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The density of ions trapped in a harmonic potential in one dimension is not uniform. Consequently
the eigenmodes are not phononlike waves. We calculate the long-wavelength modes in the continuum
limit, and evaluate the density of states in the short-wavelength limit for chains of N � 1 ions.
Remarkably, the results that are found analytically in the thermodynamic limit provide a good estimate
of the spectrum of excitations of small chains down to few tens of ions. The spectra are used to compute
the thermodynamic functions of the chain. Deviations from the extensivity of the thermodynamic
quantities are found. An analytic expression for the critical transverse frequency determining the
stability of a linear chain is derived.
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Cold atomic gases are systems allowing an extremely
high degree of control, opening new directions and chal-
lenges both for experiments and theory. The realization of
low-dimensional ultracold gases enables one to design
and investigate, among others, systems with peculiar
excitations spectra and thermodynamic properties [1,2].
In this context, Coulomb crystals constitute a unique form
of an ordered structure, formed by cold ions in a confining
potential, which balances the Coulomb repulsion [3]. The
ions vibrate about fixed positions in analogy with the
situation in ordinary solids, while the interparticle dis-
tance is usually of the order of several micrometers,
constituting an extremely rarefied type of condensed
matter [4–7]. Variation of the potential permits one to
control the crystal shape as well as the number of ions,
allowing one to explore crystals of very different sizes,
thus offering the opportunity of studying the transition
from few particles to mesoscopic systems dynamics [3].
Besides, these structures provide promising applications
for spectroscopy [8], frequency standards [9], study of
chemical reactions [10], and quantum information pro-
cessors [11–13].

In this Letter we investigate the dynamics of Coulomb
chains, i.e., one-dimensional structures obtained by
means of strong transverse confinement that usually con-
sist of dozens of ions localized along the trap axis [4,5].
The equilibrium charge distribution for such chains is not
uniform [14,15]. This is in contrast to the three-
dimensional ordering, where the density is uniform and
the eigenmodes are phonons. In this Letter, the chain
excitations are calculated. These are fundamentally dif-
ferent from the phonons in solids because of the nonun-
iformity of the ion distribution and the long range of the
Coulomb interaction. We derive some thermodynamic
functions of the chain, and define a specific thermody-
namic limit. Interestingly, the linear ion chain differs
from systems that are traditionally studied in the frame-
work of statistical physics, since the thermodynamic
quantities are not extensive. This behavior is due to the
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strong correlation and to the crystal dimensionality. It
manifests, for instance, in the dependence of the specific
heat on the number of ions, as we show below. The de-
tailed analytical derivation of the results presented here
will be published elsewhere [16].

We consider N ions of mass m and charge Q that are
crystallized along the axis of a harmonic trap of cylin-
drical symmetry. The positions �x�0�j ; 0; 0� denote the
points at which the harmonic force and the Coulomb force
exerted by the other ions balance. At sufficiently low
temperatures the classical vibrations around these points
can be considered harmonic and described by [17,18]

�q i � 	2qi � �I�x�0�i ; qi� (1)

�y i � 	2t yi �
1

2
I�x�0�i ; yi� (2)

where qi � xi � x
�0�
i and yi are the displacements in the

axial and transverse directions (the equations for zi are
similar to the ones for yi), while the harmonic confine-
ment is characterized by the axial and transverse-
frequencies 	, 	t, respectively, (	t � 	). The coupling
matrix is

I�x�0�i ; wi� �
2Q2

m

X
j�i

1

jx�0�i � x�0�j j3
�wi � wj� (3)

with wi � qi; yi; zi. Eqs. (1) and (2) describe a system of
coupled oscillators, with long range interaction and
position-dependent coupling strength. In what follows
we calculate the eigenmodes of this system. For this we
assumewi�t� �

R
ei!t ~wi�!�d!=2�. To simplify notations

we replace ~wi�!� by wi. This results in equations for the
eigenmodes of frequency! that are similar to (1) and (2),
but with �wi replaced by �!2wi. The problem reduces to
the eigenvalue equation

