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Abstract
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1 Introduction

Let H be a real separable Hilbert space, and consider the following stochastic
differential equation on H:

X(0) (1)

dX(t) =[AX(t)+ F(X(@))]dt+ BdW (t), te€][0,1],
_= x7
where © € H, A: D(A) C H — H generates a Cy-semigroup {exp(tA4);t >
0}, F is a Lipschitz function defined on H, B is a non-negative bounded
linear operator from H to H, and W is a cylindrical Wiener process in H.
It is known that if fol | exp(tA)B||3;4dt is finite, then (1) admits a unique
solution X € L?*([0,1]; H), in a sense that will be specified later (see [3] for
further details). In the remainder of the paper, we will also denote by W4
the stochastic convolution of A by W, that is the solution to (1) for F =0
and x = 0.
This article proposes to study the limiting behaviour of ratios of the form

CP(X—dl <o)
)= AT < 9

when ¢ tends to 0, where ¢ is a deterministic function satisfying some regu-
larity conditions and || - || is a suitable norm defined on the functions from
[0,1] to H. When lim._,0v.(¢) = exp(Jo(¢)) for all ¢ in a reasonable class
of functions, then the functional Jy is called the Onsager Machlup functional
associated to (1) and || - ||. It is worth noticing that Jy can easily be in-
terpreted as a generalized likelihood functional in infinite dimension, which
makes its calculation an interesting problem.

For usual stochastic differential equations, namely when H = R, A = 0,
B = 1d, the problem of computing the Onsager Marchlup functional for
(1) has been widely investigated. Ikeda and Watanabe [8] gave a rigorous
proof for the case of any ¢ € C*([0,1]; R?) for the norm || - ||o defined on
C([0,1];RY). This result has been enhanced then in two directions: Shepp
and Zeitouni proved first in [12] that the function ¢ could be taken in the
Cameron-Martin space Wy ([0, 1]; R?), and Capitaine proved in [1] and [2]
(basing this last result on some techniques inspired by the computation of
the Onsager Machlup functional for diffusions on manifolds, see e.g. [7]) that
the norm || - || could be taken as any euclidian norm on the functions from
[0,1] to RY making sense for the solution to (1) and dominating the norm on
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L*([0,1]; RY). It is important to notice that in the case of finite dimensional
diffusions, the functional Jy does not depend on the norm considered.

Our current work fits in a more global project of studying the Onsager
Machlup functionals for infinite stochastic systems. The first results in that
direction have been obtained by Dembo and Zeitouni [4] for a class of trace
class elliptic SPDEs on a bounded domain of R?, and then by Mayer-Wolf and
Zeitouni [10] in the non trace case. We shall use some of their techniques
in order to get our main result: if || - || is chosen as the Hilbert norm on
L*(]0,1]; H), then, for ¢ satisfying some suitable hypothesis,

n)=— [ 55" [0t + Fion - ]

;dt_Tr ((PR* —|—2(PR*)*)> |

where R is a certain bounded linear operator based on the covariance function
of W4 and P is an operator depending on VF and ¢.

With respect to the finite dimensional case, some differences can already
be stressed in this introduction: first, the generality of the result obtained
by Capitaine in [2] seems beyond our hopes at this moment, and it is for
instance an open problem for us to know if some computations can be leaded
for the norm || || on C([0,1]; H). On the other hand, since an independence
of the functional Jy with respect to the norm || - || can also be expected in
our SPDE case, we chose to work with the Hilbert norm on L*([0,1]; H) for
two main reasons:

1. We are working here with the minimal assumptions on A and B under
which equation (1) has a unique solution in L*([0, 1]; H), though we will
also make the additional assumption that A and B can be diagonalized
in the same orthonormal basis of H.

2. We will be able to use the conditional exponential moments results
stated in [10], where the conditioning is over an infinite dimensional
Gaussian random variable (these results will be recalled at Section 2).
However, the fact that we are dealing with an evolution type equation
will force us to delve deeper into the different Karhunen decompositions
involved in the application of the results of [10]. We shall give some
details about these decompositions at Section 2.

Another relevant difference between the finite and infinite dimensional
case is that the normalizing factor in y.(¢) cannot be a function of the norm



of the cylindrical Brownian motion. This leads us to the natural choice of a
normalization by P(|[W#|| < ¢), which prives us of the rotational invariance
type properties of the Brownian motion used by Ikeda and Watanabe ([8,
Lemma 8.2]) and by Capitaine ([1, Lemma 4], [2, Lemma 3]) as a fundamental
step towards the computation of the Onsager Machlup functional.

Our paper is organized as follows: in Section 2, we recall some basic
results and fix our notations for the stochastic evolution equation considered.
We recall a basic lemma of Mayer-Wolf and Zeitouni [10, Lemma 2.5] that
we shall use later on, and give the Karhunen expansion of an Ornstein-
Uhlenbeck process in dimension one. In Section 3 we obtain the Onsager
Machlup functional: at Subsection 3.1, we reduce our problem by Girsanov’s
transform. Subsection 3.2. is then devoted to some details about the linear
case, that is when F is a linear bounded operator, which will lead us to the
general case after Taylor’s expansion, and is of independent interest, since
the conditions given on F' in this case will be more explicit, especially when
F can be diagonalized in the same complete orthonormal system than A and
B. At Subsection 3.3, we will deal with the general non linear case.

