating a set of genes, involving error-
prone polymerases (umuDC), recombinases (recA, recN), excision repair nucleases and helicases 
(uvrAB, uvrD) and cell-division inhibiters (sulA) that contribute to overcome and repair DNA 
damage (Fernández de Henestrosa et al., 2000). The assumption that the LexA-regulon is a well-
conserved structure across substantial evolutionary spans is supported by its described presence in a 
wide set of bacterial families, ranging from green non-sulfur (Fernández de Henestrosa et al., 2002) 
and gram-positive bacteria (Winterling et al., 1998) to gamma (Walker, 1984) and alpha 
proteobacteria (Tapias et al., 1999) that occupy a broad and varied set of ecological niches. In the 
specific case of gamma proteobacteria, the assumed evolutionary stability of the LexA-regulon is 
further supported by experimental evidence of regulatory-motif conservation across different 
species (Garriga et al., 1992) and by the contrasted success of prior studies with motif-prediction 
algorithms (Lewis et al., 1994; Fernández de Henestrosa et al., 2000; Benítez-Bellón et al., 2002). 
Besides, the presence of a cell-division inhibiter (sulA) in E. coli LexA-regulon introduces a 
bottleneck effect on the evolutionary pathways of this regulon, since it renders LexA- mutants non-
viable. Given this hindsight into the structure of the LexA-regulon of E. coli, here we test the 
feasibility of using a consensus-building algorithm as a robust tool to make strong predictions on 
the regulon structure of different gamma proteobacteria species, and we use the inferred knowledge 



to analyze the changes in the gene contents of this regulon that have taken place over small 
evolutionary distances. Thereafter, we put forward and show that the multifaceted and correlated 
nature of the information conveyed by a regulon (regulon members, core members, regulatory 
protein and regulatory motif sequence) can be used as a sound phylogenetic indicator. 
 
MATERIALS AND METHODS 

 
Experimental data 
 
A thorough description of the gene-set conforming the LexA-regulon in Escherichia coli was 
obtained from published Northern blot (Lewis et al., 1994; Fernández de Henestrosa et al., 2000) 
and DNA micro-array (Courcelle et al., 2001; Khil and Camerini-Otero, 2002) experimental 
studies. This data was integrated to make up the basic set of E. coli LexA-regulated genes and 
corresponding binding-motifs shown in Table 1, which was subsequently used as the experimental 
training set for the consensus-building algorithm. 
 
Genome assemblies and databases 
 
Complete genome assemblies of Bacillus subtilis [AL009126], Escherichia coli K-12 MG1655 
[U00096], Haemophilus influenzae Rd [L42023], Pasteurella multocida PM70 [AE004439], 
Pseudomonas aeruginosa PA01 [AE004091], Ralstonia solanacearum GMI1000 [AL646052], 
Sinorhizobium meliloti 1021 [AL591688], Salmonella typhimurium LT2 [AE006468], Shigella 
flexneri 2a str. 301 [AE005674], Vibrio cholerae [AE003852] and Yersinia pestis strain CO92 
[NC_003143] where downloaded from NCBI Genbank database, and a whole genome shotgun of 
Klebsiella pneumoniae MGH78578 [NC_002941] was downloaded from the GSC FTP site at 
Washington University. Manual orthology searches to assess conservation of LexA-regulon genes 
and to verify predicted regulon genes were routinely carried out using NCBI TBLASTX server 
against the nr database (Altschul et al., 1990) or by name-querying either NCBI Genbank or TIGR 
CMR2 databases. 
 
Alignment and phylogeny tools 
 
All automated alignments for orthology searches were carried out using NCBI TBLASTN server 
with default parameters. Manual protein sequence alignments were performed using INRA Multalin 
server (Corpet, 1988) and a Blosum62 mattrix (Henikoff and Henikoff, 1992). Phylogenetic trees 
were inferred from aligned DNA (regulatory motif) and protein sequences using Phylip 3.6 
DNAML and PROML programs (Felsenstein, 1989), imposing a transition/transversion ratio of 2.0 
for DNA sequences and using a PAM Dayhoff matrix (Dayhoff et al., 1978) for protein sequences. 
Phylogeny trees were plotted using TreeView Windows-based software package (Page, 1996). 
 