I�x�0�i ; w
�n�
i � � �nw

�n�
i ; (4)
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FIG. 1. (a) Transverse and (b) axial spectrum. The ei-
genfrequencies are in units of 	. Here, N � 1000 and 	t �
400	. Solid line: numerical solution of Eqs. (1)–(3). Dashed
line: (a) !?Jac

n , (b) !kJac
n ; these curves have been truncated, as

they do not correctly reproduce the short-wavelength eigen-
modes. Dashed-dotted line: spectra obtained from the density
of states (7).
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where n � 1; . . . ; N labels the mode. The axial and trans-
verse eigenfrequencies are given by the relations !k2

n �
	2 � �n and !?2

n � 	2t � �n=2. Since �n > 0, the axial
collective excitations are of higher frequencies than the
trap frequency 	, while the transverse excitations are of
lower frequencies than 	t. In general, Eqs. (1) and (2) are
invariant under reflection with respect to the center of the
trap, which coincides with the origin of the axes. Hence,
the normal modes of the chain are symmetric (even) or
antisymmetric (odd) under reflection with respect to the
center, wi � �wN�i [18]. It can be easily verified that
the center-of-mass motion is an even eigenmode w�1� of
the Eqs. (1) and (2) at frequency 	, 	t, respectively.
Remarkably, also the first odd eigenmodes can be exactly
determined. They are w�2�

i / x�0�i at the eigenfrequencies���
3

p
	 for the axial

�����������������
	2t � 	

2
p

for the transverse excitation,
independent of the number of ions, as can be found by
substitution of this ansatz in Eq. (3) and (4), combined
with the equilibrium condition [16].

We solve Eq. (4) by assuming N � 1. In this limit, the
interparticle spacing aL�xi� � x

�0�
i�1 � x

�0�
i is a smooth

function of the position, which is inversely proportional
to the density of ions per unit length nL�xi� � 1=aL�xi�.
The density nL�x� is determined assuming a uniform
distribution of charges inside an oblate ellipsoid of axial
length 2L, and takes the form nL�x� � 3N=4L�1� x2=L2�
for jxj � L, while the length L is found by minimizing
the energy of the crystal, and fulfills the relation L�N�3 �
3�Q2=m	2�N logN [14]. These approximations provide a
good estimate of the ions distribution in the center of the
chain for N sufficiently large. In fact, nL�x� and L�N� are
the leading terms of an expansion in powers of 1= logN
[14]. For N � 1 one can approximate the chain by a
continuous distribution of charges for the evaluation of
the long-wavelength modes. In this limit, x�0�i is a con-
tinuous variable in the interval ��L; L�, the displacement
wi � w�x

0
i � is a continuous function denoted by w�x�, and

the sum in (3) is approximated by an integral, where the
density nL�x� appears as a weight function. In particular,
the eigenmodes fulfill the orthogonality relationR
L
�L dxnL�x�w

�n��x��w�m��x� � �n;m. Using an integration
by parts the sum (3) can be approximated by

I�x;w�x�� � �I0��1� �2�w00�x� � 4�w0�x�� (5)

where � � x=L and I0 � 3NQ2=�2mL3� � 	2=2 [16].
The approximation is valid at leading order in logN and
sufficiently far away from the edges of the chain. The
eigenfunctions of Eq. (5) are the Jacobi polynomials
P1;1
‘ ��� [19] with the eigenvalues �Jacn � �‘�‘� 3�	2=2

with ‘ � 0; 1; . . . and n � ‘� 1. Substituting this result
into the eigenvalue Eqs. (3) and (4), one finds

!kJac
n � 	

�����������������������
n�n� 1�=2

p
: (6)

Analogously, the eigenfrequencies of the transverse
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modes are !?Jac
n �

����������������������������������������������������
	2t � 	2�n� 1��n� 2�=4

p
. Equa-

tion (5) has been derived from Eqs. (1) and (2), which
describe the dynamics ofN strongly coupled oscillators. It
should be noted that the Jacobi polynomials at ‘ � 0, 1
are exact solutions of Eqs. (1) and (2). In general, they are
the correct eigenmodes for N ! 1. For finite N, the
corrections are evaluated by expanding in the parameter
1= logN [14]. Nevertheless, the behavior �n / 	2 is exact
in the long-wavelength limit, and does not depend on Q
nor onm [16]. It is remarkable that the dispersion relation
(6) can also be obtained as a specific one-dimensional
limit of a three-dimensional mean-field theory, like the
one developed in [20]. Figure 1 presents the comparison
between the spectrum of eigenfrequencies, calculated nu-
merically for 1000 ions, and the solutions !kJac

n , !?Jac
n .