2 Notations and preliminary results

2.1 Stochastic evolution systems
2.1.1 The operators A and B

Let H be a real separable Hilbert space and A : D(A) C H — H an un-
bounded operator on H. The norm on H will be denoted by |- |z, and the
scalar product by (-,-). The L? norm in L*([0,1]; H) will be denoted by ||-||2-
Let L£(H) the set of bounded linear operators on H. The norm || - || will be
the usual operator norm defined on L(H), that is, ||T'|| = sup ey @l e

35

shall suppose

(H1) The operator A generates a self adjoint Cy-semigroup {exp(tA) ;¢ > 0}
of negative type. Moreover, there exists a complete orthonormal system
{ej; 7 > 1} which diagonalizes A. We shall denote by {—a;;j > 1} the
corresponding set of eigenvalues and we assume that {oj;7 > 1} is an
increasing sequence of real numbers such that a; > 0 and lim; ., o; =
00.

We shall also consider an operator B € L(H) satisfying
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(H2) The operator B is of non-negative type and is diagonal when expressed
in the orthonormal basis {e;;7 > 1}. We shall denote by {3;;7 > 1}
the corresponding set of eigenvalues. Furthermore, we shall suppose
that

0 2

p
Zl—l—]ou < Q.

J

J=1

In our case where A and B can be diagonalized in the same complete or-
thonormal system, notice that the last hypothesis corresponds to the more
general one fol | exp(tA)B||3;s < oo, that can be found in [3] in order to
ensure the existence and uniqueness of a solution to (1).

2.1.2 Stochastic evolution equations

Let (9, F,F;, P) be a stochastic basis and {W’(¢);t € [0,1],7 > 1} a se-
quence of mutually independent Brownian motions adapted to F;. The cylin-
drical Brownian motion on H is defined by the formal series

Wt =3 Wt ®

where {e;;7 > 1} is the complete orthonormal system of H introduced at
Subsection 2.1.1. Notice that the series (2) does not converge in H, but for
any h € H, {{W(t),h);t € [0,1]} is a linear Brownian motion with covariance
|k |3 (see [3]). We shall consider the stochastic evolution equation (1), where
A and B have been defined at subsection 2.1.1 and ¥ : H — H is a Lipschitz
function (some further hypothesis on F' will be made at Subsections 3.2 and
3.3). Equation (1) is only formal, and has to be interpreted in the usual mild
sense: we will say that X = {X(¢);¢ € [0,1]} is a solution to (1) if it is an
H-valued Fi-adapted square integrable process such that

X(t) = exp(tA)x —I—/0 exp((t — s)A)F(X(s))ds —I—/0 exp((t — s)A)BdW (s),
(3)

for all t € [0,1], where the last integral is of Itd’s type. The following
proposition is then a particular case of [3, Theorem 7.4].

Proposition 2.1 Suppose that (H1) and (H2) are satisfied. Then there ex-
ists a unique solution X to (3), such that X € L*(2 x [0,1]; H).
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Under our assumptions, X is also a solution to (1) in the weak sense : if

Ah € H, for all t € [0,1]
(X(t),h) = (z,h) —I-/0 (X(s), Ah) ds

+/0 (F(X(5)), h) ds + (B, W (1))

P-a.s. In particular, when © = 0 and F' = 0 we have the following integration
by parts formula (see [3, Lemma 5.5]): if m € W'2([0,1]; H) is such that
Am € L*([0,1]; H), then, for all ¢ € [0, 1],

<WA(t), m(t)> = /0 <WA(3), Am(s) + m(3)> ds + /0 (Bm(s),dW (s)).
(4)

2.2 Some conditioned exponential inequalities

We will recall here some basic lemmae that we shall use for the computa-
tion of our Onsager Machlup functional. The first one is a crucial, though
elementary, inequality that can be found in [8, p. 537].

Lemma 2.2 For a fired n > 1, let zq,... , 2z, be n random variables defined
on (Q,F,P) and {A.;e > 0} a family of sets in F. Suppose that for any
ceER and any1=1,... ,n, we have

limsup F [exp (ez;) |A] < 1.

E— 00

Then
lim F

E— 00

=1

exp (i z) et

=1

In the sequel of the paper, we shall use some inequalities involving trace
class operators. Let us state now the notion of trace that we shall consider.
Let K be a separable Hilbert space.

Definition 2.3 Let T : K — K be a compact symmetric operator. Let
{771 > 1} be the eigenvalues of the operator T'. We will say that T is a trace
class operator if Y .o, |i| is finite.

If T is trace class, we define the trace of T, Tr(T ), as > = (Te;, €;) for
any basis {e;;1 > 1}, In particular Tr(T) = > 2 7.

=1
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We finish this subsection recalling two technical lemmas from [10]. The
first one is a version of [10, Lemma 2.4]. In the second one, we state a slight
variation of a fundamental lemma in [10]. We denote here by ¢? the set of
sequences of real numbers {n;;i > 1} such that > .., n? < cc.

Lemma 2.4 Let {z;;i > 1} be a sequence of independent N'(0,1) random
variables defined on (Q,F,P), and {n;;1 > 1} and {v;;i > 1} two (? se-

quences of real numbers. Then

exp ( Z,I/,) ‘ anzz < 5] =1.

