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Abstract: A consistent description of σ(500) meson effects in ρ0 → π0π0γ and π+π−γ
decays is proposed in terms of reasonably simple amplitudes which reproduce the expected

chiral-loop behaviour for large mσ values. For the neutral case, in addition to the well

known ω exchange, there is an important contribution from the σ(500) meson that is

in agreement with recent experimental data. For the charged case, where the dominant

contribution comes from bremsstrahlung, the effects of the σ(500) meson are relevant only

at high values of the photon energy and compatible with present data. A combined analysis

of both processes with moderately improved experimental information should contribute

decisively to clarify the status of this controversial σ(500) meson.
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1. Introduction

If there is a meson resonance whose existence or not is still an open question in spite of

many dedicated discussions, this is the σ(500) meson. Although the current PDG edition [1]

classifies this scalar state —the σ or f0(400–1200)— among the stablished resonances, this

has not been the case for most of a controversial period starting some 30 years ago. Data

on ππ scattering at low energies, whose isoscalar s-wave channel should reflect the σ(500)

effects and allow for the extraction of the σ(500) properties, have resisted unambiguous

analyses. Only recently, a growing number of authors claim for the existence of such a

ππ resonant state with a mass around some 500 MeV and a similar width (for two recent

reviews, see Refs. [2] and [3]). But the controversy on the existence of the σ(500), as

well as on its nature and properties, is still open. The purpose of our note is to illustrate

that a combined analysis of the radiative ρ0 → π0π0γ and ρ0 → π+π−γ decays should

considerably contribute to clarify the issue.

The contribution of the σ(500) meson to the amplitudes of these two radiative processes

is exactly the same under isospin invariance, A(s)σ ≡ A(ρ → π0π0γ)σ = A(ρ → π+π−γ)σ.
It should be the dominant one in the s-channel (s ≡ m2

ππ ≤ m2
ρ) where two-pion resonance

formation with JPC = 0++, 2++. . . can occur. Indeed, while the σ(500) has a mass be-

low mρ and strongly couples to pion pairs, other resonant exchanges have too large a mass

(like the f2(1270)) or almost decouple from pions (like the f0(980)). This common σ ampli-

tude —the signal amplitude, A(s)σ— will interfere with other contributions —background

amplitudes— accounting for other exchanges. The latter can be reliably computed for both

the neutral and charged decays and turn out to be markedly different. Thanks to this, the

combined study of both decays and comparison with their data considerably constraints

the common signal amplitude, A(s)σ, and should allow for the extraction of the σ(500)

meson properties. With the available data on ρ0 → π0π0γ [4, 5] and ρ0 → π+π−γ [6, 7] one

already can infer that a low-mass σ(500) resonance is most likely required. More accurate

data coming from the Frascati φ-factory DAΦNE [8] could confirm this conclusion and

extract the relevant σ(500) meson properties.
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2. The common, σ(500)-dominated amplitude

The suitable tool to study e+e− annihilation into π0π0γ or π+π−γ well below the ρ res-

onance pole is Chiral Perturbation Theory (χPT) [9]. At the one-loop level, this would

imply the extension of the analysis on γγ → π0π0 and γγ → π+π− for real photons per-

formed in Ref. [10] to the case where one photon is off mass-shell (q∗)2 6= 0. But if the ρ

resonance pole is approached, (q∗)2 ≃ m2
ρ, χPT no longer applies and one needs to enlarge

this theory to include resonances. There is some consensus in that vector and axial-vector

mesons have to be incorporated in such a way that the old and successful ideas of Vector

Meson Dominance (VMD) are fulfilled [11], but the situation concerning the inclusion of

scalars is notoriously more ambiguous [11, 12].

Extensions of χPT including vector mesons which are suitable for the analysis of

ρ0 → ππγ radiative decays have been presented elsewhere [13, 14]. They are particu-

larly simple when specified to the neutral decay mode ρ0 → π0π0γ. In this case one

has to compute the same set of one-loop diagrams contributing to γγ → π0π0 shown in

Ref. [10], the only difference being the substitution of one photon with (q∗)2 6= 0 by a

massive ρ meson according to VMD. Restricting to the contribution from charged-pion

loops (charged-kaon loops contribute negligibly [10, 14]) one obtains the following finite

amplitude for ρ(q∗, ǫ∗) → π0(p)π0(p′)γ(q, ǫ):

