
This is the **accepted version** of the journal article:

Teles, Mariana; Pacheco, M. Guilherme Garcês; Santos Maroño, Mauro.
«Anguilla anguilla L. liver ethoxyresorufin O-deethylation, glutathione S-transferase, erythrocytic nuclear abnormalities, and endocrine responses to naphthalene and β -naphthoflavone». *Ecotoxicology and Environmental Safety*, Vol. 55, Num. 1 (May 2003), p. 98-107 DOI 10.1016/S0147-6513(02)00134-3, PMID 12706398

This version is available at <https://ddd.uab.cat/record/323791>

under the terms of the license.

Anguilla anguilla L. liver ethoxyresorufin O-deethylation, glutathione S-transferase, erythrocytic nuclear abnormalities, and endocrine responses to naphthalene and b-naphthoflavone

M. Teles,* M. Pacheco, and M.A. Santos

Abstract

The effects of naphthalene (NAP) and b-naphthoflavone (BNF) on phase I biotransformation and genotoxicity in *Anguilla anguilla* L. were evaluated. Phase II biotransformation and cortisol levels were also assessed in NAP-treated fish. Two groups of eels were exposed to either a NAP or a BNF concentration range (0.1–2.7 mM) for different exposure periods (2–72 h). An early significant ethoxyresorufin O-deethylation (EROD) activity inhibition was observed, especially for the highest NAP concentrations at 2–6 h exposure and for BNF at 2 h exposure. However, a significant EROD activity increase was detected from 16 to 72 h exposure for NAP and from 4 to 72 h exposure for BNF. The cytochrome P450 (P450) content was not dose related. However, with regard to BNF exposure, P450 was the first biomarker to respond. Liver alanine transaminase (ALT) activity was measured as an indicator of hepatic health condition. ALT results demonstrated that the EROD activity decrease, previously described for NAP, was not related to tissue damage. Nevertheless, the highest BNF concentrations were demonstrated to induce liver damage and to impair the EROD activity response. An increased genotoxic response, measured as erythrocytic nuclear abnormalities (ENA), was observed during the first 8 h NAP exposure. However, for exposures longer than 8 h, ENA frequency returned to the control levels. This response profile may reflect a considerable DNA repair capacity and/or a metabolic adaptation providing an efficient NAP biotransformation and consequent detoxification. BNF revealed no ENA alterations for all concentrations and exposure lengths. In the NAP experiment a causal relationship between immature erythrocytes (IE) and ENA frequency disappearance was not found. BNF results with regard to IE frequency revealed an ability to alter the balance between erythropoiesis and removal of erythrocytes. Liver glutathione S-transferase activity was significantly induced after 2 and 48 h NAP exposure. A cortisol-impaired response seems to occur from 4 to 24 h NAP exposure, demonstrating an endocrine disruption. However, an adaptation process seems to occur after 48 h, since the plasma cortisol had a tendency to increase. The present findings confirm the usefulness of the adopted biomarkers. The ecological risk associated with aquatic contamination by NAP was also confirmed by the present data.

1. Introduction

A large number of xenobiotic compounds have been produced in the 20th century as a result of petroleum exploitation, with the aquatic environment being the ultimate sink for most of them. Therefore, the vast majority of aquatic animals have become increasingly exposed to industrially derived xenobiotic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) (George, 1994). These widespread environmental contaminants, originating mainly from combustion processes, oil spills, land runoff, and domestic and industrial wastes, are of international concern due to

their persistence in the environment and mutagenic/carcinogenic potential. Naphthalene (NAP), the simplest PAH, is frequently encountered in soil and in aquatic environments (Irwin et al., 1997).

Fish readily take up lipophilic organic contaminants such as NAP from the environment and possess a variety of cellular mechanisms for protection against the deleterious effects of such chemicals (Peters et al., 1997). These mechanisms include biotransformation, which converts organic contaminants to water-soluble and excretable metabolites. However, biotransformation enzymes may also convert certain xenobiotics to intermediates, which are more toxic than the parent compounds. Biotransformation can generally be simply divided into phases I and II: phase I is the alteration of the original foreign molecule so as to add a functional

*Corresponding author.

E-mail address: mteles@bio.ua.pt (M. Teles).

group, which can be conjugated in phase II. Biotransformation studies in fish revealed that PAHs exposure induces cytochrome P450 (P450)-dependent enzymatic activities such as ethoxresorufin O-deethylation (EROD) (phase I). Therefore, the EROD activity determination has been adopted as a valuable indicator allowing the detection of PAHs at presumably toxic levels.

A common mechanism for protection against biotransformed electrophilic xenobiotics is conjugation with glutathione (GSH) in phase II detoxification. This reaction is catalyzed by glutathione S-transferase (GST) and accounts for one of the primary routes of NAP detoxification (Mitchell et al., 2000). Since phase II detoxification enzymes are often inducible in aquatic animals, it has been suggested that its activity might also be a useful index of organic compounds exposure (Gallagher et al., 2001).

Some authors have successfully employed aquatic organisms in cytogenetic studies, for chromosome aberrations, sister chromatid exchange, micronuclei (Peschet al., 1981; Kligerman, 1982), and erythrocytic nuclear abnormalities (ENA), which include micronuclei (supernumerary nucleus) and other nuclear abnormalities quantification (Pacheco and Santos, 1997, 2002; Aylló n and Garcia-Vasquez, 2001).

Fish endocrine system can be adversely affected by toxic chemicals. Therefore, biochemical alterations and consequent effects on specific hormonal functions may constitute important stress biomarkers (Hontela, 1997). In this context, changes in interrenal function, measured as plasma cortisol, are recognized as important fish stress biomarkers (Santos and Pacheco, 1996).

The toxic effects of NAP in fish have been poorly studied. The first reported studies concern lethality experiments (Boylan and Tripp, 1971; Anderson et al., 1974). Levitan and Taylor (1979) found a general plasma cortisol increase in *Fundulus heteroclitus* exposed to NAP under different salinities. Both NAP genotoxic potential measured as ENA increase in *Dicentrarchus labrax* (Gravato and Santos, 2002) and an oxidative stress induction in *Anguilla anguilla* L. (Ahmad et al., 2001) have been observed.

b-Naphthoflavone (BNF) has been considered the most potent P450 mixed-function oxydase (MFO) inducer among a number of synthetic flavonoid compounds (McKillop and Case, 1991). This compound is commonly used to evaluate fish biotransformation responses due to its MFOs responses, considered similar to those displayed by PAHs inducers, such as benzo(a)pyrene (BaP) (Okey, 1990; Novi et al., 1998). Thus, in a biotransformation context, BNF is regarded as a PAH-type inducer. Previous investigations with *A. anguilla* revealed that BNF is a strong EROD inducer both in adult eels intraperitoneally injected (Pacheco and Santos, 1998) and in glass eels (leptocephalic stage)

exposed to BNF-contaminated water (Pacheco and Santos, 1997). McKillop and Case (1991) reviewed the information available relating to BNF mutagenicity and carcinogenicity. Their literature search produced no primary reports on the mutagenicity/carcinogenicity of BNF, suggesting that no definitive study had been carried out specifically to assess these BNF effects. Furthermore, the majority of the studies were carried out in mammals; thus, doubt with regard to its potential in other animal groups remains. Recently, the BNF mutagenicity potential was demonstrated in fish by Pacheco and Santos (1997) who observed a significant ENA increase in glass eels. In this perspective, further fish studies are needed to clarify the BNF genotoxic potential in fish.