Lemma 2.5 Let {z;;i > 1} be a sequence of independent N'(0,1) random
variables defined on (Q,F,P), and {n;;i > 1} a (* sequence of real num-
bers. Let T : (* — (* be a Hilbert-Schmidt operator, {m;;i > 1} a complete
orthonormal system of (*, and denote (T'm;,m;) by T; ;.

lim F

e—0

1. If (T + T~) is trace class, then

Xp(i )\anzz 9] _

7,7=1

lim F

e—0

2. If >°° T;i = oo (resp. —o0), then

exp (ZZ,Z]T,]—I-Z (zf = 1) “) ‘anzz §5] =

£y =1

lim F

e—0

(resp. +00).

Proof: We refer the reader to the proof of [10, Lemma 2.5]. Notice only
that if we denote by T' the operator (T + T), then for any j,7 > 1

Z,’Z]‘(T,'J‘ + T]‘,i) = Zng(ng + Tj,i)v

where T} j = (T'mji, m;). O



2.3 The Karhunen-Loeve expansion

We compute here a Karhunen-Loeve expansion for a class of one-dimensional
Ornstein-Uhlenbeck processes that will appear in the decomposition of W4.
The following lemma is presumably fairly standard, but we include it for the
sake of completeness.

Lemma 2.6 Let 3 a standard Brownian motion and A > 0. Then, the
process X = {X(t) = fot exp(—A(t — 8))dB(s), 0 <t < 1} has the following

Karhunen-Loéve expansion:

X() =3 i)

where, for each k > 1, xp is the unique positive solution of the equation

tan(x) = —sa in the interval [(2k—1)Z, (2k+1)Z), {gr(t) = Ag sin(xxt), k >

1} is an orthonormal basis of L*([0,1]) with the normalizing constants Ay
satisfying supy, |Ax| < 2, and {Yx, k > 1} is a family of orthogonal gaussian
random variables with mean 0 and variance 1, defined by Yy, = \/A? + a3
[ X () gi(t)dt, for all k> 1.

Proof: Notice that X is a Gaussian process with covariance function
tAs
K(t,s) = / e~ A=W = A=) gy,
0

1 (e—)\(tVs—t/\s) . e—)\(t—l—s))

ﬁ ) (5)

s,t € [0,1]. To find the eigenvalues and the eigenvectors of the symmetric

operator in £(L*([0,1])) associated with the kernel K, we have to solve the
equation

/01 K(t,s)g(t)dt = pg(s), 0<s<1, (6)

that is for 0 < s <1

s 1 1
% (e_)‘s/ eMy(t)dt + e“/ e Mg(t)dt — e_)‘s/ e‘”g(t)dt) = ug(s).
0 s 0



Differentiating twice it is easy to check that g satisfies

(M —1)g(s) = pg"(s), 0<s<1, (7)

with initial conditions ¢(0) = 0 and Ag(1) = —¢'(1). Notice that equation
(7) clearly implies that u # 0.

Set ay, = )\25—_1 Then a , is well-defined and strictly negative. Indeed,
suppose that A2z —1 = 0. Then ¢”(s) = 0, 0 < s < 1, and the initial
conditions imply ¢ = 0. Finally, suppose that ay, > 0. In this case, the

solution of the differential equation (7) is of the form

S S
s) = crex 4+ cyex — ,
g( ) L (\/O‘A,M> 2P ( v O‘MM)

where ¢y, ¢y are real constants. Then, the initial conditions ¢(0) = 0 and

Ag(l) = —g'(1) yield

1 1 1
tanh ( ) = ——
VA WY A VAo WY

and this equation has no solution.
I

Consequently, we can assume 21 < 0, and the solution of (7) is of the

form

g(s) = ¢1sin (W) + ¢ cos (M) )

The condition g(0) = 0 implies ¢; = 0, and Ag(1) = —¢'(1) yields

1 1 1
tan = —— .
(\/ |O‘>\,M|> A \% [e3WA

Set x = |ay,|~"/%. The relation ay , = implies that the eigenvalues

K
A2pu—1
of the operator K form a family {p,;n > 1}, where u,, = ﬁ and x,, is the

solution of the equation tan(x) = —a in the interval [(2n —1)Z, (2n +1)%);

and the orthonormalized eigenfunctions are of the form g¢,(s) = A, sin(z,s),
n > 1. An easy computation shows that |4, | < 2 for all n.

The classical Karhunen-Loeve Theorem (see e.g. [9]) finishes the proof.
O



3 Onsager-Machlup functional

In this section we compute the Onsager Machlup functional for our equation,
following the usual scheme used for both finite and infinite cases: we apply
first the Girsanov transform in order to reduce our problem to the evaluation
of a functional of the stochastic convolution W4, up to some easily controlled
correction terms (Subsection 3.1). We are then left with the evaluation of the
conditional exponential moments of a stochastic integral with respect to the
cylindrical Brownian motion, that can be easily handled when F' is a linear
operator (Subsection 3.2). The general case for F' can be deduced then by
Taylor’s expansion (Subsection 3.3).