A(ρ → π0π0γ)χ =
−eg√
2π2m2

π+

{a}L(m2
π0π0)×A(π+π− → π0π0)χ , (2.1)

where {a} ≡ (ǫ∗ · ǫ) (q∗ ·q)− (ǫ∗ ·q) (ǫ ·q∗), m2
π0π0 ≡ s ≡ (p+p′)2 = (q∗− q)2 is the invariant

mass of the final dipion system and L(m2
π0π0) is the loop integral function defined in

Refs. [14]–[17]. The coupling constant g comes from the strong amplitude A(ρ → π+π−) =

−
√
2g ǫ∗ · (p+ − p−) with |g| = 4.24 to agree with Γ(ρ → π+π−)exp = 149.2 MeV [1]. The

final factor in Eq. (2.1) is

A(π+π− → π0π0)χ =
s−m2

π

f2
π

. (2.2)

Although it is the part of the amplitude which is potentially sensitive to the effects of σ

resonance formation, this is not contemplated in our chiral-loop evaluation at lowest order.

By itself this A(π+π− → π0π0)χ amplitude in Eq. (2.1) —devoid of σ formation effects—

leads to

Γ(ρ → π0π0γ)χ = 1.55 keV , (2.3)

for fπ = 92.4 MeV. It is worth mentioning that the amplitude (2.1) is calculated by means of

theO(p2) χPT Lagrangian, L2, enlarged to include external vector meson fields through the

covariant derivative. In this sense, the π+π− → π0π0 amplitude in Eq. (2.2) is correct only

at lowest order in the chiral expansion. A more refined two loop analysis including terms

of the O(p4) χPT Lagrangian, L4, would make the amplitude (2.2) no longer proportional

to (s −m2
π) but corrected by chiral loop and counterterm contributions [18, 19]. Some of

these counterterms are known to contain the effects of scalar resonance exchange [11]. If

one is only interested in such effects, as in our present case, it has been shown very recently
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that a direct comparison of ππ scattering in the Linear Sigma Model (LσM) and χPT at

O(p4) fixes the relevant counterterms in such a way that the π+π− → π0π0 amplitude is

still proportional to (s−m2
π) [20]. However, the advantage of using a framework where the

scalar resonances are taken into account explicitly is that it allows to reproduce the scalar

pole effects, a feature that is not possible in χPT.

As stated, the σ resonance formation effects should modify the previous results. In

particular, instead of Eq. (2.2) one now has to expect

A(π+π− → π0π0)F =
s−m2

π

f2
π

Fσ(s) , (2.4)

with an additional factor

Fσ(s) ≡
−m2

σ + km2
π

Dσ(s)
, (2.5)

accounting for σ exchange. A simple Breit-Wigner form, Dσ(s) ≡ s−m2
σ + imσΓσ, where

mσ and Γσ are the effective mass and width, will be assumed for the σ propagator and

contributions from f0(980) exchange will be neglected (they can be estimated to be below

some 2 per thousand). Note that, as required, Fσ(s) → 1 whenm2
σ → ∞ for any finite value

of a free parameter k, thus recovering the chiral-loop result in Eq. (2.2). It is important

to remark that in Eq. (2.4) we are not adding the σ contribution ad hoc but in a way that

preserves the lowest order χPT amplitude once the σ resonance is decoupled. As mentioned

before, the π+π− → π0π0 amplitude is shown to be proportional to (s − m2
π) even when

the σ formation effects are taken into account. This feature together with the recovery of

the chiral result makes of the amplitude (2.4) a valid amplitude for studying such effects,

thus making the whole analysis quite reliable.

We will consider two possible values of the parameter k: k = 1 and k ≃ −2.5. The

first value corresponds to the Linear Sigma Model (LσM) [21]–[23] for scalar resonances,

where the σππ coupling is given by gσππ = (−m2
σ +m2

π)/fπ. Once inserted in

Γσ ≃ Γ(σ → ππ) =
3

32π

g2σππ
mσ

√

1− 4m2
π

m2
σ

, (2.6)

it predicts a σ (total) width around 300 MeV, which is only slightly below the value

Γσ ≃ 500 MeV favoured in Refs. [2, 3]. This favoured value is reproduced if we enlarge the

gσππ coupling constant by fixing instead k ≃ −2.5. By itself, the amplitude for each one

of these values of k (k = 1 in the LσM or k ≃ −2.5 in a more phenomenological context)

inserted as the final factor in Eq. (2.1) predicts, respectively,

Γ(ρ → π0π0γ)LσM = 2.63 keV , Γ(ρ → π0π0γ)σ-phen = 1.84 keV . (2.7)

The differences among the results in Eqs. (2.3) and (2.7) illustrate the effects of the σ(500)

resonance in ρ0 → π0π0γ decays and seem to be large enough to establish both its existence

and total width.

