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� Introduction

Let H be a real separable Hilbert space� and consider the following stochastic
di�erential equation on H��

dX�t� � 	AX�t� 
 F �X�t���dt
BdW �t�� t � 	�� 
��

X��� � x�
�
�

where x � H� A � D�A� � H � H generates a C��semigroup fexp�tA�� t �
�g� F is a Lipschitz function de�ned on H� B is a non�negative bounded
linear operator from H to H� and W is a cylindrical Wiener process in H�
It is known that if

R �

�
k exp�tA�Bk�HSdt is �nite� then �
� admits a unique

solution X � L��	�� 
��H�� in a sense that will be speci�ed later �see 	�� for
further details�� In the remainder of the paper� we will also denote by WA

the stochastic convolution of A by W � that is the solution to �
� for F � �
and x � ��

This article proposes to study the limiting behaviour of ratios of the form

����� � P �kX � �k � ��

P �kWAk � ��

when � tends to �� where � is a deterministic function satisfying some regu�
larity conditions and k � k is a suitable norm de�ned on the functions from
	�� 
� to H� When lim��� ����� � exp�J����� for all � in a reasonable class
of functions� then the functional J� is called the Onsager Machlup functional
associated to �
� and k � k� It is worth noticing that J� can easily be in�
terpreted as a generalized likelihood functional in in�nite dimension� which
makes its calculation an interesting problem�

For usual stochastic di�erential equations� namely when H � Rd� A � ��
B � Id� the problem of computing the Onsager Marchlup functional for
�
� has been widely investigated� Ikeda and Watanabe 	�� gave a rigorous
proof for the case of any � � C��	�� 
��Rd� for the norm k � k� de�ned on
C�	�� 
��Rd�� This result has been enhanced then in two directions� Shepp
and Zeitouni proved �rst in 	
�� that the function � could be taken in the
Cameron�Martin space W ���

� �	�� 
��Rd�� and Capitaine proved in 	
� and 	��
�basing this last result on some techniques inspired by the computation of
the Onsager Machlup functional for di�usions on manifolds� see e�g� 	��� that
the norm k � k could be taken as any euclidian norm on the functions from
	�� 
� to Rd making sense for the solution to �
� and dominating the norm on

�



L��	�� 
��Rd�� It is important to notice that in the case of �nite dimensional
di�usions� the functional J� does not depend on the norm considered�

Our current work �ts in a more global project of studying the Onsager
Machlup functionals for in�nite stochastic systems� The �rst results in that
direction have been obtained by Dembo and Zeitouni 	�� for a class of trace
class elliptic SPDEs on a bounded domain of Rd� and then by Mayer�Wolf and
Zeitouni 	
�� in the non trace case� We shall use some of their techniques
in order to get our main result� if k � k is chosen as the Hilbert norm on
L��	�� 
��H�� then� for � satisfying some suitable hypothesis�

J������
Z �

�




�

���B��
h
A��t� 
 F ���t��� ���t�

i����
H
dt�Tr

�
�PR� 
 �PR����

�

�
�

whereR is a certain bounded linear operator based on the covariance function
of WA and P is an operator depending on rF and ��

With respect to the �nite dimensional case� some di�erences can already
be stressed in this introduction� �rst� the generality of the result obtained
by Capitaine in 	�� seems beyond our hopes at this moment� and it is for
instance an open problem for us to know if some computations can be leaded
for the norm k�k� on C�	�� 
��H�� On the other hand� since an independence
of the functional J� with respect to the norm k � k can also be expected in
our SPDE case� we chose to work with the Hilbert norm on L��	�� 
��H� for
two main reasons�


� We are working here with the minimal assumptions on A and B under
which equation �
� has a unique solution in L��	�� 
��H�� though we will
also make the additional assumption that A and B can be diagonalized
in the same orthonormal basis of H�

�� We will be able to use the conditional exponential moments results
stated in 	
��� where the conditioning is over an in�nite dimensional
Gaussian random variable �these results will be recalled at Section ���
However� the fact that we are dealing with an evolution type equation
will force us to delve deeper into the di�erent Karhunen decompositions
involved in the application of the results of 	
��� We shall give some
details about these decompositions at Section ��

Another relevant di�erence between the �nite and in�nite dimensional
case is that the normalizing factor in ����� cannot be a function of the norm

�



of the cylindrical Brownian motion� This leads us to the natural choice of a
normalization by P �kWAk � ��� which prives us of the rotational invariance
type properties of the Brownian motion used by Ikeda and Watanabe �	��
Lemma ����� and by Capitaine �	
� Lemma ��� 	�� Lemma ��� as a fundamental
step towards the computation of the Onsager Machlup functional�

Our paper is organized as follows� in Section �� we recall some basic
results and �x our notations for the stochastic evolution equation considered�
We recall a basic lemma of Mayer�Wolf and Zeitouni 	
�� Lemma ���� that
we shall use later on� and give the Karhunen expansion of an Ornstein�
Uhlenbeck process in dimension one� In Section � we obtain the Onsager
Machlup functional� at Subsection ��
� we reduce our problem by Girsanov�s
transform� Subsection ���� is then devoted to some details about the linear
case� that is when F is a linear bounded operator� which will lead us to the
general case after Taylor�s expansion� and is of independent interest� since
the conditions given on F in this case will be more explicit� especially when
F can be diagonalized in the same complete orthonormal system than A and
B� At Subsection ���� we will deal with the general non linear case�

� Notations and preliminary results

��� Stochastic evolution systems

����� The operators A and B

Let H be a real separable Hilbert space and A � D�A� � H � H an un�
bounded operator on H� The norm on H will be denoted by j � jH � and the
scalar product by h�� �i� The L� norm in L��	�� 
��H� will be denoted by k�k��
Let L�H� the set of bounded linear operators on H� The norm k � k will be

the usual operator norm de�ned on L�H�� that is� kTk � supx�H
jT �x�jH
jxjH

� We
shall suppose

�H�� The operator A generates a self adjoint C��semigroup fexp�tA� � t � �g
of negative type� Moreover� there exists a complete orthonormal system
fej� j � 
g which diagonalizes A� We shall denote by f��j� j � 
g the
corresponding set of eigenvalues and we assume that f�j � j � 
g is an
increasing sequence of real numbers such that �j � � and limj�� �j �
	�

We shall also consider an operator B � L�H� satisfying

�



�H�� The operator B is of non�negative type and is diagonal when expressed
in the orthonormal basis fej� j � 
g� We shall denote by f�j� j � 
g
the corresponding set of eigenvalues� Furthermore� we shall suppose
that

�X
j��

��
j


 
 �j
		�

In our case where A and B can be diagonalized in the same complete or�
thonormal system� notice that the last hypothesis corresponds to the more
general one

R �

�
k exp�tA�Bk�HS 	 	� that can be found in 	�� in order to

ensure the existence and uniqueness of a solution to �
��

����� Stochastic evolution equations

Let ���F �Ft� P � be a stochastic basis and fW j�t�� t � 	�� 
�� j � 
g a se�
quence of mutually independent Brownian motions adapted to Ft� The cylin�
drical Brownian motion on H is de�ned by the formal series

W �t� �

�X
j��

W j�t�ej� ���

where fej� j � 
g is the complete orthonormal system of H introduced at
Subsection ��
�
� Notice that the series ��� does not converge in H� but for
any h � H� fhW �t�� hi� t � 	�� 
�g is a linear Brownian motion with covariance
jhj�H �see 	���� We shall consider the stochastic evolution equation �
�� where
A and B have been de�ned at subsection ��
�
 and F � H � H is a Lipschitz
function �some further hypothesis on F will be made at Subsections ��� and
����� Equation �
� is only formal� and has to be interpreted in the usual mild
sense� we will say that X � fX�t�� t � 	�� 
�g is a solution to �
� if it is an
H�valued Ft�adapted square integrable process such that

X�t� � exp�tA�x


Z t

�

exp��t� s�A�F �X�s��ds


Z t

�

exp��t� s�A�BdW �s��

���

for all t � 	�� 
�� where the last integral is of It�o�s type� The following
proposition is then a particular case of 	�� Theorem �����

Proposition ��� Suppose that �H�� and �H�� are satis�ed� Then there ex�
ists a unique solution X to ���� such that X � L���
 	�� 
��H��

�



Under our assumptions� X is also a solution to �
� in the weak sense � if
Ah � H� for all t � 	�� 
�

hX�t�� hi � hx� hi

Z t

�

hX�s�� Ahi ds




Z t

�

hF �X�s��� hi ds 
 hBh�W �t�i �

P �a�s� In particular� when x � � and F � � we have the following integration
by parts formula �see 	�� Lemma ������ if m � W ����	�� 
��H� is such that
Am � L��	�� 
��H�� then� for all t � 	�� 
��

�
WA�t��m�t�

�
�

Z t

�

�
WA�s�� Am�s� 
 �m�s�

�
ds 


Z t

�

hBm�s�� dW �s�i �
���

��� Some conditioned exponential inequalities

We will recall here some basic lemmae that we shall use for the computa�
tion of our Onsager Machlup functional� The �rst one is a crucial� though
elementary� inequality that can be found in 	�� p� �����

Lemma ��� For a �xed n � 
� let z�� � � � � zn be n random variables de�ned
on ���F � P � and fA�� � � �g a family of sets in F � Suppose that for any
c � R and any i � 
� � � � � n� we have

lim sup
���

E 	exp �czi� jA�� � 
�

Then

lim
���

E

�
exp

�
nX
i��

zi

	 ���A�



� 
�

In the sequel of the paper� we shall use some inequalities involving trace
class operators� Let us state now the notion of trace that we shall consider�
Let K be a separable Hilbert space�

De�nition ��� Let T � K � K be a compact symmetric operator� Let
f
i� i � 
g be the eigenvalues of the operator T � We will say that T is a trace
class operator if

P�
i�� j
ij is �nite�

If T is trace class� we de�ne the trace of T � Tr�T �� as
P�

i��hTei� eii for
any basis fei� i � 
g� In particular Tr�T � �

P�
i�� 
i�

�



We �nish this subsection recalling two technical lemmas from 	
��� The
�rst one is a version of 	
�� Lemma ����� In the second one� we state a slight
variation of a fundamental lemma in 	
��� We denote here by �� the set of
sequences of real numbers f�i� i � 
g such that