This research concerns the study of the effects of NAP on liver biotransformation, measured as P450 content, EROD (phase I), and GST activity (phase II), and on genotoxicity, measured as ENA. The immature erythrocytes (IE) frequency was determined to assess changes in the erythropoiesis/erythrocytic catabolism balance and its influence on ENA expression. Liver alanine transaminase (ALT) activity was measured as an indicator of hepatic health condition. The endocrine disruption was evaluated as plasma cortisol concentration.

Additionally, BNF was tested as a reference compound for biotransformation parameters (phase I) and to assess its genotoxic potential in fish, as ENA.

2. Material and methods

2.1. Test animals

A. anguilla L. (yellow eel), within average weight of 30 g, were collected from the Aveiro lagoon, Murtosa. The eels were transported in anoxia and acclimated to laboratory conditions for 1 week prior to experimentation. During recovery and experimental periods, eels were kept in 80-L aquaria at 20°C under a natural photoperiod, in recirculating, aerated, filtered, and dechlorinated tap water. Fish were fed neither under laboratory adaptation nor during the experimental procedure.

2.2. Chemicals

NAP, 7-ethoxresorufin, dithionite, 1-chloro-2,4-dinitro-benzene (CDNB) and BNF were purchased from Sigma Chemicals Co. (St. Louis, MO, USA). NADPH was purchased from Roche (Germany).

2.3. Experimental design

Two different lots of eels were exposed either to a NAP or a BNF concentration range—0 (control), 0.1,

0.3, 0.9, and 2.7 mM—for 2, 4, 6, 8, 16, 24, 48, and 72 h. The appropriate amount of NAP or BNF was previously dissolved in 1 mL of dimethyl sulfoxide (DMSO) and added to the experimental aquaria. The same volume of DMSO was added to the control aquaria. During the exposure time the water was not replaced.

Fish were killed at each sampling point and their blood and liver were collected. Liver was immediately frozen in liquid nitrogen and stored at -20°C until homogenization. Blood was used for smear preparation and for plasma isolation using an Eppendorf centrifuge (14,000 rpm). The following parameters were determined for NAP and BNF experiments with the exceptions of plasma cortisol and liver GST activity which were measured only for the NAP experiment.

2.4. Biochemical analyses

2.4.1. Liver EROD activity

Liver microsomal fraction was obtained according to the methods of Lange et al. (1992) and Monod and Vindimian (1991), as adapted by Pacheco and Santos (1998). Liver EROD activity was measured in microsome suspension as described by Burke and Mayer (1974).

2.4.2. Liver cytochrome P450 content

Cytochrome P450 content was determined using the dithionite-reduced carbon monoxide difference spectrum between 450 and 490 nm, as previously described by Hermens et al. (1990).

2.4.3. Liver GST activity

GST activity was determined in the cytosolic fraction as described by Lemaire et al. (1996), using CDNB as substrate (Habig et al., 1974). The assay, prepared in the cuvette, was carried out in a 2-mL mixture of 0.2 M phosphate buffer (pH 7.4), 0.2 mM CDNB, and 0.2 mM GSH. The reaction was initiated by addition of 10 mL sample. The increase in absorbance at 340 nm was recorded at 25°C for 3 min.

2.4.4. Liver ALT activity

The liver ALT activity was measured in the cytosolic fraction according to the method of Reitman and Frankel (1957).

2.4.5. Protein measurement

Microsomal and cytosolic protein concentrations were determined according to the Biuret method (Gornall et al., 1949) using bovine serum albumin (E. Merck-Darmstadt) as a standard.

2.4.6. Plasma cortisol

Plasma cortisol quantification was performed using a diagnostic enzyme-immunological kit (Boehringer Mannheim GmbH No. 1288946).

2.5. ENA frequency

Genotoxicity was tested using the ENA assay. The nuclear abnormalities were scored in 1000 mature erythrocytes (ME) per fish, according to the criteria of Schmid (1976), Carrasco et al. (1990), and Smith (1990), adapted by Pacheco and Santos (1996). According to these authors, nuclear lesions were scored into one of the following categories: micronuclei, lobed nuclei, dumbbell-shaped or segmented nuclei, and kidney-shaped nuclei. The final result was expressed as the mean value (%) of the sum for all the individual lesions observed.

2.6. IE frequency

IE were scored for each of the 1000 erythrocytes (immature+mature) per fish. Results were presented as a frequency (%) resulting from the expression

$$\text{IE frequency } \delta \text{ } \frac{1}{4} \text{ } \frac{1}{4} \text{ } \text{No: IE} = \delta \text{ } \text{No: IE } \frac{1}{4} \text{ } \text{No: ME} \frac{1}{4} \text{ } \text{No: ME} \times 1000:$$

The distinction between ME and IE was based on the criteria established by Hibiya (1982) and Smith (1990).

2.7. Statistical analysis

Mean \pm standard error (SE) was calculated for each experimental group, and data were analyzed for significance of differences between control and exposed groups according to the two-tailed Student t test (Bailey, 1959). Experiments were carried out using test groups of five eels ($n = 5$).

3. Results

3.1. NAP experiment

3.1.1. Liver EROD activity

A significant inhibition in liver EROD activity was observed during the first 6 h exposure (Fig. 1), especially for the highest NAP concentrations. However, a general significant liver EROD increase was detected from 16 to 72 h exposure. The maximum liver EROD activity level (7.06 pmol/min/mg protein) was reached at 48 h exposure to 2.7 mM.