The same set of diagrams as before [10] contributes (apart from another set to be

discussed later) to the amplitude for the charged channel ρ0 → π+π−γ. It similarly leads
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to

A(ρ → π+π−γ)χ =
−eg√
2π2m2

π+

{a}L(m2
π+π−)×A(π+π− → π+π−)χ , (2.8)

where the four-pseudoscalar amplitude factorizes again in Eq. (2.8) but now it is found to

be proportional to the variable s = m2
π+π− = m2

ρ − 2mρEγ :

A(π+π− → π+π−)χ =
s

2f2
π

. (2.9)

Integrating the photon energy spectrum over the whole physical region as before, one

obtains

Γ(ρ → π+π−γ)χ = 0.93 keV , (2.10)

which is the simple chiral-loop prediction with no σ meson effects. These are easily intro-

duced in terms of the previous Fσ(s) factor accounting for σ resonance formation in the

s-channel. Since isospin invariance forces this σ contribution to coincide with that for the

previous neutral case, one unambiguously has

A(π+π− → π+π−)F =
s−m2

π

f2
π

Fσ(s)−
s/2−m2

π

f2
π

. (2.11)

The final term is hard to interpret physically but it cannot be associated to σ formation

in the s-channel and, as such, it does not contain the Fσ(s) factor. It could be understood

as the contribution of the exchange of all other intermediate resonances in the infinite

mass limit. In any case, it is totally fixed by the need to recover the chiral-loop result

(2.9) in the limit m2
σ → ∞ or Fσ(s) → 1. Once inserted as the final factor in Eq. (2.8),

the two terms in amplitude (2.11) lead to A(s)σ + A(ρ → π+π−γ)non-σ , with a first k-

dependent term accounting for σ exchange in the s-channel (as in the neutral case) and

a second k-independent one. For k = 1 (as in the LσM) or k ≃ −2.5 (as in the previous

phenomenological context) one obtains

Γ(ρ → π+π−γ)LσM = 5.21 keV , Γ(ρ → π+π−γ)σ-phen = 3.84 keV , (2.12)

which, again, are markedly different from the value (2.10).

The predictions for ρ → ππγ in both channels are thus clearly different if one takes

into consideration the effects of σ formation or not. One would expect that this difference

to be also manifest in ππ scattering itself. In particular, one can calculate the effects of the

σ resonance for the I = J = 0 ππ phaseshift δ00(s) within the models with k = 1 (LσM) and

k = −2.5 (phenomenological) and compare them with χPT at lowest order, i.e. with no σ

resonance effects. Following Ref. [24], δ00(s) =
√

1− 4m2
π/s T

0
0 (s) where T 0

0 is the partial

wave with I = J = 0 obtained from the π+π− → π0π0 amplitude (see also Ref. [25]). A

comparison of the different models with experimental data is shown in Fig. 1. Again, the

models including σ meson effects offer a better description of data than the lowest order

chiral prediction. In both σ models, with k = 1 and k = −2.5, a best fit to the data is

achieved for the effective parameters mσ ≃ 500 MeV and Γσ ≃ 500 MeV, in agreement

with Refs. [2, 3].
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Figure 1: δ00(s) (degrees) as a function of the dipion invariant mass mππ (MeV). The various

predictions are for the σ models with k = 1 (solid line), k = −2.5 (dashed line), and for the lowest

order χPT (dotted line). Experimental data are taken from different analyses of the CERN-Munich

Collaboration [26] (open and solid diamonds and triangles), as well as from [27] (stars), [28] (solid

squares), and [29] (open squares).

3. ρ
0 → π

0
π
0
γ

Apart from the previously discussed amplitude, the ρ0 → π0π0γ decay is known to proceed

also via ω-meson exchange in the t and u channels. Its evaluation offers no problems

and has been performed by many authors with coincident results (see, for instance [30]).