Consensus-building software 
 
To analyze regulon structure we developed RCGScanner, a Windows-based standalone software 
package that integrates a three-step algorithm (see Figure 1) for the prediction of putative regulatory 
motifs. The first step in the algorithm is a pattern search of user-defined direct or inverted repeats in 
the form X-n-Y, were X and Y are a priori known or estimated sequences and n is a variable 
nucleotide sequence. The program scans a local DNA sequence file according to the IUB standard 
(Nomenclature Committee, 1985), looking for matching X-n-Y motifs and allowing up to one 
mismatch in either the X or Y sequences. To reduce the huge number of false positives that might 



arise from a straightforward complete genome scan (Gelfand et al., 2000b), after locating a 
regulatory motif the program scans the adjacent region and stores only those regulatory sequences 
that are close (typically 300 bp; all program parameters are user-adjustable) to a coherent open 
reading frame (ORF). Once the pattern search is completed, the program computes a motif 
consensus matrix based on experimental knowledge (Berg, 1988), which can be supplied directly or 
else automatically inferred. If there is enough experimental data for a given species (e.g. E. coli 
LexA-regulon) the program computes the consensus matrix from a collection of user-introduced 
regulatory motifs (see Table 1). Conversely, when no direct knowledge is available, the program 
takes a comparative genomics approach, presuming conservation of regulon structure in related 
bacterial species (Gelfand et al., 2000b). In this case, the program takes as input the protein 
sequences of regulon genes from a species in which the regulon has been experimentally 
established, and uses them to query NCBI GenBank database through its TBLASTN server on the 
unstudied species. Homologies above an identity threshold (typically 80%) are considered 
conserved orthologs (Rajewsky et al., 2002) and their promoter regions are scanned for putative 
regulatory motifs. If found, these regulatory motifs will then be used to infer the consensus matrix 
for the species under consideration. After computation of the consensus matrix, the program uses it 
to filter putative regulatory motifs by computing their Heterology Index (HI), a statistical measure 
of the divergence from the consensus sequence (Berg and von Hippel, 1987; Berg, 1998). Two 
complementary filtering approaches are used here. In direct filtering, sequences are sorted 
according to their HI value and filtered with a simple threshold method (typically HI<8). In 
recursive filtering, a more flexible filtering approach is implemented in a similar manner to that 
already described in the literature (Gelfand et al., 2000a). An initial population of regulatory motifs 
(i.e. all those found) defines the initial consensus matrix and is filtered with a HI relative-threshold 
method (typically 1/3 of the mean HI value). Filter-passing motifs are then used to compute a new 
consensus matrix and the process is iterated until population divergence between consecutive 
iterations stabilizes below a predefined threshold. The recursive filtering method is more flexible 
than the direct one, but it is also more sensitive to background noise and local minima (Gelfand et 
al., 2000a). To overcome noise sensitivity, the program uses the direct filter results as a seed for the 
initial recursive population, thus focusing the initial search space and improving recursive-filtering 
results. As a final step, the program automatically queries the NCBI TBLASTN server and the 
GenBank database to obtain and store functional definitions for each of the genes putatively 
regulated by a filter-passing motif. 

 
Analysis methods 
 
Software validation methods 
 
To validate software performance, the program was first tested against the most documented case of 
the LexA-regulon (s.c. E. coli; experimental motif consensus: CTGtatatatataCAG, see Table 1). The 
test against E. coli was conducted in a two-step procedure that was later assumed as standard for all 
analyses. The first step consisted in a sensitive search (CTG-N10-CAG) to assess the efficiency of 
the pattern search algorithm at detecting experimentally described LexA binding motifs. This search 
served also to draw an initial estimate of sensitivity (i.e. the ability of the filtering algorithm to 
select described LexA binding motifs against randomly scattered pseudosites) and specificity (i.e. 
the competence of the filtering algorithm at sorting out pseudosites) in broad-spectrum searches, 
and was used to fine-tune and settle program parameters. The second step consisted in a more 
restrictive (CTGT-N8-ACAG) search, to boost specificity and to determine the ability of the 
program to unambiguously identify regulon structure. Finally, a test against background noise was 
conducted to estimate the informational relevance of the program results. Restrictive (CTGT-N8-



ACAG) searches were launched against gram-positive (B. subtilis) and alpha proteobacteria (S. 
meliloti) genomes, in which distinct LexA-binding motifs have been experimentally described 
(Winterling et al., 1998; Tapias et al., 1999), and the results were manually inspected to evaluate 
their significance. 