3.1 Application of Girsanov’s transform

Set @ = B? (recall that A and B are supposed to be symmetric). Fix a
differentiable function h : [0,1] — H satisfying

(H3) 4 =, ¢ L*([0,1]; H), Ah € L*([0,1]; H) and Bh € L*([0,1]; H).

Let ¢" be the solution of the infinite dimensional equation

(8)

{dgbh(t) = Adh(t)dt + Qh(t)dt, € [0,1],
¢"(0) ==z

We will compute the Onsager Machlup functional on L?([0,1]; H) at points
of the form ¢". The regularity assumption (H3) is required in order to apply
Girsanov’s transform, and to control the term T3 (defined at (10)) by means
of an integration by parts argument.

Assume also the following conditions:

(h1) For any ¢t € [0,1], F'(X(¢)) € Im(B) a.s. and one of the two following

relations holds: for some § > 0,

sup E [exp(8| BT F(X(1)[})] < +oe.

tefo,1]

or

E [exp (% /01 |B‘1F(X(t))|§ldt>} < too,
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(h2) there exist a positive constant K such that |B~'F(z) — B™'F(y)|g <
Klz — y|lg and |B~'F(2)|g < K(1 + |2|g), for any x,y € H.

Then, using Girsanov’s transformation (see [3, Theorem 10.14 and Propo-

sition 10.17]) with W(t) = W(t)—l—fot B~'F(X(s))ds, we obtain for any ¢ > 0
1
PUIX = oMl < &) = B [exp ([ (BT FOVA(s) + o). ()
0
L 1B‘1F w4 A |5ds )1
5 | ( (s) + e x)|pds {|le Az+WA—¢h||a<e} | -
0

Notice that to simplify the notation we have denoted W by W. Since Bh €
L*([0,1]; H) we can apply again Girsanov’s transformation, now with W(t) =

Wi(t) — fot Bh(s)ds. We get, for any ¢ > 0,
P(IX = ¢"s<e) = E|exp( / (B~ F(WA(s) + ¢ (5)), W (s))
[ B RO + o). Bhos

=5 [ 1B RO £ s

_ /01<Bh(5),dW(s)> — %/01 IBh(S)Ifqu) 1{||WA||256}]-

Then .
P(|X = ¢"2 < ¢)

) = Pl < 2

can be written as

e (=3 [ 1B R )~ B lts ) £

() <.
) (9)

with

T, = / (BTUF(WA(s) + (), AW (s)),
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T, := /0<B—1F(WA(5)+¢h(s))—B—lF(¢h(s)),Bh(s)>ds

=5 | (BT POV + Dl — B F( ) )

and
T := —/0 (Bh(s),dW (s)). (10)

On the set {||W4|]; < ¢}, using (h2), we clearly have that |Ty| < Ce.
Moreover, since Bh is deterministic, by relation (4), we obtain T3 := Ty, +

T3(b) Wlth

T = [ (Ah(e) +h6. W40 ) s

Tsey = —(h(1),W*(1)).
Assumption (H3) trivially gives |T(,)| < Ce on the set {||[IW4||; < e}

On the other hand, assuming hypothesis (H1) and (H2), by Lemma 2.6
and decomposition (2)

[ee)

A = S /ﬂ =W (s)) e,

J=1

3 il @ 6)0) (1)

1 k=1

]2

~.
Il

where py ; = \/ozf-JTi’ and xy ;, Yy ; and gi ; are the xy, Y; and g; defined
J 3J

in Lemma 2.6 when A = «a;. Moreover, {Y;;, &k > 1,5 > 1} is a family of
independent centered random variables with variance 1.

Given f € L*([0,1]) and e € H, we denote by f @ e the function of
L*([0,1]; H) such that (f @ e)(s) = f(s)e. Notice then that {gx; @ €;, k >
1,7 > 1} is an orthonormal basis of L?([0,1]; H) such that for any j, k > 1:
Cov((WA,ng ® €j>L2([O,l];H)) = Mlzc,j' Thus,

WAL= > ni Y

7=1 k=1

12



with

Sut= 3 <X [ ey B
71=1 4o

k=1 k=1

Then, by (11)

with rij := —pu ok ;(1){h(1),€;). Since

by Lemma 2.4 we get
li_r}réE [exp (cT3(b))‘||WA||2 < 5] =1,

for any ¢ € R. Hence, using Lemma 2.2, the only point remaining to deter-
mine lim. o ’ys(th) is the study of the term E[exp(Tl)H|WA||2 < el.

3.2 The linear case

In this subsection we discuss the case of a linear function F. We obtain an
Omnsager Machlup functional and we study carefully the particular case where
F is diagonal in the same basis than the operators A and B.

The main theorem of this part states as follows:

Theorem 3.1 Assume that (H1) and (H2) are satisfied, h is a function
satisfying (H3), ¢" is defined by (8) and F € L(H) is such that P =B'F
s a bounded operator. Denote by P and R the linear operators defined on
L*([0,1); H) such that P(h @ e;) = h @ P(e;) and R(h @ ¢;) = Rj(h) @ ¢;
with

1
(R;h)(s) ::/ Bj et p(t)dt.
Then, for any j,k > 1,
(R*R)(grj @ €;), gr.i @ €5) iz (o) = Cov((WH, gij @ €5) 2 (0,13:m))

and

13



(i) if 3(PR* + (PR*)") is trace class, then
g = ew(= [ 3|5 [t Pt - 2] o
_Ty (%(PR* + (PR*)*))),

(i) if 3 (PR (gk; @ €;), gk @ €;) = +00 (resp. —o0), then

hy
lim 7. (¢") = 0

(resp. +00).