3.1.2. Liver P450 content

A general decreasing tendency for liver cytochrome P450 content was observed for the first 6 h exposure to all NAP concentrations (Fig. 2), despite the absence of

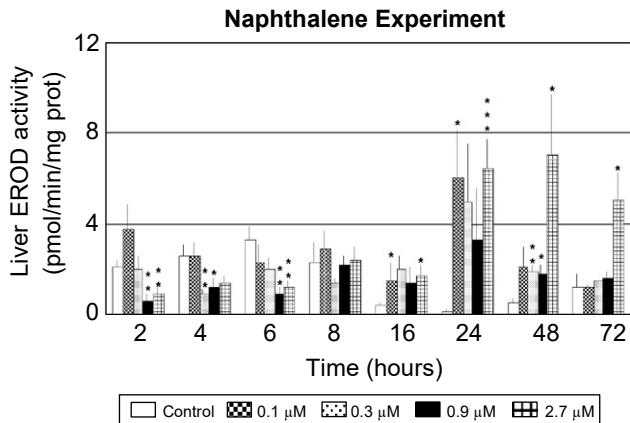


Fig. 1. A. anguilla liver EROD activity after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01; ***P<0.001:

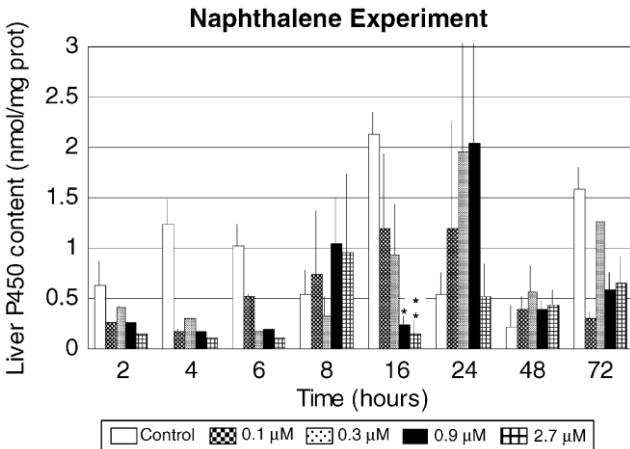


Fig. 2. A. anguilla liver P450 content after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01:

any statistical significance. A significant decrease was observed at 16 h exposure to 0.9 and 2.7 mM (P<0.05 and P<0.01; respectively).

3.1.3. Liver GST activity

The GST activity demonstrated a significant induction only at 2 (P<0.01) and 48 h (P<0.001) exposure to 0.9 mM NAP (Fig. 3). However, this concentration induced a general GST increase during the whole experiment.

3.1.4. Liver ALT activity

In general, no significant alterations were observed in liver ALT activity during the whole NAP exposure period (Fig. 4), except for 0.3 mM at 8 h exposure where a significant increase was detected (P<0.05).

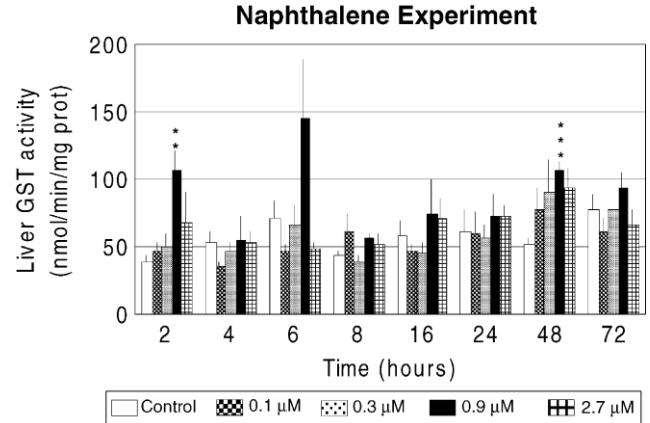


Fig. 3. A. anguilla liver GST activity after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: **P<0.01; ***P<0.001:

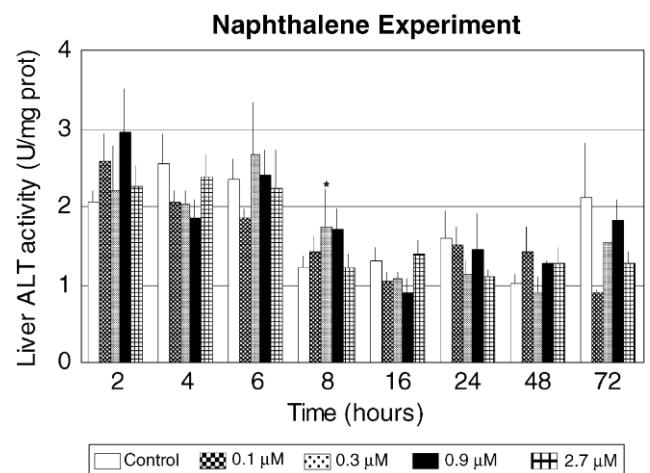


Fig. 4. A. anguilla liver ALT activity after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05:

3.1.5. ENA frequency

At 2 h exposure to NAP, significant ENA increases were observed for 0.3 and 2.7 mM (P<0.01); an increased ENA frequency was observed at 4 h exposure for 0.9 and 2.7 mM (P<0.05) and at 6 h for 0.3 mM (P<0.05), whereas at 8 h all the tested concentrations significantly increased ENA (0.1 mM, P<0.01; 0.3 mM, P<0.01; 0.9 mM, P<0.01; 2.7 mM, P<0.05) (Fig. 5). ENA frequency returned to control levels after exposures longer than 8 h.

3.1.6. IE frequency

At 4 h a significant increase was observed for 0.1 (P<0.05) and 0.3 mM (P<0.001), whereas at 24 h a significant decrease (P<0.05) was detected for 0.1 mM (Fig. 6).

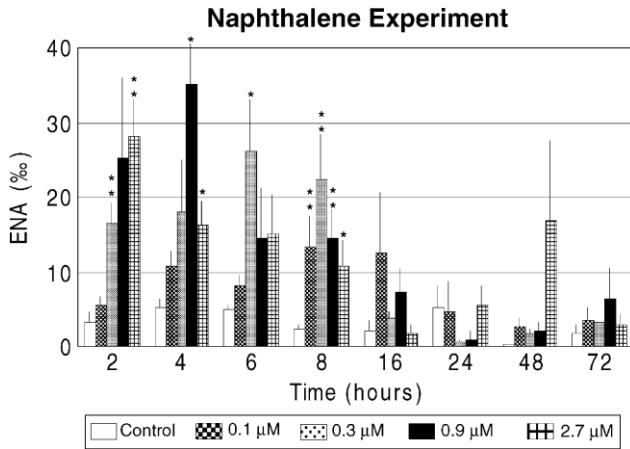


Fig. 5. A. anguilla ENA frequency after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01:

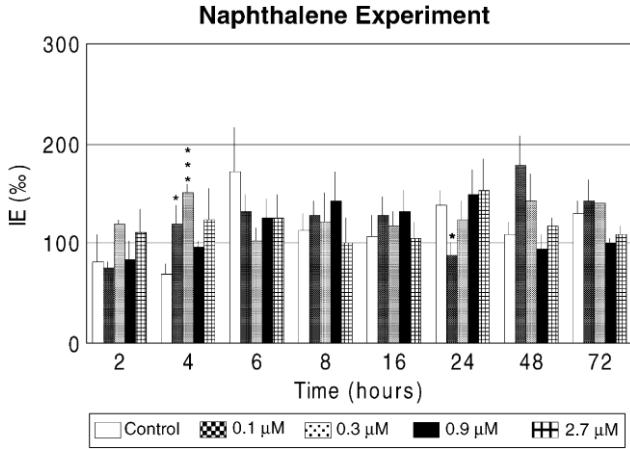


Fig. 6. A. anguilla IE frequency after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01:

3.1.7. Plasma cortisol

A plasma cortisol level decreasing trend was observed from 4 to 24 h (Fig. 7). This tendency was confirmed at 6 h where a significant decrease was observed for 0.1 mM (P<0.05), 0.3 mM (P<0.01), and 0.9 mM (P<0.05). After 48 h the previous tendency disappeared and an opposite trend was observed.

3.2. BNF experiment

3.2.1. Liver EROD activity

The A. anguilla response after 2 h exposure suggests an initial inhibition effect which became evident by the complete absence of EROD activity increase and mainly by the significant activity decrease observed for 0.9 mM

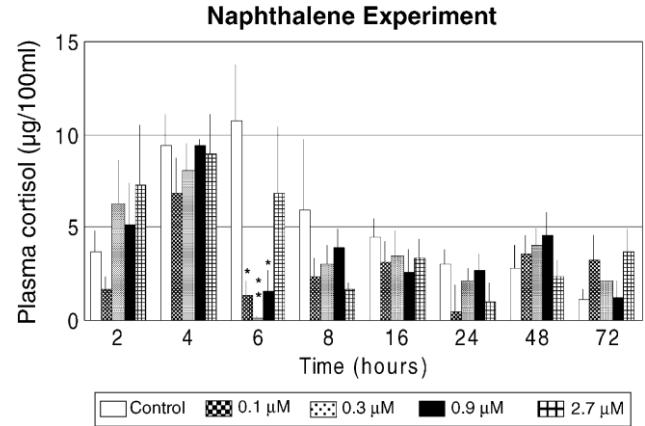


Fig. 7. A. anguilla plasma cortisol levels after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to naphthalene (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01:

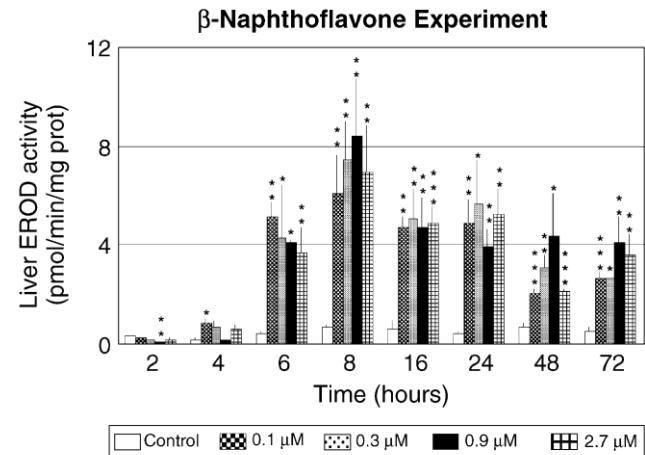


Fig. 8. A. anguilla EROD activity after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to β-naphthoflavone (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: **P<0.01; ***P<0.001:

BNF (P<0.001) (Fig. 8). The first significant EROD increase was observed after 4 h exposure (P<0.05) but just for the lowest BNF concentration (0.1 mM). During the exposure period between 6 and 72 h, all the concentrations were able to significantly increase EROD activity. For each exposure concentration, a global analysis of EROD results reveals a time-related tendency to increase from 2 to 8 h exposure, where it reaches the maximum values.

3.2.2. Liver P450 content

This biomarker exhibited a fast significant increase at 2 h 0.1 mM BNF exposure (P<0.01) (Fig. 9). This parameter demonstrated a general tendency to increase

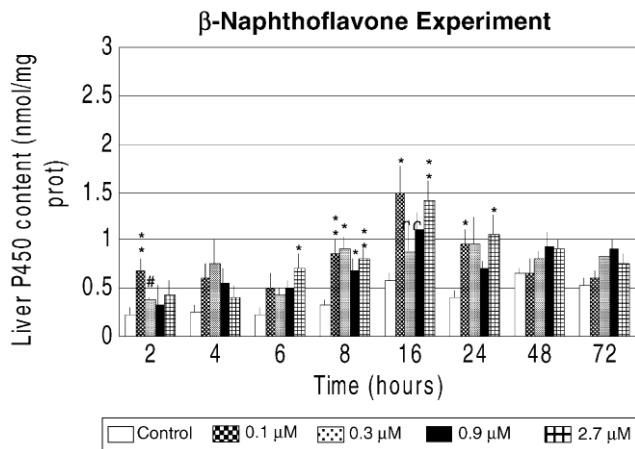


Fig. 9. A. anguilla liver P450 content after 2, 4, 6, 8, 16, 24, 48, and 72 hexposure to b-naphthoflavone (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01; #P<0.1 mM vs 0.3 mM.

at all BNF exposure lengths. However, significant responses were observed only at dispersed points and there was an unclear dose-response relationship. A response profile similar to that described for EROD activity was observed, i.e., the maximum values were obtained after 8 and 16 hexposure, followed by a tendency to decline. Similar to the EROD response, an inhibition effect seems to occur in P450 content, particularly for short exposures, as confirmed by a significant decrease observed at 2 h for 0.3 mM, compared to 0.1 mM (P<0.05). Nevertheless, a decline of this inhibitory action was observed as result of an increased exposure length.

3.2.3. Liver ALT activity

The lowest BNF concentration (0.1 mM) was able to significantly increase ALT activity, as demonstrated at 2 and 24 hexposure (P<0.05) (Fig. 10). However, the highest BNF concentrations were able to induce liver damage sporadically, as it occurred for 0.9 mM at 8 (P<0.05) and 16 h (P<0.01) exposure, and for 2.7 mM at 6 (P<0.05) and 16 h (P<0.01) exposure.

3.2.4. ENA frequency

The genotoxic response revealed no alterations for all tested concentrations and exposure times (Fig. 11).