Explicitly, this background amplitude reads

A(ρ → π0π0γ)ω = G2e√
2g

(

P 2{a}+{b(P )}
M2

ω
−P 2−iMωΓω

+ P ′2{a}+{b(P ′)}
M2

ω
−P ′2−iMωΓω

)

, (3.1)

with {a} the same as in Eq. (2.8) and

{b(P )} ≡ −(ǫ∗ · ǫ) (q∗ · P ) (q · P )− (ǫ∗ · P ) (ǫ · P ) (q∗ · q)
+(ǫ∗ · q) (ǫ · P ) (q∗ · P ) + (ǫ · q∗) (ǫ∗ · P ) (q · P ) ,

(3.2)

where P = p + q and P ′ = p′ + q are the momenta of the intermediate ω meson in the

t- and u-channel, respectively, and G is the strong and well known ρωπ coupling constant

[4, 13].

From this VMD amplitude alone and G = 3g2

4π2fπ
one easily obtains

Γ(ρ → π0π0γ)ω = 1.89 keV , (3.3)

in agreement with the results in Refs. [4, 13], once the slight differences in numerical inputs

are unified. The interference of this VMD (background) amplitude, A(ρ → π0π0γ)ω,
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Figure 2: dB(ρ → π0π0γ)/dmπ0π0 ×107 (MeV−1) as a function of the dipion invariant mass mπ0π0

(MeV). The various predictions are for the input values: mσ = 500 MeV and Γσ = 300 MeV (solid

line); mσ = 500 MeV and Γσ = 500 MeV (dashed line). The chiral-loop prediction with no scalar

pole is also included for comparison (dotted line).

with the (signal) amplitudes obtained before, A(ρ → π0π0γ)χ, A(ρ → π0π0γ)LσM or

A(ρ → π0π0γ)σ-phen, is found to be constructive in the whole kinematical region in the

three cases and one globally has

Γχ+ω

ρ→π0π0γ
= 4.40 keV , Bχ+ω

ρ→π0π0γ
= 2.95 × 10−5 ,

ΓLσM+ω
ρ→π0π0γ

= 6.29 keV , BLσM+ω
ρ→π0π0γ

= 4.21 × 10−5 ,

Γσ-phen +ω

ρ→π0π0γ
= 5.10 keV , Bσ-phen +ω

ρ→π0π0γ
= 3.42 × 10−5 .

(3.4)

The corresponding spectra have been plotted in Fig. 2 from which the effects of the σ

formation and their dependence on the σ width can be observed. The fact that our various

signal amplitudes are important compared with the background contribution and that their

interferences are positive makes this ρ → π0π0γ decay mostly appropriate to reveal the σ

meson effects [23].

On the experimental side, the SND Collaboration has reported very recently a new

measurement of the ρ0 → π0π0γ decay. For the branching ratio, they obtain [4]

B(ρ → π0π0γ) = (4.1+1.0
−0.9 ± 0.3) × 10−5 , (3.5)

and therefore Γ(ρ → π0π0γ) = (6.1+1.6
−1.4) keV. This new value is in agreement with the first

measurement [5]

B(ρ → π0π0γ) = (4.8+3.4
−1.8 ± 0.2) × 10−5 . (3.6)
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Comparison with our predictions indicates that a substantial σ meson contribution is

needed. Unfortunately, more crucial data on the π0π0 invariant mass spectrum have not

been reported yet.

4. ρ
0 → π

+
π
−
γ

The background amplitude for this charged decay mode is more involved than for the

previous, neutral case. Apart from the additional amplitude, A(ρ → π+π−γ)non-σ, gen-
erated by the second term in Eq. (2.11), i.e. the term not linked to σ formation in the

s-channel, we have further t- and u-channel contributions. The dominant one, particularly

for low photon energies, is the bremsstrahlung amplitude, A(ρ → π+π−γ)brems, while the

other one originates from a1(1260) contributions. They can be regarded as JPC = 0−+

and 1++ exchanges in the t and u channels. Both contributions can be related to tree-

level amplitudes and to the set of one-loop diagrams which are specific for γγ → π+π−

in the analysis of Ref. [10]. Contrasting with the previously discussed chiral-loop dia-

grams —which contributed to both the neutral and charged decay channels with finite

corrections— this new set includes divergent vertex corrections and mass insertions. One

of these divergences, appearing only in our case with (q∗)2 = m2
ρ 6= 0, requires the contri-

bution of a ρ-dominated counterterm which leads to an amplitude, A(ρ → π+π−γ)brems,

including the one-loop effects in the physical value of the ρππ coupling constant g (those

for the real photon vanish with q2 = 0). The other piece requires the term in Ref. [10]

containing the combination of low-energy constants Lr
9 + Lr

10 which is known to be satu-

rated by pure axial resonance exchange [11]. It thus generates an a1(1260) contribution,

A(ρ → π+π−γ)a1 = 16
√
2ge(Lr

9 + Lr
10){a}, which for Lr

9 + Lr
10 ≃ 1.4 × 10−3 is well below

our signal amplitude, and can safely be neglected.