Proof:

Step 1: Reduction to a stochastic integral involving W4 and W.

Since P is a bounded operator, condition (h2) is clearly satisfied. On the
other hand, using that F' is a linear operator, we get

oo (& [ 1 pcxnn)]
< o (§ [ @l e eles (5 [ )]

Following the proof of [3, Theorem 10.20] we check that (hl) is also sat-
isfied, using the fact that (A + F') generates a Cyp-semigroup such that
fol |etA+F) B|2, (ds is finite whenever F € L(H) (see e.g. Goldberg [6, Chap-
ter 5.1]). Hence, it is sufficient to study lim. o E[exp(Tl)H|WA||2 < el.

Since we are in the linear case, we can write T := T(q) + Ti) with

T = / (B F(WA(s), WV (s)),
T = / (BUF(#(s)), dW (s)).

Since the function B~'F is a bounded linear operator, Ty can be studied
likewise the term T5, using the integration by parts formula (4).

14



The study of the term T, will follow the ideas presented by Mayer-Wolf
and Zeitouni [10].

Step 2: Expression of T, in terms of Skorokhod integrals.

Consider now fi; := Rjgr;, J > 1,k > 1. Then, for any j > 1, {hx, =
ﬁf;w‘, k > 1} is an orthonormal basis of L?([0,1]). Indeed, the &y ; form

an orthogonal family since, by (5) and (6),
1 1 1
<fm,j7fn7j>L2[0,1] = ﬁz/ (/ e_aj(t s)gm ]( )dt>(/ _aj(u_s)gn,j(u)du>d8
[3 / / K;(t, ) Gm () gn,j(uw)dtdu

=t (Gmgs Gng) 120,105 (12)

for any m,n > 1, where K denotes the covariance function defined at (5)
with A = «;. Thus, in order to prove that it is a basis, it is sufficient to show
that, if h € L*([0,1]) satisfies (fr;,h)r20q) = 0 for all & > 1, then h = 0.
But this follows easily from the fact that if for all £ > 1,

0 = <fk]7 >L2 [0,1] = /0 (/ ﬁ]‘ e_aj(t_s)gkﬂ‘(t)dt) h(S)dS

= Bl 9" ) 1201,

then " = 0 with o"'(¢) = fot e~ (s)ds, and of course h = 0.

Furthermore,
Jarwat, [ ([ et ) i
= [ (e eet, [ e i

= Li(hk;),

Yij

where I;(I) denotes the Wiener integral of [ with respect to W7, that is
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fo dW’ . Then

Thw = / (BOVA(s)), dW (s))

= 3 s [ TislPllars 2 )

1,7,k=1

= Z Hk.5 P€], / Y;C’]‘ gk7j(s)dWi(s). (13)

1,7,k=1

It is worth noticing that the random variables Y} ; are Fj-measurable.
Hence, some of the stochastic integrals appearing in (13) are anticipating.
When they are of this kind, we have taken them in the Skorokhod sense,
and we switch from It6’s integrals to Skorokhod’s ones using the fact that
they coincide on the set L2 of square integrable adapted processes (see for
instance [11] for an account on Skorokhod’s integrals). Moreover, using [11,
Equation (1.45)], observe that when j =1

[ee)

1
/Yk,jgk,j(S)dW’(S) = Yi; > A0k hmi) e Li(hm )
0

m=1

—(Pkjs Gk j) 120015

and when j # 1

[ee)

1
/ Yiige ()W (5) = Yi; > gk hmi) 20,1 Li(Bom i)
0

m=1

Using the fact that hy ; = /,L];;R]‘gkﬂ‘ and Yy ; = Ij(hg;), we can write (13)
in the following way:

Mk,
Tl(a) — Z ]lﬁc]Ym 2<P€]7 ><gk]7Rgm l>L2[0 1]
(k) mi) F
+ ) (VR — D)(Pej )9k, Rigei)12o.0- (14)
7=1 k=1

Step 3 Expression of T, in terms of P and R”.
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Define now the operator T : (2, — (. by

L]
,umz

Tk g),(myi) = (Pej, ) (ghgs Rigmidrepgs (ko d), (myi) € N2

Tiw = >, TwamiYesYomi + > Y Toeapen(Yie; — 1) (15)
(k.5)#(m,i) j=1 k=1

Let A be the linear operator such that A(gr; @ €;) = i, (gr; @ €;).
Observe that, for any 5,k > 1,

[ee)

(R*R)(gk; @ €;) = > ((RR;)Gkjs Gni)1210.11(Gns @ €5)

n= 1

= Z ik Bign i) 020,11 (9n g © €5),

and by (12) this last quantity equals Mz](gk] @ €j).
Hence A? = R*R. Define U = RA™! ﬁ which is clearly a bounded
operator defined in L*([0,1]; H). We get

Ttk gy imi) = (PMgr; @ €;), RA™ (g, @ €)) 12 (o,17:00)
= (U"PR'U(gr,; @ €;), (gmi © €i))r2([0.13:1)- (16)
Observe now that for any f,h € L*([0,1]), i,5 > 1,
(R (h @ €;), | @ €i)r2ogm) = (hs Bi(f)) 20165 €)
= (h, Rj(f))r2p11(€). €i) = (Bj(h) @ €j, f @ €)r2(jo,1,m)-
So, we get
Tikiyikg) = (Pejs €)(0k.ds Righ)12p0.1)
= (PR (gr,j @ €;), Gr.; © €;)12(10,1;1)s (17)

and clearly, if 2(PR* + (PR")*) is a trace class operator, Yok Thiy k) =
Tr(3(PR* + (PR*)")).