Figure 2 shows the relative deviation of the frequencies
(6) from the numerical results for chains of different
number of ions. From Fig. 2(a) one sees that Eq. (6) gives
already a good estimate of the eigenfrequencies for a
chain of 10 ions. Its prediction is valid for the axial low
frequencies and the transverse high frequencies, and it
improves slowly as N increases, as expected from the
slow convergence of the 1= logN expansion.

The short-wavelength eigenmodes are characterized
by relatively large displacements of the ions at the chain
center, while the ions at the edges nearly do not move. In
fact, the interparticle distance is minimal around the
center, and for N � 1 it is of order 1=N, while it is
significantly larger at the edges. Hence, a wave cannot
propagate to the edges, where the interparticle spacing is
larger than the wavelength. Moreover, in the center and
170602-2
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FIG. 3. !cr�N� as a function of the number of ions. The solid
curve gives the result according to (9). The dashed line is the
curve 2:53N�1:73, that fits the values obtained by molecular
dynamics simulations [23,24].
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FIG. 2. (a) �!k
n=!

k
n and (b) �!k

n=�!
k
n as a function of n,

where �!n � !
kJac
n �!k

n and �!k
n � !

k
n�1 �!

k
n. The fre-

quencies !k
n are obtained by solving numerically (1)–(3).

From top to bottom: N � 10, 50, 200, 500, 1000.
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for the short-wavelength excitations we expect that the
relevant contributions to the force on an ion originate
from the neighboring charges, as nearby groups of ions
move in opposite directions, resulting in forces that mu-
tually cancel. By this hypothesis we keep in (3) only the
nearest-neighbor interaction and apply the formalism
developed by Dyson [21] to derive the density of states
as a function of the squared frequencies �. This is given
by

D����8=��N��
Z f���

0
dxnL�x�

� ������������������������������
�1�4��x�=�

p �
�1

(7)

where ��x� � 2Q2nL�x�3=m is the nearest-neighbor cou-
pling constant for slowly varying interparticle distance,

and f��� � L
������������������������������������
1� ��=4��0��1=3

q
[16]. Here, ��0� �

9	2N2=32 logN at leading order in logN. The spectrum
obtained from Eq. (7) is shown in Fig. 1. The deviations
from the numerical result are due to the assumption of
nearest-neighbor coupling, and are small in the short-
wavelength part of the spectrum, showing that Eq. (7)
provides a good approximation in this regime. In particu-
lar, it provides a good estimate of the eigenvalue �N ,
which determines the maximal axial frequencies and
minimal transverse frequencies through the relations
!k

max �
������������������
	2 � �N

p
and !?

min �
�����������������������
	2t � �N=2

p
. This eigen-

value is found from f��� � 0, as for � > �N the function
D��� vanishes, and �N � 9	2N2=�8 logN� at leading order
in logN. The minimal transverse frequency is

!?
min �

�����������������������������
	2t �

9

16

	2N2

logN

s
: (8)

It can vanish for certain values of 	, 	t, and N. We
identify the critical value 	t;cr �

������������
�N=2

p
, such that for

	t < 	t;cr the linear chain is unstable. The critical aspect
ratio between the trap frequencies !cr � 	2=	2t;cr takes the
value

!cr �
16

9

logN

N2 (9)

which fixes the condition on 	t for the chain stability
according to the inequality 	2t > !�1

cr 	2. The result (9) is
in agreement with the analytical estimate in [22], which
was obtained under different requirements. Figure 3
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shows that it also approximately reproduces the curve
obtained by fitting points calculated by molecular dy-
namics simulation [23], which has been experimentally
verified for chains of tens of ions [24]. It was suggested
that this instability, resulting in a structural transition
from a linear to a zig-zag equilibrium configuration
[4,23], can be treated as a phase transition [23,24].