 
Regulon analysis methods 
 
A similar two-step procedure was implemented to conduct the full analysis of the LexA-regulon in 
the selected subgroup of gamma and beta proteobacteria species. For each bacterial species, a first 
sensitive (CTG-N10-CAG) search was launched and filtered using the automatically inferred 
consensus matrix derived from conservation of experimentally described E. coli LexA-regulon 
genes (see Table 1). Search results, regardless of selection procedures, were manually inspected to 
identify putative conservation of LexA binding-motifs controlling homologues of the LexA-
regulated genes described in E. coli. Next, the subset of these motifs that had been automatically 
selected by the program was manually picked out and used to recreate a species-specific knowledge 
table, akin to that experimentally derived for E. coli (Table 1). Using this newly inferred knowledge 
table to compute the consensus matrix and to filter accordingly, a second restrictive (CTGT-N8-
ACAG) search was carried out against each bacterial species, and its selection results were 
considered putative members of the LexA-regulon for each particular species. 
 
RESULTS AND DISCUSSION 
 
Software validation results 
 
Software validation results were amply satisfactory for the scope of this research. After fine-tuning 
of parameters, a sensitive (CTG-N10-CAG) search against E. coli returned 33,418 putative 
regulatory motifs, revealing a huge number or false positives (pseudosites) in the genome that is in 
accordance with previous literature reports (Gelfand et al., 2000b). However, the search did also 
locate all the 28 documented LexA binding-sites that had been introduced as the training set (Table 
1). This was a necessary prerequisite for the study of related genomes, since it guaranteed that, even 
if not selected, conserved regulatory sites would be found and could be manually tracked by 
querying results in conserved LexA-regulon homologous regions. Moreover, and taking into 
account the vast number of pseudosites found with the broad-spectrum search, the program did also 
fare well in terms of sensitivity (89%, up to 25 of the 28 documented LexA sites were selected), but 
at the cost of an extremely low specificity (10%, only 42 of the 420 selected motifs were in the 
promoter region of documented LexA-regulated genes). Therefore, we then examined the reliability 
of applying a more restrictive search pattern to improve specificity without excessively 
compromising sensitivity. As expected, the restrictive (CTGT-N8-ACAG) pattern search returned 
far less regulatory motifs (1,872), and this had a slight repercussion on sensitivity (71%). However, 
specificity was boosted by the restrictive search (from 10% to 83%, 20 out of 24 selected motifs 
corresponded to LexA-regulated genes). This high specificity, combined with the fact that the 
remnant of selected motifs consisted of previously described damage-inducible genes, such as minC 
and hlyE (Courcelle et al., 2001), and previously unreported putative motifs for LexA-regulon 
genes (see Table 2), led us to conclude that a restrictive search could be a robust indicator of 
regulon structure for extrapolation into unstudied species. The statistical significance of the results 
thus obtained and the appropriateness of combining direct and recursive filtering techniques was 
gauged by examining their accordance with previously published results for E. coli LexA binding-
site predictions (see Table 1; Benítez-Bellón et al., 2002), by evidencing that all selected motifs 



were either experimentally described or new putative sites, and by ascertaining that the results of 
background noise tests were markedly negative (none of the selected regulatory motifs in B. subtilis 
and S. meliloti involved any DNA-repair genes). Therefore, the combined method (i.e. broad-
spectrum plus restrictive search) was deemed sound enough to carry out comparative genomics 
analyses of the LexA-regulon in related bacterial species, since it conveyed the necessary sensitivity 
to detect most conserved motifs and the required specificity to outline the structure of the regulon in 
the experimentally unstudied bacteria. 
 