17



Step 4: Application of Lemma 2.5.

Using Lemma 2.2 and by equation (15), in order to see part (i) it is
sufficient to show that

exp (C Z Yk,ij,z’T(k,j),(m,z)> ‘||WA||2 < 5] — 1

i7k7j7m

E

when ¢ goes to 0, for any ¢ € R.

Since by assumption 1(PR* + (PR*)) is a trace class operator, by (9),
the decomposition of W4 given in (11), (16) and applying part 1) in Lemma
2.5 we finish easily the proof of part (i).

To prove (ii), we should proceed with the same computations. From (17)
and part 2) of Lemma 2.5 we obtain easily the desired result. O

We finish this subsection with an important Corollary where we study
the case where F' is a trace class operator. We also examine the diagonal
case.

Corollary 3.2 Assume that (H1) and (H2) are satisfied, h is a function
satisfying (H3), @" is defined by (8) and F is a trace class operator such that
P = B7'F is a bounded operator. Then, if L(PR* + (PR*)*) is trace class

- h "1 h ik ? 1

lim () = exp(— [ 5 |B 14+ Pt - ][] a1 ().
Proof. Using Theorem 3.1 it is enough to prove that if F' is a trace class
operator then Tr(%(PR* + (PR*)")) = %Tr(F).

We have to study the eigenvalues of the operator 1(PR* 4+ (PR*)). De-
note by Rj the operator ﬁj_le. Set V; = %(R; + R]) First, we can check
trivially that for all j > 1, V; is a linear operator on L*([0,1]) given by a
kernel denoted by I&’j: indeed, for any L € L*([0,1])

[Vi(h)] (s) = / Ki(s.th(t)dt, s € [0,1],

with K; : [0,1]2 — [0,1] defined by K(s,t) = Lemails=tl,
Let us consider now an operator V on L*(]0, 1]) given by a kernel I&’(S, t) =
%e_Ms_t', an let us show that V' is a non-negative. Indeed, if R is the Volterra

operator on L*([0,1]) defined by Rh = g and
¢
o) = [ Msyis, te o)
0

18



then it is readily seen that

V= (b, £) ooy £+ AR R,

N |

where f(t) = e for all ¢ € [0,1]. Therefore,

(h, f>i2([o,1]) + (Rh, Rh>i2([o,1]) ;

N |

(Vh, h>L2([o,1]) =

which shows the positivity.
Thus, V' is a positive Hilbert-Schmidt operator given by a continuous
kernel on [0,1]%. It is then well-known [5, Proposition 10.1] that

o'} 1 . 1
> u :/ K(t,t)dt = =.
0 2

Notice that this value does not depend on .
On the other hand, for any h € L%([0,1]),j > 1 we have

(PR 4 (PR")")(h @ €;)(s)

([ em) s ) + 1o P ()}
{(/0 e_o‘j(s_“)h(u)du> Bi(B™'F)e,
+ g;@ﬁgl (F e, e;) (/1 e—ai<“—5>h(u)du> e,} .

Moreover, observe also that if we denote by {fm,k > 1} the L?([0,1]) or-
thonormal basis that diagonalizes Vj, then {fr,; ® ¢;;5 > 1,k > 1} is a
orthonormal basis of L*([0,1]; H). So, since

(Bi(B™'F)ej,ej) = ((B™'F)ej, Bej) = (Fej¢))

N = N =N =

19



we get

1
2
— Z <%(PR* F (PR frj @ €)), faj @ €j>

sk=1 L2 ([0,1:H)
1 /a2 . )
— 5];1 <ijk,j7 k,j>L2[071] (Fej,ej) + <R]‘fk,j7fk,j>L2[07l] (F*ej,ej)

?[0,1]

= ) (Feje) <V}fk,jvfk,j>L
Jk=1
1 1

= §Z<F%€j> = §TI’(F)-

The proof is now completed. a

Example 3.3 Consider the case of an operator F which is diagonal when
expressed in the orthonormal basis {e;;7 > 1}. We denote by {p;;j > 1}
the corresponding set of eigenvalues. Assume also the other hypothesis of

Theorem 3.1. Then:

(i’) the operator 1(PR* 4 (PR*)*) is trace class if and only if F is, and in
this case, Tr(%(PR* + (PR*)")) = L Tr(F).

— 2
() if 3551 pj = +00, then
- 11m7€(¢) = 07

el0
(111°) if E]‘21pj = —oo0, then

lim~.(¢) = +o0.

el0

Remark 3.4 1. Under situations (ii’) and (iii’), choosing h = 0, we find
that the limiting behaviour of P(||[W4ly < &) and P(|WAH]], < ¢).
when ¢ — 0 cannot be compared.