3.2.5. IE frequency

The IE frequency was markedly affected by BNF exposure (Fig. 12). The results revealed significant decreases for 24 and longer exposures. At some points in time, such as 24 h, a dose-response relationship seems to be evident; i.e., the IE frequency decreases as the BNF dose increases.

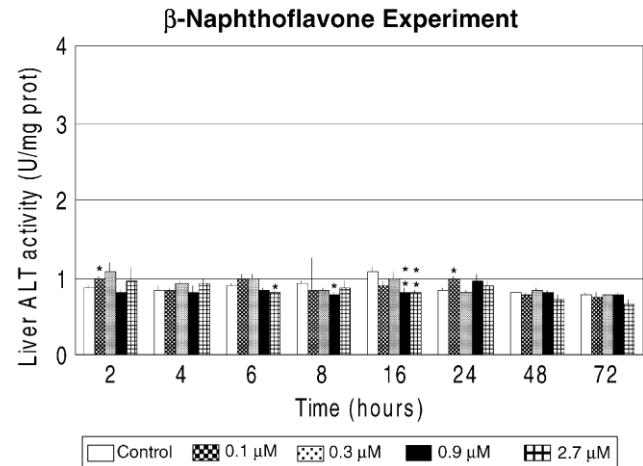


Fig. 10. A. anguilla liver ALT activity after 2, 4, 6, 8, 16, 24, 48, and 72 hexposure to b-naphthoflavone (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment). Differences from control: *P<0.05; **P<0.01.



Fig. 11. A. anguilla ENA frequency after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to b-naphthoflavone (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE (n 1/5/treatment).

4. Discussion

To our knowledge there are very few studies on the effects of NAP on biotransformation, genotoxicity, and endocrine parameters in fish.

It is well known that xenobiotics classified as PAH-type compounds induce hepatic microsomal cytochrome P450-dependent reactions in fish (Fouché court et al., 1999). Measurements of aryl hydrocarbon hydroxylase (AHH) and EROD (phase I) activities in fish appear to be the most sensitive means for determining water contamination by PAHs. These phase I enzyme activities occur at low and sometimes undetectable levels in control or untreated fish (Förlin et al., 1994). Several studies have demonstrated liver EROD induction in fish

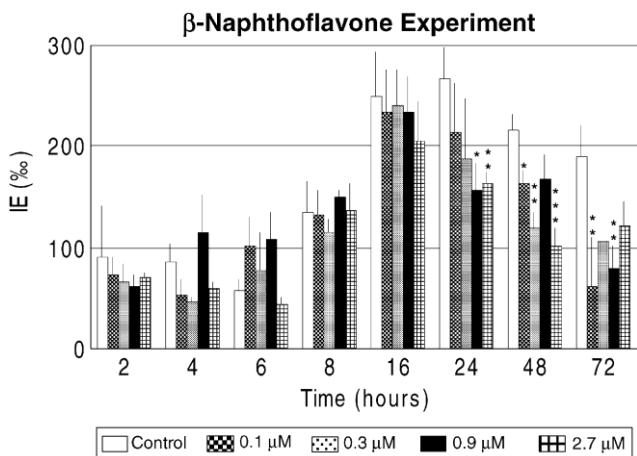


Fig. 12. *A. anguilla* IE frequency after 2, 4, 6, 8, 16, 24, 48, and 72 h exposure to *b*-naphthoflavone (0, 0.1, 0.3, 0.9, and 2.7 mM). Values represent the means and SE ($n = 5$ /treatment). Differences from control: * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$:

exposed to PAHs such as dibenzo[a]pyrene (Vetter et al., 1985) and BaP (Wolkers et al., 1996). Nevertheless, Bols and coworkers (1999) failed to obtain EROD activity induction by NAP in a trout liver cell line.

The results of the present study indicated that NAP could modulate the biotransformation metabolism, expressed as liver EROD activity increase. However, compared to the positive control (BNF), NAP induced a later EROD rise (16–72 h).

Despite the EROD induction potential, the current NAP and BNF results also revealed an inhibitory capacity detected especially for the highest concentrations (0.9 and 2.7 mM) during the first 6 h NAP exposure and at 2 h BNF exposure (0.9 mM). This inhibitory effect may be explained by the high xenobiotic exposure concentrations. Previous studies demonstrated that several CYP1A1 inducers could also inhibit the MFO catalytic activity (EROD or AHH) at high concentrations (Stegeman and Hahn, 1994). Such double performance was found in fish exposed, either *in vivo* or *in vitro*, to high doses of polychlorinated biphenyl (PCBs) congeners (Boon et al., 1992; Hahn et al., 1993), BaP (Goddard et al., 1987), and BNF (Haasch et al., 1993). The majority of cytochrome P450 enzyme inhibitors act either by competitive inhibition or by mechanism-based inactivation in which the inhibitor is metabolized by the cytochrome P450 into a product that covalently modifies the active site and thereby inactivates the enzyme (Stegeman and Hahn, 1994). In the present study, EROD activity and P450 content presented a concomitant inhibitory tendency during the first hours of exposure, especially in the NAP experiment. However, in this experiment a significant EROD activity increase corresponds to a significant decrease in cytochrome P450 content (16 h).

The liver EROD decrease observed during the first 6 h NAP exposure was not followed by a liver ALT decrease. Moreover, liver ALT activity at 8 h exposure to 0.3 mM NAP revealed a significant increase. Thus, the observed EROD activity decrease is not explained by liver lesions.

Liver EROD induction observed after 16-hNAP and 4-h BNF exposures might be explained by either a progressive fish acclimation and physiological adjustment, reducing the inhibition efficiency, or by a decline of the xenobiotic levels in the aquaria.

Globally, the current phase I results proved that liver EROD activity rather than total cytochrome P450 is a good biomarker for PAH and PAH-like compounds exposure, providing an early biological warning signal.

Increases in GSH, glutathione reductase, and GST levels have been linked to organism resistance and adaptation to a variety of physical and chemical stresses found in the environment (Gallagher et al., 2001). Considering the current NAP results, a liver GST activity tendency to increase was observed from 2 to 72 h, being significantly expressed at 2 and 48 h. GST induction could reflect a stress response to the chemical, resulting in a phase II conjugation process, where the metabolites formed in phase I are combined with endogenous molecules to form conjugates. Nevertheless, it is difficult to establish a direct correspondence between GST, EROD, and P450 content responses.

In agreement with our results, a hepatic GST activity increase was previously observed in NAP-treated mice (Mitchell et al., 2000). Additionally, the same response was observed in BaP-treated fish (Lemaire et al., 1992; George, 1994). Some authors suggested that the absence of GST activity variation could be followed by induction of other conjugases, such as UDP-glucoronyl transferase (Novi et al., 1998).