P
i�� �

�
i 		�

Lemma ��	 Let fzi� i � 
g be a sequence of independent N ��� 
� random
variables de�ned on ���F � P �� and f�i� i � 
g and f
i� i � 
g two �� se�
quences of real numbers� Then

lim
���

E

�
exp

�
�X
i��

zi
i

	��� �X
i��

��i z
�
i � �



� 
�

Lemma ��
 Let fzi� i � 
g be a sequence of independent N ��� 
� random
variables de�ned on ���F � P �� and f�i� i � 
g a �� sequence of real num�
bers� Let T � �� � �� be a Hilbert�Schmidt operator� fmi� i � 
g a complete
orthonormal system of ��� and denote hTmi�mji by Ti�j�

�� If �
�
�T 
 T �� is trace class� then

lim
���

E

�
exp

�
�X

i�j��

zizjTi�j

	 ��� �X
i��

��i z
�
i � �



� 
�

�� If
P�

i�� Ti�i � 
	 �resp� �	�� then

lim
���

E

�
exp

�X
i��j

zizjTi�j 

�X
i��

�z�i � 
�Ti�i

	 ��� �X
i��

��i z
�
i � �



� �

�resp� 
	��

Proof� We refer the reader to the proof of 	
�� Lemma ����� Notice only
that if we denote by �T the operator �

��T 
 T ��� then for any j� i � 


zizj�Ti�j 
 Tj�i� � zizj� �Ti�j 
 �Tj�i��

where �Ti�j � h �Tmi�mji� �

�



��� The Karhunen�Lo�eve expansion

We compute here a Karhunen�Lo�eve expansion for a class of one�dimensional
Ornstein�Uhlenbeck processes that will appear in the decomposition of WA�
The following lemma is presumably fairly standard� but we include it for the
sake of completeness�

Lemma ��� Let � a standard Brownian motion and � � �� Then� the
process X � fX�t� �

R t
�
exp����t � s��d��s�� � � t � 
g has the following

Karhunen�Lo�eve expansion	

X�t� �

�X
k��


p
�� 
 x�k

Yk gk�t�

where� for each k � 
� xk is the unique positive solution of the equation
tan�x� � � �

�
x in the interval 	��k�
��� � ��k

��� �� fgk�t� � Ak sin�xkt�� k �


g is an orthonormal basis of L��	�� 
�� with the normalizing constants Ak

satisfying supk jAkj � �� and fYk� k � 
g is a family of orthogonal gaussian
random variables with mean � and variance �� de�ned by Yk �

p
�� 
 x�kR �

� X�t� gk�t�dt� for all k � 
�

Proof� Notice that X is a Gaussian process with covariance function

K�t� s� �

Z t�s

�

e���t�u�e���s�u�du

�



��

�
e���t	s�t�s� � e���t�s�

�
� ���

s� t � 	�� 
�� To �nd the eigenvalues and the eigenvectors of the symmetric
operator in L�L��	�� 
��� associated with the kernel K� we have to solve the
equation Z �

�

K�t� s�g�t�dt � �g�s�� � � s � 
� ���

that is for � � s � 





��

�
e��s

Z s

�

e�tg�t�dt
 e�s
Z �

s

e��tg�t�dt� e��s
Z �

�

e��tg�t�dt

�
� �g�s��

�



Di�erentiating twice it is easy to check that g satis�es

���� � 
�g�s� � �g

�s�� � � s � 
� ���

with initial conditions g��� � � and �g�
� � �g
�
�� Notice that equation
��� clearly implies that � �� ��

Set ���� � �
�����

� Then ���� is well�de�ned and strictly negative� Indeed�

suppose that ��� � 
 � �� Then g

�s� � �� � � s � 
� and the initial
conditions imply g � �� Finally� suppose that ���� � �� In this case� the
solution of the di�erential equation ��� is of the form

g�s� � c� exp

�
sp
����

�

 c� exp

�
� sp

����

�
�

where c�� c� are real constants� Then� the initial conditions g��� � � and
�g�
� � �g
�
� yield

tanh

�

p
����

�
� �


�


p
����

and this equation has no solution�
Consequently� we can assume �

�����
	 �� and the solution of ��� is of the

form

g�s� � c� sin

�
spj����j

	

 c� cos

�
spj����j

	
�

The condition g��� � � implies c� � �� and �g�
� � �g
�
� yields

tan

�

pj����j

	
� �


�


pj����j
�

Set x � j����j����� The relation ���� � �
����� implies that the eigenvalues

of the operator K form a family f�n�n � 
g� where �n � �
���x�n

and xn is the

solution of the equation tan�x� � � �
�
x in the interval 	��n� 
��� � ��n

��� ��

and the orthonormalized eigenfunctions are of the form gn�s� � An sin�xns��
n � 
� An easy computation shows that jAnj � � for all n�

The classical Karhunen�Lo�eve Theorem �see e�g� 	��� �nishes the proof�
�

�



� Onsager�Machlup functional

In this section we compute the Onsager Machlup functional for our equation�
following the usual scheme used for both �nite and in�nite cases� we apply
�rst the Girsanov transform in order to reduce our problem to the evaluation
of a functional of the stochastic convolutionWA� up to some easily controlled
correction terms �Subsection ��
�� We are then left with the evaluation of the
conditional exponential moments of a stochastic integral with respect to the
cylindrical Brownian motion� that can be easily handled when F is a linear
operator �Subsection ����� The general case for F can be deduced then by
Taylor�s expansion �Subsection �����

��� Application of Girsanov�s transform

Set Q � B� �recall that A and B are supposed to be symmetric�� Fix a
di�erentiable function h � 	�� 
� �� H satisfying

�H�� dh
ds

� �h � L��	�� 
��H�� Ah � L��	�� 
��H� and Bh � L��	�� 
��H��

Let �h be the solution of the in�nite dimensional equation�
d�h�t� � A�h�t�dt
Qh�t�dt� t � 	�� 
��

�h��� � x�
���

We will compute the Onsager Machlup functional on L��	�� 
��H� at points
of the form �h� The regularity assumption �H�� is required in order to apply
Girsanov�s transform� and to control the term T� �de�ned at �
��� by means
of an integration by parts argument�

Assume also the following conditions�

�h�� For any t � 	�� 
�� F �X�t�� � Im�B� a�s� and one of the two following
relations holds� for some � � ��

sup
t�	���


E


exp��jB��F �X�t��j�H�

�
	 
	�

or

E

�
exp

�



�

Z �

�

jB��F �X�t��j�Hdt
��

	 
	�


�



�h�� there exist a positive constant K such that jB��F �x��B��F �y�jH �
Kjx� yjH and jB��F �x�jH � K�
 
 jxjH�� for any x� y � H�

Then� using Girsanov�s transformation �see 	�� Theorem 
��
� and Propo�
sition 
��
��� with �W �t� �W �t�


R t

�
B��F �X�s��ds� we obtain for any � � �

P �kX � �hk� � �� � E
h
exp

�Z �

�

hB��F �WA�s� 
 esAx�� dW �s�i

�


�

Z �

�

jB��F �WA�s� 
 esAx�j�Hds
�
�fke�Ax�WA��hk���g

i
�

Notice that to simplify the notation we have denoted �W by W � Since Bh �
L��	�� 
��H� we can apply again Girsanov�s transformation� now with �W �t� �
W �t�� R t

�
Bh�s�ds� We get� for any � � ��

P �kX � �hk� � �� � E
h
exp

�Z �

�

hB��F �WA�s� 
 �h�s��� dW �s�i




Z �

�

hB��F �WA�s� 
 �h�s��� Bh�s�ids

� 


�

Z �

�

jB��F �WA�s� 
 �h�s��j�Hds

�
Z �

�

hBh�s�� dW �s�i � 


�

Z �

�

jBh�s�j�Hds
�
�fkWAk���g

i
�

Then

����
h� �

P �kX � �hk� � ��

P �kWAk� � ��

can be written as

exp

�
�


�

Z �

�

jB��F ��h�s���Bh�s�j�Hds
�
E

�
exp

�
�X

i��

Ti

	 ���kWAk� � �



�

���

with

T� ��

Z �

�

hB��F �WA�s� 
 �h�s��� dW �s�i�







T� ��

Z �

�

hB��F �WA�s� 
 �h�s���B��F ��h�s��� Bh�s�ids

�


�

Z �

�

�jB��F �WA�s� 
 �h�s��j�H � jB��F ��h�s��j�H
�
ds

and

T� �� �
Z �

�

hBh�s�� dW �s�i� �
��

On the set fkWAk� � �g� using �h��� we clearly have that jT�j � C��
Moreover� since Bh is deterministic� by relation ���� we obtain T� �� T��a� 

T��b� with

T��a� �

Z �

�

D
Ah�s� 
 �h�s��WA�s�

E
ds�

T��b� � � �h�
��WA�
�
�
�

Assumption �H�� trivially gives jT��a�j � C � on the set fkWAk� � �g�
On the other hand� assuming hypothesis �H
� and �H��� by Lemma ���

and decomposition ���

WA�t� �
�X
j��

� Z t

�

�j e
��j�t�s�dW j�s�

�
ej

�
�X
j��

�X
k��

�k�jYk�j�gk�j � ej��t�� �

�

where �k�j �
	jp

��j�x
�

k�j

� and xk�j� Yk�j and gk�j are the xk� Yk and gk de�ned

in Lemma ��� when � � �j� Moreover� fYk�j� k � 
� j � 
g is a family of
independent centered random variables with variance 
�

Given f � L��	�� 
�� and e � H� we denote by f � e the function of
L��	�� 
��H� such that �f � e��s� � f�s�e� Notice then that fgk�j � ej� k �

� j � 
g is an orthonormal basis of L��	�� 
��H� such that for any j� k � 
 �
Cov�hWA� gk�j � ejiL��	���
�H�� � ��

k�j� Thus�

kWAk�� �
�X
j��

�X
k��

��
k�jY

�
k�j�


�



with
�X

j�k��

��
k�j �

�X
j�k��

��
j

��
j 
 x�k�j

	

�X
j��

��
j

��
j

Z �

�





 
 ��

���j
x�
dx � C

�X
j��

��
j

�j
	 
	�

Then� by �

�

T��b� �
�X
j��

�X
k��

rk�jYk�j

with rk�j �� ��k�jgk�j�
�hh�
�� eji� Since
�X
j��

�X
k��

r�k�j � �jh�
�j�H
�X
j��

�X
k��

��
k�j 		�

by Lemma ��� we get

lim
���

E
h
exp

�
cT��b�

����kWAk� � �
i
� 
�

for any c � R� Hence� using Lemma ���� the only point remaining to deter�
mine lim��� ����h� is the study of the term E	exp�T��

��kWAk� � ���

��� The linear case

In this subsection we discuss the case of a linear function F � We obtain an
Onsager Machlup functional and we study carefully the particular case where
F is diagonal in the same basis than the operators A and B�

The main theorem of this part states as follows�

Theorem ��� Assume that �H�� and �H�� are satis�ed� h is a function
satisfying �H��� �h is de�ned by ��� and F � L�H� is such that �P � B��F

is a bounded operator� Denote by P and R the linear operators de�ned on
L��	�� 
��H� such that P �h � ej� � h � �P �ej� and R�h � ej� � Rj�h� � ej
with

�Rjh��s� ��

Z �

s

�j e
��j�t�s�h�t�dt�

Then� for any j� k � 
�

h�R�R��gk�j � ej�� gk�j � ejiL��	���
�H� � Cov�hWA� gk�j � ejiL��	���
�H��

and


�



�i� if �
�
�PR� 
 �PR���� is trace class� then

lim
���

����
h� � exp

�
�
Z �

�




�

���B��
h
�A
 F ��h�t�� ��h�t�

i����
H
dt

�Tr
�



�
�PR� 
 �PR����

��
�

�ii� if
P

j�khPR��gk�j � ej�� gk�j � eji � 
	 �resp� �	�� then

lim
���

����
h� � �

�resp� 
	��

Proof�

Step �� Reduction to a stochastic integral involving WA and W �

Since �P is a bounded operator� condition �h�� is clearly satis�ed� On the
other hand� using that F is a linear operator� we get

E

�
exp

�



�

Z �

�

jB��F �X�t��j�Hdt
��

� exp

�
C

�

Z �

�

�
 
 ket�A�F �k�jxj�H�dt
�
E

�
exp

�
C

�

Z �

�

jWA�F �t�j�Hdt
��

�

Following the proof of 	�� Theorem 
����� we check that �h
� is also sat�
is�ed� using the fact that �A 
 F � generates a C��semigroup such thatR �

� ket�A�F �Bk�HSds is �nite whenever F � L�H� �see e�g� Goldberg 	�� Chap�
ter ��
��� Hence� it is su�cient to study lim���E	exp�T��

��kWAk� � ���
Since we are in the linear case� we can write T� �� T��a� 
 T��b� with

T��a� �

Z �

�

hB��F �WA�s��� dW �s�i�

T��b� �

Z �

�

hB��F ��h�s��� dW �s�i�

Since the function B��F is a bounded linear operator� T��b� can be studied
likewise the term T�� using the integration by parts formula ����


�



The study of the term T��a� will follow the ideas presented by Mayer�Wolf
and Zeitouni 	
���

Step �� Expression of T��a� in terms of Skorokhod integrals�

Consider now fk�j �� Rjgk�j � j � 
� k � 
� Then� for any j � 
� fhk�j �
�

�k�j
fk�j� k � 
g is an orthonormal basis of L��	�� 
��� Indeed� the hk�j form

an orthogonal family since� by ��� and ����

hfm�j� fn�jiL�	���
 � ��
j

Z �

�

� Z �

s

e��j�t�s�gm�j�t�dt
�� Z �

s

e��j�u�s�gn�j�u�du
�
ds

� ��
j

Z �

�

Z �

�

Kj�t� u�gm�j�t�gn�j�u�dtdu

� ��
m�jhgm�j � gn�jiL�	���
� �
��

for any m�n � 
� where Kj denotes the covariance function de�ned at ���
with � � �j� Thus� in order to prove that it is a basis� it is su�cient to show
that� if h � L��	�� 
�� satis�es hfk�j� hiL� 	���
 � � for all k � 
� then h � ��
But this follows easily from the fact that if for all k � 
�

� � hfk�j � hiL� 	���
 �

Z �

�

�Z �

s

�j e
��j�t�s�gk�j�t�dt

�
h�s�ds

� �jhgk�j � �hiL� 	���
�

then �h � � with �h�t� �
R t
�
e��j�t�s�h�s�ds� and of course h � ��

Furthermore�

Yk�j �
q
��
j 
 x�k�j

Z �

�

�Z t

�

e��j�t�s�dW j�s�

�
gk�j�t�dt

�

Z �

�

�q
��
j 
 x�k�j

Z �

s

e��j�t�s�gk�j�t�dt

�
dW j�s�

� Ij�hk�j��

where Ij�l� denotes the Wiener integral of l with respect to W j� that is


�



Ij�l� �
R �

�
l�s�dW j�s�� Then

T��a� �

Z �

�

h �P �WA�s��� dW �s�i

�

�X
i�j�k��

�k�j

Z �

�

Yk�jh �P ��gk�j � ej��s��� eiidW i�s�

�

�X
i�j�k��

�k�jh �Pej� eii
Z �

�

Yk�j gk�j�s�dW
i�s�� �
��

It is worth noticing that the random variables Yk�j are F��measurable�
Hence� some of the stochastic integrals appearing in �
�� are anticipating�
When they are of this kind� we have taken them in the Skorokhod sense�
and we switch from It�o�s integrals to Skorokhod�s ones using the fact that
they coincide on the set L�

a of square integrable adapted processes �see for
instance 	

� for an account on Skorokhod�s integrals�� Moreover� using 	

�
Equation �
������ observe that when j � i

Z �

�

Yk�jgk�j�s�dW
j�s� � Yk�j

�X
m��

hgk�j � hm�jiL�	���
Ij�hm�j�

�hhk�j � gk�jiL�	���
�

and when j �� iZ �

�

Yk�jgk�j�s�dW
i�s� � Yk�j

�X
m��

hgk�j � hm�iiL�	���
Ii�hm�i��

Using the fact that hk�j � ���
k�jRjgk�j and Yk�j � Ij�hk�j�� we can write �
��

in the following way�

T��a� �
X

�k�j����m�i�

�k�j

�m�i
Yk�jYm�ih �Pej� eiihgk�j � Rigm�iiL� 	���





�X
j��

�X
k��

�Y �
k�j � 
�h �Pej� ejihgk�j � Rjgk�jiL� 	���
� �
��

Step �� Expression of T��a� in terms of P and R��


�



De�ne now the operator T � ��
N� � ��

N� by

T�k�j���m�i� �
�k�j

�m�i
h �Pej� eiihgk�j � Rigm�iiL�	���
� �k� j�� �m� i� � N��

Then

T��a� �
X

�k�j����m�i�

T�k�j���m�i�Yk�jYm�i 

�X
j��

�X
k��

T�k�j���k�j��Y
�
k�j � 
�� �
��

Let � be the linear operator such that ��gk�j � ej� � �k�j�gk�j � ej��
Observe that� for any j� k � 
�

�R�R��gk�j � ej� �
�X
n��

h�R�
jRj�gk�j� gn�jiL�	���
�gn�j � ej�

�
�X
n��

hRjgk�j � Rjgn�jiL�	���
�gn�j � ej��

and by �
�� this last quantity equals ��
k�j�gk�j � ej��

Hence �� � R�R� De�ne U � R��� � R
jRj

� which is clearly a bounded

operator de�ned in L��	�� 
��H�� We get

T�k�j���m�i� � hP��gk�j � ej�� R�
���gm�i � ei�iL��	���
�H�

� hU�PR�U�gk�j � ej�� �gm�i � ei�iL��	���
�H�� �
��

Observe now that for any f� h � L��	�� 
��� i� j � 
�

hR��h� ej�� f � eiiL��	���
�H� � hh�Ri�f�iL�	���
hej� eii

� hh�Rj�f�iL�	���
hej� eii � hR�
j �h� � ej� f � eiiL��	���
�H��

So� we get

T�k�j���k�j� � h �Pej� ejihgk�j � Rjgk�jiL� 	���


� hPR��gk�j � ej�� gk�j � ejiL��	���
�H�� �
��

and clearly� if �
��PR

� 
 �PR���� is a trace class operator�
P

k�j T�k�j���k�j� �

Tr����PR
� 
 �PR������


�



Step �� Application of Lemma ����

Using Lemma ��� and by equation �
��� in order to see part �i� it is
su�cient to show that

E

�
exp

�
c
X
i�k�j�m

Yk�jYm�iT�k�j���m�i�

	 ���kWAk� � �



�� 


when � goes to �� for any c � R�
Since by assumption �

�
�PR� 
 �PR���� is a trace class operator� by ����

the decomposition of WA given in �

�� �
�� and applying part 
� in Lemma
��� we �nish easily the proof of part �i��

To prove �ii�� we should proceed with the same computations� From �
��
and part �� of Lemma ��� we obtain easily the desired result� �

We �nish this subsection with an important Corollary where we study
the case where F is a trace class operator� We also examine the diagonal
case�

Corollary ��� Assume that �H�� and �H�� are satis�ed� h is a function
satisfying �H��� �h is de�ned by ��� and F is a trace class operator such that
�P � B��F is a bounded operator� Then� if �

�
�PR� 
 �PR���� is trace class

lim
���

����
h� � exp

�
�
Z �

�




�

���B��
h
�A
 F ��h�t�� ��h�t�

i����
H
dt� 


�
Tr �F �

�
�

Proof� Using Theorem ��
 it is enough to prove that if F is a trace class
operator then Tr��

�
�PR� 
 �PR����� � �

�
Tr�F ��

We have to study the eigenvalues of the operator �
��PR

� 
 �PR����� De�

note by �Rj the operator ���
j Rj � Set Vj � �

�
� �R�

j 
 �Rj�� First� we can check
trivially that for all j � 
� Vj is a linear operator on L��	�� 
�� given by a

kernel denoted by �Kj� indeed� for any h � L��	�� 
��

	Vj�h�� �s� �

Z �

�

�Kj�s� t�h�t�dt� s � 	�� 
��

with �Kj � 	�� 
�
� � 	�� 
� de�ned by �Kj�s� t� �

�
�e

��j js�tj�

Let us consider now an operator V on L��	�� 
�� given by a kernel �K�s� t� �
�
�e