2. Since we need B™'F to be a bounded operator, we will suppose that

sup; % < ©0.

20



3. The conditions (i), (1i°) and (iii’) only involve the operator F, and
none of the operators A and B.

Proof. Since now PR*(h @ ¢;) = p](}%;(h) @ e;) and (PR*)*(h @ ¢;) =
pj(f%j(h) © €;), it is easily seen that 2(PR* + (PR*)*) is of trace class iff
( = Zi,jzl Ipjvi ;| < oo, where the family {v; ;;¢ > 1} denotes the set of
eigenvalues of the operator V;. As we have seen in Corollary 3.2, for any
J>1, 3 vigl = 2 viy = 1. It is now easily deduced that PR* is trace
class if and only if Ejz_l Ipj| < oc.

PR*+(PR*)*

5 1s not trace class. Observe first

Assume now that the operator
that

N

(PR*(gr; @ €5), gr.; @ €5)r2(0.1:1) = Pi{ RG5> Gr.j) 12 [0,1]-

We can compute easily

N

1
Rigns(s) = / i) gy (1)

A 3 O(jS
= R <€_°‘j5(1‘k,j cos(wx,;5) + ajsin(wk ;5))

2
aj + Ty ;

—e™% (zxj cos(ar ;) + sin(m,;)))
Arj

= a7 2 <:1;k7j cos(xy ;8) + @ sin(:z;kJs)),
J kg

using xy j cos(wx,;) = —aysin(xg ). Since fol A,zw sin(zy js)ds = 1, we then
obtain

. LA2
<Rjgk7j,gk7j>L2[071] = /%(xk] cos(xy js)sin(xg ;8)+a; sinz(xms))ds
o p
1 <A,2C
2

J sinz(:zjm) + ozj>.

2 2
aj + Ty ;

Furthermore, we have that

Y

Cl = 1 02
; = Z o? + 2 = ;
J k=1 J k.3 J

for some positive constants C; and C3 not depending on j, comparing the

above sum with some integrals of the function ¢(y) = T
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Since supy, ; |Ax,;| < 2, and

O O ) A2 ) ‘
S PR (g @ €1)s 0 © € iz onyn = Y 52 < o Slﬂz(wk,j)JrOéj)a

2 2
o+ x: .\ 2
k=1 i1 0 T Ty

the proofs of (ii’) and (iii’) in our example are now straightforward.

3.3 The general case

In this subsection we deal with the case of a general function F', by means
of a linearization procedure around F(¢;) at each t € [0, 1], which is usual
in Onsager Machlup type results (see e.g. [8]). Let us introduce first some
notation: given a differentiable function S : H — H and x € H we denote by
D,S € L(H) the derivative operator of S at x, and for any £ € L*([0,1]; H)
we define by D;S the operator defined on L?([0,1]; H) by ((DeS)(¥))(s) :=
(De(s)S)((s)) for any +» € L*([0,1]; H).

The main theorem is the following:

Theorem 3.5 Assume that (H1) and (H2) are satisfied, h is a function
verifying (H3), ¢" is defined by (8) and F': H — H is a Lipschitz continuous
function such that P = B™'F is C}. Let R be the linear operator defined in
Theorem 3.1 and denote by P : L*([0,1]; H) — L*([0,1]; H) the operator
given by

(P(u@1))(s) = u(s)(Dgry P)(1), we L*([0,1]),1 € H.
Assume finally that 1(PR* + (PR*)*) s trace class and there exists a r > 0

and a deterministic trace class operator T L*([0,1]; H) — L*([0,1]; H) such
that, for any £ satisfying ||¢" — £||2 < 7,

[{((De¢P — Dyn PYR* 0. 00 20,11y < (T 00 220 1100 (18)

for any ¢ € L*([0,1]; H).
Then

limy.(¢) = eXP<— %/01
T (%(PR* + (PR*)*)) )

2

dt
H

B [Ad"(1) + F (6 (1) = 8"(1)]
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Proof: Since (hl) and (h2) are satisfied, like in the proof of Theorem 3.1 it
is enough to study lim.}o E[exp(Tl)H|WA||2 <el.
A Taylor’s formula for Hilbert space valued functions gives us

B(WA(s) 1 ¢(5)) = P¢"(5)) + (Dyra PYIT(5)
+( /0 (Drionrai P — Dy P)dN) (W4 (5)).
Then T; 1= Ty + Tyga + Thge) with
T = [ (PG,
Ty = [ (Du PV W),

1 1
Tiey = /0<</0 (D¢h(s>+AwA(s>P—Dqﬁh(s)P)dA)(WA(S))vdW(S)>a

Since B~'F is Cf, we can deal Ty using the same arguments as for T5.
The term Ty can be handled in much the same way as T'(4) in the proof
of Theorem 3.1, the only difference being in the analysis of Ty (i.e. the

A

dependence on s of the operator Dyn(,)P), but notice that the structure of
the proof is still valid. Similarly to (14), Ty () can be written

Ty = Z /deJ'Y;c,ij,KM]i’jv RiGm.i)r2[0,1]
(k,g) £ (m)
+ Y (V= D)(M ;. Rigm )20,
7=1 k=1

with M,’w(s) = ((P(gk,; @ €;))(s), €). Since
<M]i7]‘7 Rigm.i)r2101] = (P(gk,; @ €5), RiGm,i @ €)1 ([0,1];1)»

proceeding as in Theorem 3.1 we can then obtain
Elexp (1) |97z < <] (19)
1
—exp (- To(5 (PR + (PRY)) E | exp (Tian) 14> < <],
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with

Tiany = Y Y Yuil(UPRU)gr; @ €;)sgmi @ €i)r2(oa1)

(k,j),(m,i)

where U is defined in the proof of Theorem 3.1 and
limm E | exp (Tyaz) 172 < <] = 1.