We now discuss the thermodynamics of a linear crystal
ofN ions, whose dynamics are described by 3N harmonic
oscillators of frequencies!k

n,!?
n , in the regime where the

axial frequencies are much smaller than the transverse
excitations, i.e. !k

max � !?
min. The eigenmodes are quan-

tized using standard procedures [17]. The chain is as-
sumed to be in thermal equilibrium with a bath at
temperature T, which is sufficiently low so that only the
axial modes are excited (kBT � �h!?

max). Hence, the dy-
namics of the system is one-dimensional. For the consid-
ered parameter regimes the quantum statistics of the
atoms are irrelevant [25]. The thermodynamic limit for
this kind of system can be defined by assuming constant
interparticle spacing (thus constant linear density) at the
center of the chain as N increases, namely, requiring
aL�0� to be constant, in analogy with the definition for
cold gases in traps [26]. Since aL�0� / �

�����������
logN

p
=	N�2=3,

this requirement corresponds to a vanishing axial fre-
quency asN ! 1, according to 	�

�����������
logN

p
=N. Using this

definition, !k
max and !?

min take finite values in the ther-
modynamic limit, since they depend on N and 	 only
through the combination 	N=

�����������
logN

p
. We identify the

thermodynamic variables with T, N, and 	, whose varia-
tion results in a variation in the length of the chain [3],
and take constant 	t. First we study the heat capacity
Ca � @Uth=@Tj	;N, where the thermal energy Uth is the
average energy of the excited state relative to the ground
state energy. At high temperatures Ca exhibits the
Dulong-Petit law Ca � NkB, while at low temperatures
it takes the form

Ca �

���
2

p
k2B
�h	

@
@T
T2

Z 1

x0
dx

1

ex � 1

x2���������������������
x2 � x20=8

q (10)

where x0 � ) �h	 and we have used the density of states
170602-3
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FIG. 4. Coefficient of thermal expansion !T , in arbitrary
units, as a function of T, in units of �h!k

N=kB. Here, N �

1000 and !k
max � !?

min. This would correspond to an experi-
ment with 	 � 2�� 1 kHz and 	t � 2�� 4 MHz. For these
parameters and Berillium atoms, T is in units of 20 ,K, !T in
units of 10�5 ,K�1.
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derived from (6). For kBT � �h	 we can set x0 � 0 and
obtainCa / T. Hence, in this temperature regime the heat
capacity is linear in T and inversely proportional to 	.
Therefore, the specific heat per particle ca � Ca=N van-
ishes as ca � 1=

�����������
logN

p
in the thermodynamic limit de-

fined above. Thus, at low temperatures it depends on the
number of ions, thereby manifesting a deviation from
extensivity of the system’s behavior. The relative energy
fluctuations are of the order �

�����������
logN

p
=N�1=2, therefore the

usual equivalence of ensembles holds.
An interesting behavior is found in the coefficient of

thermal expansion !T . This is related to Ca and to the
isothermal compressibility +T according to the relation
!T � 3+TCa=2L [27]. In the regime of thermal stability,
the isothermal compressibility does not vanish and is
practically independent of the temperature, the pressure
being dominated by the zero-temperature component. In
particular, it scales as +T � 1= logN. Hence, the tempera-
ture dependence of !T is solely determined by the heat
capacity Ca. At low temperatures Ca � 1=	, and as the
thermodynamic limit is approached !T � �logN��3=2. At
higher temperatures, when the heat capacity manifests
the Dulong-Petit behavior Ca � NkB, the coefficient of
thermal expansion vanishes like !T � 1= logN. For large
but finite number of ions !T does not vanish, in contrast
to the behavior found in a uniform harmonic solid [27].
The coefficient of thermal expansion is plotted in Fig. 4
as a function of T for a chain of 1000 ions.

Finally, we remark on the regime of thermal stability,
which holds when the thermal energy is considerably
smaller than the equilibrium energy, or, equivalently,
the displacements are much smaller than the respective
interparticle distances. The condition for thermal stabil-
ity is Q2 logN=aL�0� � kBT. Outside this regime, ther-
mal excitations may cause structural transitions,
accompanied by a critical behavior of the thermodynamic
functions.

In future works we will explore the behavior of the
thermodynamic functions at the instability points, in
order to characterize the crystal structural transitions
170602-4
and their relations to the standard theory of phase tran-
sitions [28]. The results presented in this work are of
interest for spectroscopy and quantum information with
ion traps, and for studies of Coulomb systems like ion
crystals in storage rings [2] and cold neutral plasmas [29],
which at sufficiently low temperatures are expected to
crystallize [30], and contributes to the ongoing research
on low-dimensional cold gases [1].
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