Regulon analysis results 
 
The results of the application of the combined search method on nine different bacterial species, 
summarized in Table 3, reveal the existence of a conserved set of regulated genes (lexA, recA and 
recN) among gamma proteobacteria. The existence of such a conserved regulon core should be 
expected in any kind of self-regulated gene network (Gelfand et al., 2000b), and its members ought 
to define the basic set of essential tasks the regulon was originally set forth to control (e.g. damage-
inducible recombination repair). Interestingly, thus, this structure appears to be conserved also in 
the sole representative of the beta proteobacteria class analyzed in this study (R. solanacearum). 
Even though the recN LexA box of R. solanacearum appears to be slightly degenerated, the 
conservation of the regulon core hints for the first time at a more than probable conservation of the 
gamma LexA-binding motif in the beta proteobacteria class. The results also reinforce the 
previously proposed idea that ydbK and minC are damage-inducible genes directly regulated by 
LexA (Courcelle et al., 2001) and point at some plausible additions to the LexA regulon in different 
species. Of peculiar interest are the putative LexA regulation of mdf and impA in the closely related 
H. influenzae and P. multocida species, which hints at a probable uptake of the regulation of these 
genes in a common ancestor, and the putative regulation of pathogenesis-related genes (STM1019, 
STM2621 and msgA, associated with Gifsy-1/2 prophages; STM0925 and STM272, connected to 
Fels-1/2 prophages) in S. typhimurium, a fact that has already been experimentally reported (Benson 
et al., 2000). Also, the presence of direct LexA regulation for recG and ftsY in V. cholerae suggests 
a branching point in the evolution of this bacterial species with respect to its closest relatives, which 
may be connected to the loss of the sulA gene in this bacterium. In this respect, it is relevant to 
pinpoint that the results in Table 3 agree with the hypothesis that sulA regulation imposes a sort of 
bottleneck effect in the evolution of the LexA-regulon, preventing major divergences in conserved 
regulatory motifs, but not in the gene contents of the regulon. The obvious explanation for this 
effect is that the regulated presence of sulA restricts LexA variability, since any changes that induce 
a poorer recognition of the sulA box will severely handicap the cell’s ability to divide. However, the 
present study indicates that the sulA bottleneck effect concerns only a relatively small subgroup of 
the gamma proteobacteria here checked (E. coli, S. typhimurium and Y. pestis) and it possibly 
highlights a branching point in the evolution of this bacterial lineage. Even though it could be 
argued that a sulA gene is also present in P. aeruginosa, the present study suggests that this sulA is 
not explicitly regulated by a dedicated LexA box (instead, sulA seems to be part of the lexA 
operon). Thus, in this species the presence of sulA should not induce the same kind of consensus-
sequence bottleneck effect, but, rather, a gene-content limitation effect, due to the presumably over-
repressed nature of the whole lexA operon. On the other hand, Table 3 results reveal an apparent 
gradual loosening across evolutionary distances of the classical LexA-regulon structure that has 
been experimentally determined in E. coli. This progressive drift seems to place E. coli and close 
relatives at the end of an evolutionary pathway with respect to the LexA regulon, a fact that is in 
agreement with phylogenetic data otherwise obtained (Fox et al., 1980), with the late appearance of 
E. coli natural habitat (mammals digestive tract) in the fossil record and with the risky but cost-



effective addition of cell division inhibiters (such as sulA) to the LexA regulon of E. coli close 
relatives. Most importantly, though, the results shown in Table 3 reveal a clear and smooth 
evolution of the LexA-regulon in gamma proteobacteria, purporting remarkable plasticity both in 
terms of the presence/absence of genes and of the nature of their regulatory motifs. It was the 
logical congruence of these results with previously reported phylogenetic relationships for this class 
of bacteria (Fox et al. 1980; Ochman and Wilson, 1987; Rajewsky et al., 2002; Xie et al. 2003) that 
led us to considerate the feasibility of using regulon data for phylogenetic inference. 
 