The *A. anguilla* ENA response to both compounds was clearly different. A significant ENA frequency increase from 2 to 8 h exposure to NAP was observed, demonstrating an early genotoxic effect. However, BNF did not reveal any ENA increase for all the exposure durations.

PAHs mutagenic characteristics are strongly related to their biotransformation, especially the initial oxidative metabolism carried out by cytochrome P450 monooxygenases. However, considering the early ENA induction observed in the NAP experiment concomitant to an EROD decrease, it might be suggested that NAP is genotoxic itself, without the need of bioactivation. Since NAP is the simplest PAH, having only two fused aromatic rings, its entrance into the cell is facilitated and a large number of these molecules might rapidly injure the DNA. The increased EROD activity observed from 16 to 72 h NAP exposure coincides with an ENA decline. Furthermore, a significant GST increase occurred at 48 h exposure. These facts indicate that the

phase I activation did not carry negative consequences for erythrocytic DNA and the whole detoxification process (phases I and II) seems to be effective, preventing ENA appearance. This explanation is supported by a previous human study (Tingle et al., 1993) in which liver cytochrome P450 enzymes metabolized NAP to a cytotoxic and protein-reactive, but not genotoxic, metabolite (probably an epoxide). This is rapidly and efficiently detoxified by microsomal epoxide hydrolase forming stable metabolites.

The observed NAP genotoxic potential is in agreement with previous results of Gravato and Santos (2002) in *Dicentrarchus labrax* and Delgado-Rodriguez et al. (1995) in *Drosophila melanogaster*.

The hypothesis presented above for the NAP genotoxic mechanism may also be applicable to the current ENA/EROD results in the BNF experiment, since an EROD induction was observed from 4 to 72 h exposure without a simultaneous ENA response. This is in agreement with the results of Pacheco and Santos (1997) who observed in glass eels an ENA appearance at 6 and 9 days BNF exposure following a time-related tendency to decrease in EROD activity. Additionally, with respect to the previous findings, it must be suggested that longer BNF exposures should be used to assess its genotoxic potential.

Previous investigations suggested that the expression of genotoxic effects, such as micronuclei or other ENA, could be masked by a direct erythropoiesis inhibition (Das and Nanda, 1986; Dinnen et al., 1988) and/or by an increased erythrocytic catabolism (Pacheco and Santos, 1997). Alterations in the balance of erythropoiesis/erythrocytic catabolism could be assessed by IE frequency changes. In the NAP experiment a causal relationship between IE frequency and ENA disappearance was not found. However, erythrocytic catabolism needs to be studied. In the BNF experiment IE frequency data indicated an ability to alter the balance between erythropoiesis and erythrocytes removal. Therefore, it was evident that ENA expression from 24 to 72 h was affected by an IE frequency decrease, becoming more obvious at longer exposures to high BNF doses. Consequently, a causal relationship between the previous disruption observed at 24, 48 and 72 h and the absence of ENA increase may be suggested. If the erythrocytes are not produced or are catabolized more intensely, the ENA appearance can be masked despite the presence of genotoxic metabolites.

The endocrine system plays a central role in fish stress mechanisms. Cortisol, in particular, is a crucial hormone in the physiological response to stressors. Previous studies demonstrated that acute exposures to xenobiotics, namely PAHs (Thomas and Rice, 1987), in addition to capture and handling (Vijayan et al., 1997), elevate plasma cortisol. Nevertheless, effects of chronic exposures to pollutants are less well understood (Hontela,

1997). Fish exposed to heavy metals exhibited an initial plasma cortisol rise followed by a decline to control levels (Pratap and Wenderlaar, 1990). According to Hontela (1997), fish chronically exposed to PAHs, PCBs, and heavy metals were unable to increase cortisol in response to a capture stress. The authors explained this fact by an exhaustion of the cortisol-producing endocrine system, possibly as a result of its prolonged hyperactivity. Other authors demonstrated that the interrenal function might also be affected by short-term exposures. Eels exposed either to bleached kraft pulp mill effluent for 4 h (Santos and Pacheco, 1996) or to diesel water-soluble fraction for 3 to 3 days (Pacheco and Santos, 2002) exhibited an impairment in the expected plasma cortisol increase, as a response to the stress of capture and handling.

In the current study, a cortisol-impaired response seems to occur from 4 to 24 h NAP exposure, demonstrating an interrenal disruption after short-term exposures. However, an adaptation process seems to occur after 48 h NAP exposure, since the plasma cortisol levels revealed a tendency to increase in treated fish. These results are in agreement with the findings of Pacheco and Santos (2001) who detected a similar response profile. In opposition, Levitan and Taylor (1979) found a general plasma cortisol increase in *F. heteroclitus* exposed to 4 mg/L NAP for 2–12 h. This disagreement may be explained by the use of different fish species and/or by the concentration levels adopted (about 10-fold lower in the current work).

There is some evidence that acute exposures could exert adrenal cytotoxicity, impairing the adrenal function and the ability to secrete cortisol (Jönnsson, 1994). Nevertheless, if this cytotoxic effect is related to the observed interrenal impairment in the present study, a recovery occurs after 24 h NAP exposure. Further investigations are needed to clarify the mechanisms involved in the cortisol responses, focusing mainly on the inhibitory processes in short-term exposures.

5. Conclusions

The current results led to the following conclusions: (1) Naphthalene (NAP) is an aquatic contaminant, which induces early genotoxic damage in erythrocytes and a later liver ethoxyresorufin O-deethylation (EROD) induction. (2) NAP is a less potent EROD inducer than the positive control (BNF). (3) NAP is more genotoxic than BNF. (4) The increased ENA frequency induced by NAP is not directly related to high EROD activity. Furthermore, ENA seems to be expressed when the detoxification mechanisms are depressed. (5) The adoption of a multibiomarker battery focused on biotransformation, genotoxicity and endocrine levels should be a good biomonitoring strategy,

facilitating the understanding of the mechanisms involved in fishtoxic responses.

Acknowledgments

The authors express their appreciation for the financial support provided by the Aveiro University Research Institute (CZCM/CESAM).

References

Ahmad, I., Pacheco, M., Santos, M.A., 2002. Naphthalene-induced differential tissue damage association with circulating fish phagocytes induction. *Ecotoxicol. Environ. Saf.*, in press.

Anderson, J.W., Neff, J.M., Cox, H.E., Tatum, H.E., Hightower, G.M., 1974. The effects of oil on estuarine animals: toxicity, uptake and depuration, respiration. In: Vernberg, F.J., Vernberg, W.B. (Eds.), *Pollution and Physiology of Marine Organisms*. Academic Press, New York, pp. 285–310.