The remaining, bremsstrahlung contribution is well known [30]–[32]

A(ρ → π+π−γ)brems = 2
√
2eg

×
[

ǫ∗ · ǫ− 1
2

(

ǫ·p+
q·p+ + ǫ·p−

q·p−

)

ǫ∗ · q − 1
2

(

ǫ·p+
q·p+ − ǫ·p−

q·p−

)

ǫ∗ · (p+ − p−)
]

,
(4.1)

and, by itself, it leads to

Γ(ρ → π+π−γ)brems = 1.706 MeV for Eγ > 50 MeV . (4.2)

The various signal amplitudes, Aσ(s), have to be added to that from background,

Abackg ≡ Abrems+Anon-σ +Aa1 ≃ Abrems+Anon-σ. This leads to the predictions displayed

in Fig. 3 for Eγ > 100 MeV, where σ meson exchange effects are visible. These are

moderately dependent on the σ width but show a depletion of events below Eγ ≃ 250 MeV

when compared to the chiral amplitude. The integrated results for Eγ > 50 MeV, being

dominated by bremsstrahlung at low Eγ , are less interesting but included for completeness

Γχ+backg
ρ→π+π−γ

= 1.748 MeV , Bχ+backg
ρ→π+π−γ

= 1.171 × 10−2 ,

ΓLσM+backg
ρ→π+π−γ

= 1.698 MeV , BLσM+backg
ρ→π+π−γ

= 1.138 × 10−2 ,

Γσ-phen+backg
ρ→π+π−γ

= 1.696 MeV , Bσ-phen+backg
ρ→π+π−γ

= 1.136 × 10−2 .

(4.3)
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Figure 3: dΓ(ρ → π+π−γ)/dEγ as a function of the photon energy Eγ (MeV) for Eγ > 100 MeV.

The various predictions are for the input values: mσ = 500 MeV and Γσ = 300 MeV (solid line);

mσ = 500 MeV and Γσ = 500 MeV (dashed line). The chiral-loop prediction with no scalars is also

included for comparison (dotted line).

For the ρ0 → π+π−γ decay, the present experimental branching ratio is [6, 7]

B(ρ → π+π+γ) = (0.99 ± 0.04 ± 0.15)% for Eγ > 50 MeV , (4.4)

quite compatible with all our results. The observed photon spectrum compares rather

favorably with pure bremsstrahlung emission except (possibly) for the last bin, where the σ

amplitudes moderately contribute to improve the agreement. Finally, a model-independent

upper limit of the branching ratio of the ρ0 → π+π−γ decay via scalar resonance exchange

was found to be B(ρ → π+π+γ) < 5 × 10−3 (90% CL) [6, 7] and thus fully respected in

our approach.

5. Comments and conclusions

Apart from old attempts to identify σ meson contributions to ρ0 → ππγ decays [33], other

authors have reconsidered the issue more recently. Oset and collaborators [34, 35], for

instance, have discussed these processes in their unitarized chiral-loop approach where the

σ meson pole is dynamically generated; this makes their approach, as well as their results,

quite different from ours. The same happens with another series of papers by Gokalp et

al. [36]–[38], where σ meson effects are added to the chiral-loop contribution; in this way,

an attractive feature of our treatment, namely, that in the limit of high mσ one recovers

the expected and well defined chiral-loop amplitude, is lost.
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In conclusion, ρ0 → ππγ decays have been shown to be an important source of in-

formation on the low-mass ππ spectrum in the s-channel. A global analysis of both pro-

cesses, with a common amplitude interfering with markedly different but well stablished

backgrounds, should contribute to clarify the σ meson status. According to our analysis,

present data already suggest the existence of such a low-mass state. Moderately improved

data on ρ0 → ππγ decays could be decisive to settle the issue.
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