Phylogenetic analysis results 
 
To conduct a phylogenetic analysis of the gamma proteobacteria family based on the deduced 
LexA-regulon structure, we first analyzed which of the multiple informational sources conveyed by 
a regulon were solid enough to infer phylogenetic relationships. We decided that the regulon core, 
being strongly preserved in all the analyzed species, could be a sound informational source. 
Moreover, the regulon core was a very useful structure, because it conveyed two separate, but 
clearly correlated, kinds of information: protein and regulatory motif sequences for each of the core 
genes. Additionally, insight into Table 3 results prompted us to esteem that regulon structure, 
whether as the presence/absence of gene regulation or as divergences in the regulatory motif, could 
also be a reliable source of information. Lastly, it must be noted that we discarded another plausible 
source of regulon-related information, the consensus sequence for each bacterial species (Figure 2). 
Consensus sequence was not employed on the grounds of its low statistical weight (it had been 
computed from a different number of genes in each species), its low informational content (it is an 
averaging measure) and the previously outlined possibility (Rajewsky et al., 2002) that the 
consensus sequence may not be such a robust indicator of binding affinity as predicted (Berg, 
1988). This later hypothesis was addressed here in conjunction with microarray gene-expression 
data (Courcelle et al., 2001; Khil and Camerini-Otero, 2002). Although the idea that regulatory 
motifs ought to display better binding affinities when closer to the consensus is theoretically sound, 
we found that the LexA boxes of genes with consistently reported high-induction ratios (sulA, recA 
and recN) displayed relatively high HI values (data not shown). In a negatively regulated gene 
network, like the LexA regulon of gamma proteobacteria, high binding affinities should induce 
strong repression under normal conditions and, consequently, the highest induction ratios upon 
derepression of the system. Therefore, although these results do not invalidate the theoretical 
background of using the consensus sequence as an average species indicator or as the basis of 
consensus-building algorithms, they do cast serious doubts on the validity of using low HI values to 
accurately predict high binding affinities. Expression profiles also reinforce the hypothesis that the 
sulA box, due to the markedly detrimental effects of sulA deregulation, must display a high binding 
affinity (s.c. high induction levels) and that, as mentioned before, this requirement imposes severe 
constraints on the variability of the LexA protein and the motifs it recognizes. As a result, we 
settled on three different sources of information to derive phylogenetic inferences: regulon core 
protein sequences, regulon core LexA-box sequences and regulon structure. Regulon structure 
information was introduced in the form of presence/absence/divergence of LexA regulatory motifs 
for all LexA-regulon genes experimentally described in E. coli. When we plotted the phylogenetic 
trees inferred by the maximum-likelihood method using these three sources of information, we 
found that the results (Figure 3) were not only in neat accordance to standard phylogenetic 
approaches (Fox et al., 1980; Ochman and Wilson, 1987; Rajewsky et al., 2002), but were also 
strikingly similar between them, suggesting that the three sources of information carried by the 
regulon are strongly correlated by the own regulon nature. The robustness of this correlation 
becomes more apparent when considering the different nature of the data used for inferring the 



trees. Although cladistic analysis by itself cannot be used as a measure of statistical significance, 
the fact that trees based on protein and short DNA sequences yield such a remarkable resemblance 
hints at an active selection process behind the regulon structure, counteracting the expected higher 
noise ratio of short-length sequence analyses. 
 
Discussion 
 
Conventional phylogenetic analyses (Woese and Fox, 1977; Woese, 1998) have relied mainly in the 
use of small-subunit ribosomal RNA (16S rRNA). The usefulness of 16S rRNA to infer 
phylogenetic relationships sprouts from many different wells. On the one hand, ribosomes are 
essential elements of the translational apparatus and, thus, present in all known life forms, making 
the 16S rRNA genes universal markers. On the other hand, the very importance of ribosomes for 
life processes subjects ribosomal genes to a strong selective pressure, meaning that sequence 
conservation is high in 16S rRNA and that, consequently, its informational content is also elevated. 
This very same importance makes 16S rRNA genes unlikely candidates for lateral gene transfer 
(LGT), and this ensures verticality and coherence in the inferred phylogenetic trees. Finally, 16S 
rRNA genes are relatively large and, thus, they can convey enough informational content to derive 
long time-span trees, a feat that cannot be accomplished by other universal and highly conserved 
genes (e.g. tRNA genes) and that has prompted researchers to explore the potential of the even 
larger 23S rRNA genes in phylogenetic analysis (Pitulle et al., 2002). Nevertheless, there are also 
some shortcomings associated with the use of 16S rRNA to derive phylogenetic relationships. A 
major one comes precisely from its strong point, conservation. In fact, 16S rRNA genes are so well 
conserved that they exhibit little resolving power among closely related bacterial species 
(Achenbach et al., 2001). Additionally, the natural tendency of cells to duplicate such essential 
genes leads to varying copy numbers of the gene across different species, causing over and under 
representation of some of them when conducting phylogenetic analyses. To overcome these 
difficulties, researchers have used other universal genes with more stable copy numbers (Lloyd and 
Sharp, 1993; Eisen, 1995) or taxa-specific genes to enhance the resolving power of phylogenetic 
inferences (Ludwig, 1990; Fukushima, 2002; Ko, 2002), but both these methods still lack an 
intermediate level of resolution to systematically hold together the results they separately infer. In 
recent years, and with the advent of sequenced genomes, some new approaches have tried to 
circumvent this problem by creating multiple protein trees (Feng et al., 1997; Gupta, 2000) or by 
analyzing gene content and copy number, instead of gene sequence, in complete genomes (Snel et 
al., 1999; Tekaia et al., 1999). Still, these methods do not take into account some key aspects that 
might enhance resolution and understanding, like gene functionality, due to the difficult and 
subjective handling of such issues. Here we propose the use of computationally deduced regulon 
structure as a way to exploit functionality associations directly conveyed by nature (instead of 
subjectively human inferred), and to use this information in association with conventional 
phylogenetic data sources (i.e. DNA and protein sequence) to derive robust, relatively universal and 
well-resolving phylogenetic trees. 