Aylló n, F., García-Vasquez, E., 2001. Micronuclei and other nuclear lesions as genotoxicity indicators in Rainbow Trout *Oncorhynchus mykiss*. *Ecotoxicol. Environ. Saf.* 49, 221–225.

Bailey, N.J., 1959. *Statistical Methods in Biology*. English University Press, London.

Bols, N.C., Schrimmer, K., Joyce, E.M., Dixon, D.G., Greenberg, B.M., White, J.J., 1999. Ability of polycyclic aromatic hydrocarbons to induce 7-ethoxyresorufin-O-deethylase activity in a trout liver cell line. *Ecotoxicol. Environ. Saf.* 44, 118–128.

Boon, J.P., Everaarts, J.M., Hillebrand, M.J., Eggens, M.L., Pijnenburg, J., Goks'yr, A., 1992. Changes in levels of hepatic biotransformation enzymes and hemoglobin levels in female plaice (*Pleuronectes platessa*) after oral administration of a technical polychlorinated biphenyl mixture (Clophen A40). *Sci. Total Environ.* 114, 113–133.

Boylan, D.B., Tripp, B.W., 1971. Determination of hydrocarbons in seawater extracts of crude oil and crude oil fractions. *Nature* 230, 44–47.

Burke, M.D., Mayer, R.T., 1974. Ethoxyresorufin: direct fluorimetric assay of a microsomal-O-deethylation which is preferentially inducible by 3-methylcholanthrene. *Drug. Metab. Dispos.* 2, 583–588.

Carrasco, K.R., Tilbury, K.L., Myers, M.S., 1990. Assessment of the piscine micronuclei test as an in situ biological indicator of chemical contaminant effects. *Can. J. Fish. Aquat. Sci.* 47, 2123–2136.

Das, R.K., Nanda, N.K., 1986. Induction of micronuclei in peripheral erythrocytes of the fish, *Heteropneustes fossilis*, by mitomycin C and paper mill effluent. *Mutat. Res.* 175, 67–71.

Delgado-Rodriguez, A., Ortiz-Martínez, R., Graf, U., Villalobos-Pietrini, R., Gomez-Arroyo, S., 1995. Genotoxicity activity of environmentally important polycyclic aromatic hydrocarbons and their nitro derivatives in the wing spot test in *Drosophila melanogaster*. *Mutat. Res.* 341, 235–247.

Dinnen, R.D., Tomlinson, S.M., Hart, D., Chopra, C., Heddle, J.A., 1988. Application of a micronucleus assay to the peripheral blood cells of rainbow trout, *Salmo gairdneri*. *Can. Tech. Rep. Fish. Aquat. Sci.* 1607, 69–78.

Förlin, L., Goks'yr, A., Hus'ý, A., 1994. Cytochrome P450 monooxygenase as indicator of PCB/dioxin like compounds in fish. In: Kramer, K.J.M. (Ed.), *Biomonitoring of Coastal Water and Estuaries*. CRC Press, Boca Raton, FL, pp. 135–144.

Fouqué court, M.O., Arnold, M., Berny, P., Videmann, B., Rether, B., Rivière, J.L., 1999. Assessment of the bioavailability of PAHs in rats exposed to a polluted soil by natural routes: induction of EROD activity and DNA adducts and PAH burden in both liver and lung. *Environ. Res.* 80, 330–339.

Gallagher, E.P., Gross, T.S., Sheehy, K.M., 2001. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (*Ameriurus nebulosus*). *Aquat. Toxicol.* 55, 223–237.

George, S.G., 1994. Enzymology and molecular biology of Phase II xenobiotic conjugating enzymes in fish. In: Malins, D.C., Ostrander, G.K. (Eds.), *Aquatic Toxicology, Molecular, Biochemical and Cellular Perspectives*. Lewis, Boca Raton, FL, pp. 37–85.

Goddard, K.A., Schultz, R.J., Stegeman, J.J., 1987. Uptake, toxicity, and distribution of benzo(a)pyrene and monooxygenase induction in topminnows *Poeciliopsis monacha* and *Poeciliopsis lucida*. *Drug. Metab. Dispos.* 15, 449–455.

Gornall, A.C., Bardawill, C.J., David, M.M., 1949. Determination of serum proteins by means of the biuret reaction. *J. Biol. Chem.* 177, 751–766.

Gravato, C., Santos, M., 2002. Juvenile sea bass liver P450 EROD induction and erythrocytic genotoxic responses to PAH and PAH-like compounds, unpublished.

Haasch, M.L., Quardokus, E.M., Sutherland, L.A., Goodrich, M.S., Lech, J.J., 1993. Hepatic CYP1A1 induction in rainbow trout by continuous follow-through exposure to b-naphthoflavone. *Fundam. Appl. Toxicol.* 20, 72–82.

Habig, W.H., Pabst, M.J., Jokoby, W.B., 1974. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. *J. Biol. Chem.* 249, 7130–7139.

Hahn, M.E., Lamb, T.M., Schultz, M.E., Smolowitz, M., Stegeman, J.J., 1993. Cytochrome P4501A induction and inhibition by 3,3',4,4'-tetrachlorobiphenyl in an Ah receptor-containing fish hepatoma cell line (PLHC-1). *Aquat. Toxicol.* 26, 185–208.

Hermens, J.L.P., Bradbury, S.P., Broderius, S.J., 1990. Influence of cytochrome P450 mixed-function oxidase induction on the acute toxicity to rainbow trout (*Salmo gairdneri*) of primary aromatic amines. *Ecotoxicol. Environ. Saf.* 20, 156–166.

Hibiya, T., 1982. *An Atlas of Fish Histology—Normal and Pathological Features*. Kodansha, Tokyo.

Hontela, A., 1997. Endocrine and physiological responses of fish to xenobiotics: role of glucocorticosteroid hormones. *Rev. Toxicol.* 1, 1–46.

Irwin, R.J., VanMouwerik, M., Stevens, L., Seese, M.D., Basham, W., 1997. *Environmental Contaminants Encyclopedia*. National Park Service, Water Resources Division, Fort Collins, CO. (Distributed within the Federal Government as an electronic document (projected public availability on the internet or NTIS: 1998)).

Jönnsson, C.J., 1994. Decreased plasma corticosterone levels in suckling mice following injection of the adrenal toxicant, MeSO-2-DDE, to the lactating dam. *Pharmacol. Toxicol.* 74, 58–60.

Kligerman, A., 1982. Fishes as biological detectors of the effects of genotoxic agents. In: Heddle, J.A. (Ed.), *Mutagenicity: New Horizons in Genetic Toxicology*. Academic Press, New York, pp. 135–456.