��js�tj� an let us show that V is a non�negative� Indeed� if �R is the Volterra

operator on L��	�� 
�� de�ned by �Rh � g and

g�t� �

Z t

�

e���t�s�h�s�ds� t � 	�� 
��


�



then it is readily seen that

V h �



�
hh� fiL��	���
� f 
 � �R� �Rh�

where f�t� � e�����t� for all t � 	�� 
�� Therefore�

hV h� hiL��	���
� �



�
hh� fi�L��	���
� 
 hRh�Rhi�L��	���
� �

which shows the positivity�
Thus� V is a positive Hilbert�Schmidt operator given by a continuous

kernel on 	�� 
��� It is then well�known 	�� Proposition 
��
� that

�X
k��


k �

Z �

�

�K�t� t�dt �



�
�

Notice that this value does not depend on ��
On the other hand� for any h � L��	�� 
��� j � 
 we have




�
�PR� 
 �PR�����h� ej��s�

�



�

�
P

��Z s

�

e��j�s�u�h�u�du

�
�jej

�

R



h� F �����

j ej�
�
�s�

�

�



�

��Z s

�

e��j�s�u�h�u�du

�
�j�B

��F �ej



�X
i��

�i�
��
j hF �ej� eii

�Z �

s

e��i�u�s�h�u�du

�
ei

�
�

Moreover� observe also that if we denote by f �fk�j� k � 
g the L��	�� 
�� or�

thonormal basis that diagonalizes Vj � then f �fk�j � ej� j � 
� k � 
g is a
orthonormal basis of L��	�� 
��H�� So� since�

�j�B
��F �ej� ej

�
�
�
�B��F �ej� Bej

�
� hFej� eji �


�



we get

Tr

�



�
�PR� 
 �PR����

�

�
�X

j�k��

�



�
�PR� 
 �PR����� �fk�j � ej�� �fk�j � ej

�
L��	���
�H�

�



�

�X
j�k��

D
�R�
j
�fk�j � �fk�j

E
L� 	���


hFej� eji

D
�Rj

�fk�j � �fk�j
E
L�	���


hF �ej� eji

�

�X
j�k��

hFej� eji
D
Vj �fk�j� �fk�j

E
L�	���


�



�

�X
j��

hFej� eji � 


�
Tr �F � �

The proof is now completed� �

Example ��� Consider the case of an operator F which is diagonal when
expressed in the orthonormal basis fej� j � 
g� We denote by fpj � j � 
g
the corresponding set of eigenvalues� Assume also the other hypothesis of
Theorem ���� Then	

�i�� the operator �
��PR

� 
 �PR���� is trace class if and only if F is� and in
this case� Tr��

�
�PR� 
 �PR����� � �

�
Tr�F ��

�ii�� if
P

j�� pj � 
	� then
lim
���

����� � ��

�iii�� if
P

j�� pj � �	� then

lim
���

����� � 
	�

Remark ��	 �� Under situations �ii�� and �iii��� choosing h � �� we �nd
that the limiting behaviour of P �kWAk� � �� and P �kWA�F k� � ���
when �� � cannot be compared�

�� Since we need B��F to be a bounded operator� we will suppose that
supj

jpjj
	j

		�

��



�� The conditions �i��� �ii�� and �iii�� only involve the operator F � and
none of the operators A and B�

Proof� Since now PR��h � ej� � pj� �R�
j �h� � ej� and �PR����h � ej� �

pj� �Rj�h� � ej�� it is easily seen that �
�
�PR� 
 �PR���� is of trace class i�

� � P
i�j�� jpjvi�jj 	 	� where the family fvi�j� i � 
g denotes the set of

eigenvalues of the operator Vj � As we have seen in Corollary ���� for any
j � 
�

P
i�� jvi�jj �

P
i�� vi�j �

�
�
� It is now easily deduced that PR� is trace

class if and only if
P

j�� jpjj 		�

Assume now that the operator PR���PR���

�
is not trace class� Observe �rst

that
hPR��gk�j � ej�� gk�j � ejiL��	���
�H� � pjh �Rjgk�j� gk�jiL� 	���
�

We can compute easily

�Rjgk�j�s� �

Z �

s

e��j�t�s�gk�j�t�dt

�
Ak�je

�js

��
j 
 x�k�j

�
e��js

�
xk�j cos�xk�js� 
 �j sin�xk�js�

�
�e��j�xk�j cos�xk�j� 
 �j sin�xk�j�

��

�
Ak�j

��
j 
 x�k�j

�
xk�j cos�xk�js� 
 �j sin�xk�js�

�
�

using xk�j cos�xk�j� � ��j sin�xk�j�� Since
R �

� A
�
k�j sin

��xk�js�ds � 
� we then
obtain

h �Rjgk�j� gk�jiL�	���
 �

Z �

�

A�
k�j

��
j 
 x�k�j

�
xk�j cos�xk�js� sin�xk�js�
�j sin

��xk�js�
�
ds

�



��
j 
 x�k�j

�A�
k�j

�
sin��xk�j� 
 �j

�
�

Furthermore� we have that

C�

�j
�

�X
k��




��
j 
 x�k�j

� C�

�j
�

for some positive constants C� and C� not depending on j� comparing the
above sum with some integrals of the function ��y� � �

��y� �

�




Since supk�j jAk�jj � �� and

�X
j�k��

hPR��gk�j � ej�� gk�j � ejiL��	���
�H� �
�X

j�k��

pj

��
j 
 x�k�j

�A�
k�j

�
sin��xk�j�
�j

�
�

the proofs of �ii�� and �iii�� in our example are now straightforward�
�

��� The general case

In this subsection we deal with the case of a general function F � by means
of a linearization procedure around F ��t� at each t � 	�� 
�� which is usual
in Onsager Machlup type results �see e�g� 	���� Let us introduce �rst some
notation� given a di�erentiable function S � H � H and x � H we denote by
DxS � L�H� the derivative operator of S at x� and for any � � L��	�� 
��H�
we de�ne by D
S the operator de�ned on L��	�� 
��H� by ��D
S������s� ��
�D
�s�S����s�� for any � � L��	�� 
��H��

The main theorem is the following�

Theorem ��
 Assume that �H�� and �H�� are satis�ed� h is a function
verifying �H��� �h is de�ned by ��� and F � H � H is a Lipschitz continuous
function such that �P � B��F is C�b � Let R be the linear operator de�ned in
Theorem ��� and denote by P � L��	�� 
��H� � L��	�� 
��H� the operator
given by

�P �u� l���s� � u�s��D�h�s�
�P ��l�� u � L��	�� 
��� l � H�

Assume �nally that �
�
�PR� 
 �PR���� is trace class and there exists a r � �

and a deterministic trace class operator �T � L��	�� 
��H�� L��	�� 
��H� such
that� for any � satisfying k�h � �k� � r�

jh�D

�P �D�h

�P �R����iL��	���
�H�j � h �T���iL��	���
�H�� �
��

for any � � L��	�� 
��H��
Then

lim
���

����� � exp
�
� 


�

Z �

�

���B��
h
A�h�t� 
 F ��h�t��� ��h�t�

i����
H
dt

�Tr
�



�
�PR� 
 �PR����

��
�

��



Proof� Since �h
� and �h�� are satis�ed� like in the proof of Theorem ��
 it
is enough to study lim���E



exp�T��

��kWAk� � �
�
�

A Taylor�s formula for Hilbert space valued functions gives us

�P �WA�s� 
 �h�s�� � �P ��h�s�� 
 �D�h�s�
�P ��WA�s��



�Z �

�

�
D�h�s���WA�s�

�P �D�h�s�
�P
�
d�
�
�WA�s���

Then T� �� T��c� 
 T��d� 
 T��e� with

T��c� �

Z �

�

h �P ��h�s��� dW �s�i�

T��d� �

Z �

�

h�D�h�s�
�P ��WA�s��� dW �s�i�

T��e� �

Z �

�

��Z �

�

�
D�h�s���WA�s�

�P �D�h�s�
�P
�
d�
�
�WA�s��� dW �s�

�
�

Since B��F is C�b � we can deal T��c� using the same arguments as for T��
The term T��d� can be handled in much the same way as T��a� in the proof

of Theorem ��
� the only di�erence being in the analysis of T��d� �i�e� the

dependence on s of the operator D�h�s�
�P �� but notice that the structure of

the proof is still valid� Similarly to �
��� T��d� can be written

T��d� �
X

�k�j����m�i�

�k�j

�m�i
Yk�jYm�ihM i

k�j� Rigm�iiL�	���




�X
j��

�X
k��

�Y �
k�j � 
�hM j

k�j � Rjgm�jiL� 	���
�

with M i
k�j�s� �� h�P �gk�j � ej���s�� eii� Since

hM i
k�j � Rigm�iiL�	���
 � hP �gk�j � ej�� Rigm�i � eiiL��	���
�H��

proceeding as in Theorem ��
 we can then obtain

E
h
exp

�
T��d�

���kWAk� � �
i

�
��

� exp
�
� Tr�




�
�PR� 
 �PR�����

�
E
h
exp

�
T��d���

���kWAk� � �
i
�

��



with

T��d��� �
X

�k�j���m�i�

Yk�jYm�ih�U�PR�U��gk�j � ej�� gm�i � eiiL��	���
�H�

where U is de�ned in the proof of Theorem ��
 and

lim
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Finally we have to study T��e�� We will follow the method used in 	
��
Theorem ��
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Since �P is C�b � we clearly have
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for any y � H� So� �xed �� �k� j�� �m� i� lim��� �fkWAk���gT

�
�k�j���m�i� � ��

Because of �
��� by a dominated convergence argument we can prove that
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Then� by Lemma ���� we shall have established the Theorem if we prove
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where
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Therefore ���� follows from part 
� of Lemma ���� �

Example ��� Suppose H � L��	�� 
�� with Dirichlet boundary conditions�
A � r� B � Id� and F � H � H is given by the Nemitsky operator F �x� �
f�Kx�� where K � L�H� is a trace class operator and f � R � R is a C�b
function� Then the conditions of Theorem ��� are satis�ed�

Proof� We shall concentrate on condition �
��� the other ones being easy to
verify� Under the assumptions of our example� �P � F � and the operator R�

is given by 	R��u� ej�� � R�
ju� ej for all u � L��	�� 
�� and j � 
� with

	R�
ju��s� �

Z s

�
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�H�j
��kf 
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with �T �u� ej� � Rju�Kej� Since K is trace class� it can be shown� like in
example ���� that condition �
�� is then full�lled�
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