In general terms, a regulon is a fairly well suited entity to conduct phylogenetic analysis. 
Although most of them are not universal, regulons are complex structures that are not prone to 
neither appear out of the blue nor undergo spontaneous deletions. Additionally, there exist regulons, 
like the CRP-cAMP regulatory network, that are present over vast spans of the life realm. 
Moreover, many regulons are committed to housekeeping tasks and, thus, they are naturally 
resilient to mutation and LGT. Even though mutation, deletion and LGT may affect many of the 
regulated genes, the regulon core ought to be a relatively solid structure (Gelfand et al., 2000b). 
This applies also to copy number, especially in the case of the regulatory protein. Duplications of 



the regulatory protein gene may certainly occur, but the most probable outcome is that the 
redundant copy will, in time, drift to overtake or complement other regulatory networks 
(Zuckerkandl, 1975; Gelfand et al., 2000b). Thus, the regulon as a complete structure presents 
double information content: the regulon core, with an evolutionary stable structure, and the global 
gene set, more prone to variation. This dual nature, glued together by the regulon makeup, offers a 
simultaneous two-level view on phylogeny that can allow detailed, taxa-specific, and at the same 
time globally coherent analyses. Furthermore, even when a regulon is not conserved, or undergoes 
severe changes, in phylogenetically distant species, this fact can be used to derive solid 
phylogenetic inferences. For instance, the LexA-regulon here studied is not universally conserved, 
even though it has been shown to be preserved in a wide range of different bacterial lineages and its 
co-inducer, the RecA protein, has been shown to be a feasible phylogenetic indicator (Lloyd and 
Sharp, 1993; Eisen, 1995). Nevertheless, and due to the housekeeping functions it carries out (DNA 
repair), it seems clear that equivalent regulons must exist in those species lacking the LexA-network 
(Koch and Woodgate, 1998). Therefore, and because of the difficulty of creating working regulons 
from scratch, regulon loss can be used to pinpoint major evolutionary branching points. Likewise, 
major divergences between regulons inner structure (e.g. a change in consensus regulatory motif) 
can also highlight turning points in evolution, as it is the case with the divergent LexA regulatory 
motifs of alpha (Tapias et al., 1999) and gamma proteobacteria (Walker, 1984) or gram-positive 
bacteria (Winterling et al., 1998). 
 
CONCLUSION 
 
Our results represent the first published instance of the substantial heterogeneity in gene content 
displayed by the LexA network in gamma proteobacteria, and point at possible major events (like 
the acquisition of sulA) in the evolution of the LexA regulon in this class of bacteria. We also put 
forward and test for this particular case the proposition that regulon information, either (or 
complementarily) obtained by in silico or in vitro analysis can be used to infer strong phylogenetic 
relationships in closely related bacteria, and that this method could be extended, with the use of 
other regulons, to generate a phylogenetic analysis method of both the necessary resolution and 
adequate consistency to bridge the gap between existing methodologies. 
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Table 1. Experimentally determined regulatory motifs for LexA-regulated genes in E. coli; d indicates the distance (bp) 
from motif-end to ORF start codon (Sources: Fernández de Henetrosa et al., 2000; Courcelle et al., 2001). Rightmost 
columns show, were available, the comparative results of Consensus/Patser (C/P), dyad sweeping (D) and RCGScanner 
(R) methods in binding-site predictions (Source: Benítez-Bellón et al., 2002). 
 