Finally we have to study Tj). We will follow the method used in [10,
Theorem 4.1]. Set ¢* = ¢" + AW, Just like in the case of Ty(a), we get

/01 </01 (Dgro) P~ D¢h(s)15)dA)(WA(S)),dw(5)>

1 1
A A
N / > Ve YoiTh ) gm @A — / > Tk i@
O (k)i Ok
where

( W) m,i)
T&,J‘),(m,z) = <(U*(pr - D¢hp)R*U)(9k,j @ €5), Gmi @ €i>L2([071];H)-
Since P is CZ, we clearly have

|(Dg0>‘(s)P - D(bh(s)p)(y” < C|S‘Q)\(S) - ¢h(8)|H|y|H7

for any y € H. So, fixed A, (k,j),(m,2) lim._,o 1{||WA||256}T()];7]4)7(m7i) = 0.

Because of (18), by a dominated convergence argument we can prove that
1 © 0
. A
M L grayl, <e) /0 D2 T ridh = 0.
7=1 k=1

Then, by Lemma 2.2, we shall have established the Theorem if we prove
that, for all ¢ € R,

1
- A A
l%E[exp <c/0 Y n,jym,,»T(k7j)7(m7i)dA>‘||W I2 gg] <1.  (20)
(k,j),(m,i)
But, by assumption (18) (see[10, Theorem 4.1]),
1
E [exp <c/ Z 1/;67]‘Ym7,'T(),;7j)7(m7i)d)\> ‘HWAHz < 5]
0
(

k,j),(m,i)
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< E[eXp <|c| > ﬁ,ij,iT<k,j>,<m,i>> ‘||WA||2 < 5]7
(k,j),(m,i)

where

A A

Ty, miy = (T(Gkj @ €5), Gmi @ €i)r2(0,1358)-
Therefore (20) follows from part 1) of Lemma 2.5. O

Example 3.6 Suppose H = L*([0,1]) with Dirichlet boundary conditions,
A=V,B=1Id, and F : H — H is given by the Nemitsky operator F(x) =
f(Kx), where K € L(H) is a trace class operator and f : R — R is a Cf
function. Then the conditions of Theorem 3.5 are satisfied.

Proof: We shall concentrate on condition (18), the other ones being easy to
verify. Under the assumptions of our example, P = F', and the operator R*
is given by [R*(u @ ¢;)] = Rju @ ¢; for all w € L*([0,1]) and j > 1, with

[Riu](s) = / e~y (t)dt, te0,1].
0
Furthermore,

(D¢ F = Dyn F)R™(u @ €;), (u @ €;)) 12([0,13:1)]
=[([f'(K¢&) — f(K"(Rju @ Kej), (u© €;)) 20,11
L2 oo T(w @ €5), (v @ €;)) 2 ((0.13:00),5

with T(u @ e;) = Rju® Kej. Since K is trace class, it can be shown, like in
example 3.3, that condition (18) is then fullfilled.
O

References

[1] M. Capitaine: Onsager-Machlup functional for some smooth norms on

Wiener space, Probab. Theory Related Fields 102 (1995), 189-201.

[2] M. Capitaine: On the Onsager-Machlup functional for elliptic diffusion
processes, to appear in Séminaire de Probabilités 34.

25



3]

[4]

[11]

[12]

G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimen-
stons (Cambridge University Press, 1992).

A. Dembo and O. Zeitouni: Onsager-Machlup functionals and maximum
a posteriori estimation for a class of non-Gaussian random fields, J.

Multivariate Anal. 36 (1991), 243-262.

I. Gohberg and M. Krejn: Opérateurs linéaires non auto-adjoints dans

un espace de Hilbert (Dunod, 1971).
S. Goldberg: Unbounded Linerar operators (Mc Graw-Hill, 1966).

K. Hara and Y. Takahashi: Lagrangian for pinned diffusion process, in
Ité’s stochastic calculus and probability theory (Springer, 1996).

N. Tkeda and S. Watanabe: Stochastic differential equations and diffu-
ston processes (North-Holland, 1981).

P. Kloeden and E. Platen: Numerical methods for stochastic differential
equations (Springer-Verlag, Berlin, 1992).

E. Mayer-Wolf and O. Zeitouni: Onsager Machlup functionals for non-
trace-class SPDEs, Probab. Theory Related Fields 95 (1993), 199-216.

D. Nualart: The Malliavin calculus and related topics (Springer Verlag,
1995).

L. Shepp and O. Zeitouni: A note on conditional exponential moments
and Onsager-Machlup functionals, Ann. Probab. 20 (1992), no. 2, 652—
654.

26