Lange, U., Danischewski, D., Siebers, D., 1993. Regional variability and sexual differences in ethoxyresorufin O-deethylase activities and cytochrome P450 concentration in the liver of mature dab (*Limanda limanda* L.) in German Bight. In: Braumbeck, T., Hunke, W., Segner, H. (Eds.), *Fish Ecotoxicology and Ecophysiology*. VCH Verlag Chemie.

Lemaire, P., Mathieu, A., Giudicelli, J., Lafaurie, M., 1992. Effects of diet on the responses of hepatic biotransformation enzymes to benzo(a)pyrene in the European sea bass (*Dicentrarchus labrax*). *Comp. Biochem. Physiol.* 102C, 413–420.

Lemaire, P., Förlin, L., Livingstone, D.R., 1996. Responses of hepatic biotransformation and antioxidant enzymes to CYP1A-inducers (3-methylcholanthrene, b-naphthoflavone) in sea bass (*Dicentrarchus labrax*), dab (*Limanda limanda*) and rainbow trout (*Oncorhynchus mykiss*). *Aquat. Toxicol.* 36, 141–160.

Levitian, W.M., Taylor, M.H., 1979. Physiology of salinity-dependent naphthalene toxicity in *Fundulus heteroclitus*. *J. Fish. Res. Board Can.* 36, 615–620.

McKillip, D., Case, D., 1991. Mutagenicity, carcinogenicity and toxicity of b-naphthoflavone, a potent inducer of P448. *Biochem. Pharmacol.* 41, 1–7.

Mitchell, A.E., Lakritz, J., Jones, A.D., 2000. Quantification of individual glutathione S-transferase isozymes in hepatic and pulmonary tissues of naphthalene-tolerant mice. *Arch. Toxicol.* 74, 215–221.

Monod, G., Vindimian, E., 1991. Effects of storage conditions and subcellular fractionation of fish and cytochrome P-450-dependent enzymatic activities used for the monitoring of water pollution. *Water Res.* 25, 173–177.

Novi, S., Pretti, C., Cognetti, A.M., Longo, V., Marchetti, S., Gervasi, P.G., 1998. Biotransformation enzymes and their induction by b-naphthoflavone in adult sea bass (*Dicentrarchus labrax*). *Aquat. Toxicol.* 41, 63–81.

Okey, A.B., 1990. Enzyme induction in the cytochrome P-450 system. *Pharmacol. Ther.* 45, 241–298.

Pacheco, M., Santos, M.A., 1996. Induction of micronuclei and nuclear abnormalities in the erythrocytes of *Anguilla anguilla* L. exposed either to cyclophosphamide or to bleached kraft pulp mill effluent. *Freshwater Environ. Bull.* 5, 746–751.

Pacheco, M., Santos, M.A., 1997. Induction of erod activity and genotoxic effects by polycyclic aromatic hydrocarbons and resin acids on the juvenile eel (*Anguilla anguilla* L.). *Ecotoxicol. Environ. Saf.* 38, 252–259.

Pacheco, M., Santos, M.A., 1998. *Anguilla anguilla* L. liver EROD and erythocytic nuclear abnormalities induction by cyclophosphamide and PAHs. *Ecotoxicol. Environ. Saf.* 40, 71–76.

Pacheco, M., Santos, M.A., 2002. Naphthalene and b-naphthoflavone toxicity to *Anguilla anguilla* L. hepatic metabolism and erythocytic nuclear abnormalities. *Environ. Int.* 28, 285–293.

Pesch, G.G., Pesch, C.E., Malcolm, A.R., 1981. *Neanthes arenaceodentata*, a cytogenetic model for marine genetic toxicology. *Aquat. Toxicol.* 1, 301–311.

Peters, L.D., Morse, H.R., Waters, R., Livingstone, D.R., 1997. Responses of hepatic cytochrome P4501 A and formation of DNA—adducts in juveniles of turbot (*Scophthalmus maximus* L.) exposed to water-borne benzo[a]pyrene. *Aquat. Toxicol.* 38, 67–82.

Pratap, H.B., Wenderlaar, B.S.E., 1990. Effects of water-borne cadmium on plasma cortisol and glucose in the cichlid fish *Oreochromis mossambicus*. *Comp. Biochem. Physiol.* 95C, 313–317.

Reitman, S., Frankel, S., 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. *J. Clin. Pathol.* 28, 56–63.

Santos, M.A., Pacheco, M.G., 1996. *Anguilla anguilla* L. stress biomarkers recovery in clean water and secondary-treated pulp mill effluent. *Ecotoxicol. Environ. Saf.* 35, 96–100.

Schmid, W., 1976. The micronucleus test for cytogenetic analysis. In: Hollaender, A. (Ed.), *Chemical Mutagenesis*, Vol. 4. Plenum Press, New York.

Smith, I.R., 1990. Erythrocytic micronuclei in wild fish from Lakes Superior and Ontario that have pollution-associated neoplasia. *J. Great Lakes Res.* 16, 139–142.

Stegeman, J.J., Hahn, M.E., 1994. Biochemistry and molecular biology of monooxygenases: current perspectives on forms, functions, and regulation of cytochrome P450 in aquatic species. In: Malins, D.C., Ostrander, G.K. (Eds.), *Aquatic Toxicology, Molecular, Biochemical and Cellular Perspectives*. Lewis, Boca Raton, FL, pp. 87–206.

Thomas, R.E., Rice, S.D., 1987. Effect of water-soluble fraction of Cook inlet crude oil on swimming performance and plasma cortisol in juvenile coho salmon (*Oncorhynchus kisutch*). *Comp. Biochem. Physiol.* 87C, 177–180.

Tingle, M.D., Pirmohamed, M., Templeton, E., Wilson, A.S., Madden, S., Kitteringham, N.R., Park, B.K., 1993. An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes. *Biochem. Pharmacol.* 46, 1529–1538.

Vetter, R.D., Carey, M.C., Patton, J.S., 1985. Coassimilation of dietary fat and benzo(a)pyrene in the small intestine: an absorptive model using the killifish. *J. Lipid Res.* 26, 428–434.

Vijayan, M.M., Pereira, C., Forsyth, R.B., Kennedy, C.J., Iwama, G.K., 1997. Handling stress does not affect the expression of hepatic heat shock protein 70 and conjugation enzymes in rainbow trout treated with b-naphthoflavone. *Life Sci.* 61, 117–127.

Wolkers, J., Jørgensen, E.H., Nijmeijer, S.M., Witkamp, R.F., 1996. Time-dependent induction of two distinct hepatic cytochrome P4501A catalytic activities at low temperatures in Arctic char (*Salvelinus alpinus*) after oral exposure to benzo(a)pyrene. *Aquat. Toxicol.* 35, 127–138.