Gene name Regulatory motif/s d C/P D R Gene name Regulatory motif d C/P D R 
dinB/dinP CTgTATACTTTACCAg 17 - + + ssb/lexC CTgAATgAATATACAg 26 + + + 
dinG/rarB TTggCTgTTTATACAg 17 + + - uvrA  CTgTATATTCATTCAg 86 + + + 
dinI  CTgTATAAATAACCAg 22 + + + uvrB  CTgTTTTTTTATCCAg 77 + + + 
ftsK/dinH CTgTTAATCCATACAg 79 - + + uvrD/recL CTgTATATATACCCAg 5 + + + 

CTgTATATACTCACAg 9 + + + yebG  CTgTATAAAATCACAg 20 + + + lexA/dinF 
CTgTATATACACCCAg 30   + sulA/sfiA CTgTACATCCATACAg 19 + + + 

pcsA/dinD CTgTATATAAATACAg 34 + + + umuD  CTgTATATAAAAACAg 22 + + + 
polB/dinA CTgTATAAAACCACAg 17 - + + yjiW CTgATgATATATACAg 21 + + + 
recA/lexB CTgTATgCTCATACAg 47 + + + molR CTggATAAAATTACAg 10 + - + 

CTgTATATAAAACCAg 29 + + + yigN CTggACgTTTgTACAg 46 - - + 
CTgTACACAATAACAg 51   + ybfE CTgggTTTTTAATCAg 15 - - - 

recN/radB 

ATggTTTTTCATACAg 11   + ydjM CTgTACgTATCgACAg 5 + + - 
ruvAB  CTggATATCTATCCAg 52 + - + ydjQ/cho CTggATAgATAACCAg 24 - - - 
sbmC/gyrI CTgTATATAAAAACAg 31 + + + 

 

hokE/ybdY CTgTATAAATAAACAg 180   + 
 

 
 
Table 2. Previously unreported putative LexA binding motifs in E. coli SOS genes identified in this work; d indicates 
the distance (bp) from motif-end to ORF start codon (+ indicates an intragenic motif). 
 

Gene name Putative regulatory motif d 
dinB/dinP CTgAATCTTTACgCAT 52 
dinI  CTggTCCgTTAAACAA 77 
lexA/dinF CTggTTTATTgTgCAg 71 
pcsA/dinD ATgTTTTTTTgCCCAg 77 
recN/radB CTgATTCATCCgAAAg 145 

TTgATTCATTACgCAg 10 ruvA  
CTgTgCCATTTTTCAg 105 
CTACgAgATTAAgCAg +6 sbmC/gyrI 
CTgCTCgCATAATCAA 82 

uvrD/recL CTgATATAATCAgCAA 23 
yebG  TTgCTgCCggACgCAg 155 
umuD  CTgCTggCAAgAACAg 42 

CTgAACgCgCAgCTAg 205 yjiW 
CTggAAAAAATCAAAg 221 

molR CTggTAgCATCTgCAT 30 
ydjM CTTTCATCgCTgACAg 180 
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Fig. 1. Schematic diagram of data and program flow in RCGScanner. The search function can backtrack to locate more 
than one regulatory motif and/or more than one ORF under control of this/these. 
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Fig. 2. Consensus LexA regulatory sequences for the studied gamma proteobacteria species. The bars are percentile 
representations of the statistical occurrence of the consensus base at each position. It is interesting to note the likeness 
of the consensus sequences for the subset of species with an explicitly regulated sulA gene (E. coli, S. flexneri, S. 
typhimurium and Y. pestis; the sulA gene of P. aeruginosa does not have a dedicated LexA box but seems, instead, to be 
regulated by the LexA box of the lexA operon). Albeit its low statistical significance, such a similitude in consensus 
sequences endorses the idea that direct sulA regulation imposes a bottleneck effect on regulatory protein variability. 
Consensus sequences were computed from the found regulatory motifs putatively regulating orthologs of described E. 
coli LexA regulon genes (Table 3). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Phylogeny trees generated using (a) regulon core (lexA, recA and recN) LexA boxes, (b) regulon core protein 
sequences and (c) all conserved LexA boxes. Note that due to the incomplete nature of the K. pneumoniae genome, 
which prevented foolproof identification of conserved genes, this bacterial species is not included in the analysis 
leading to tree (c). Also, in (c) analysis, hyphens (-) were placed in DNAML input file to indicate non-preserved 
regulatory motifs. Rso: R. solanacearum; Pae: P. aeruginosa; Pmu: P. multocida; Hin: H. influenzae; Vch: V. cholerae; 
Ype: Y. pestis; Kpn: K. pneumoniae; Stm: S. typhimurium; Eco: E. coli; Sfl: S. flexneri. 
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