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Dynamics of an ion chain in a harmonic potential
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Cold ions in anisotropic harmonic potentials can form ion chains of various sizes. Here, the density of ions
is not uniform, and thus the eigenmodes are not phononic-like waves. We study chairss loions and
evaluate analytically the long-wavelength modes and the density of states in the short-wavelength limit. These
results reproduce with good approximation the dynamics of chains consisting of dozens of ions. Moreover,
they allow one to determine the critical transverse frequency required for the stability of the linear structure,
which is found to be in agreement with results obtained by different theoretical mdfoHs E. Dubin, Phys.

Rev. Lett. 71, 2753(1993] and by numerical simulatioris. P. Schiffer, Phys. Rev. Let70, 818(1993]. We
introduce and explore the thermodynamic limit for the ion chain. The thermodynamic functions are found to
exhibit deviations from extensivity.
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[. INTRODUCTION Our starting point is the ions equilibrium configuration

Coulomb crystals are organized structures of charged pafv@luated if20]. We investigate the dynamics for small os-
ticles, which interact through the Coulomb repulsion and or<illations, when the harmonic approximation is valid, in the
ganize in regular patterns at sufficiently low temperatures idimit of a large number of ions. We derive analytically the
presence of a confining potentifl]. These potentials are €igenfrequencies and the corresponding eigenmodes for the
realized by means of Paul or Penning trd@$ and their long-wavelength excitations. These are compared with nu-
geometry determines the crystal’s structure. Several remarknerical results and good agreement is found. From the re-
able experiments have reported crystallization of ion gases iaulting dispersion relation the density of states of the long-
Paul trapg3—7], Penning trap$8], and ion-storage ring®].  wavelength eigenmodes is determined. An analytic form of
The Bragg scattering in three-dimensional structures wathe density of states is also found for the short-wavelength
studied, providing information about the internal structure ofexcitations. This result allows one to evaluate the critical
the crystal[10,11]. These crystals represent a kind of rarefiedaspect ratio between the frequencies of the transverse and
condensed matter, the interparticle distance being of the ogxial confining potential, which determines the stability of
der of several micrometers, allowing to study the structurghe chain. The value we find agrees with numerical results
by means of optical radiation. Variation of the potential per-[23], which have been experimentally verified for chains of a
mits one to control the crystal shape as well as the number déw ions[24]. In particular, it is in agreement with the ana-
ions, thus offering the unique opportunity to study the tran-ytical estimate in[25], which was obtained under different
sition from few particles to mesoscopic systems. Besidegequirements.
these structures have been the object of growing interest as Using these results we discuss the statistical mechanics of
they provide promising applications for spectroscopythe chain and derive some thermodynamic quantities in a
[12,13, frequency standard$14], study and control of specific thermodynamic limit, which is defined here by keep-
chemical reactiongl5], and quantum information processors ing constant the density of ions in the chain center, as the
[16-19. number of ions tends to infinity and the axial frequency to

In this work we investigate the dynamics of Coulomb zero, analogously to the definition for cold neutral gases in
chains. These are one-dimensional structures, obtained §aps [26]. Nonextensive thermodynamic properties are
means of strong transverse confinement and which usualljpund. We compare the thermodynamic functions with the
consist of dozens of ions localized along the trap §i6§].  ones of a chain of a finite number of ions that are obtained
They represent a peculiar crystallized structure: In fact, du@umerically and find reasonable agreement.
to the axial potential, the equilibrium charge distribution is ~ This work is organized as follows. In Sec. Il we introduce
not uniform [20,21. This is in contrast to the three- the basic equations and discuss the fundamental properties.
dimensional case, where the density of charges in a harmonle Sec. Il the spectrum of excitations is studied. In Sec. IV
potential is uniform and, therefore, where the eigenmodeyve investigate the statistical mechanics of the system. Sec-
are phononic-like waves. In the Coulomb chain the nonunition V presents the conclusions and outlook. In the Appen-
formity of the density of ions combined with the long-range dixes, several details of the calculations of Sec. Il are re-
interaction results in excitations that are fundamentally dif-ported.
ferent from the phonons in solids and leads to interestin
thermodynamic Eroperties. The exploration of these excita%" STRING OF CHARGES IN A HARMONIC POTENTIAL
tions and of the chain thermodynamics is the subject of the The Hamiltonian describing the dynamics of a chairNof
present paper, which extends and complements the resuliens of massn and chargeQ, which are confined by a har-
presented if22]. monic potential, is given by
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Equation(4) shows that the axial motion is decoupled from
the transverse motion in the harmonic expansion. The corre-

sponding equations of motion are

wherer;=(x;,y;,z) andp; are the positions and conjugate
momenta(j=1, ... N). The termV accounts for the oscilla-
tor's potential and the Coulomb repulsion,

q =— L — ﬁi - Q.
V= %E m[VZXJ'Z‘l‘ VtZ(yIZ_'_ Z]Z)] ] qul E m (ql qj)l (6)
i
1¢ Q? o, 1GKy
= , , 2 Vi=—vdyi+ =2 Sy -y, (7
' ZEE VO =x)? + (v - yp)? + (7 - Z)? @ S m J

where the harmonic oscillator has rotational symmetry 1 K.
around thex axis with axial and transverse frequencieand 7= -1z + EE E"l(zi -z), (8)
n, respectively. j#i

For sufficiently low kinetic energy crystallization occurs. ang describe a system of coupled oscillators, with long-range
The temperature at which the gasis crystallized correspondgteraction and position-dependent coupling strength. In this
to large plasma parameters-Q°/ayskgT>1. Here,awsis  paper eigenmodes will be calculated. For this we assume
the Wigner-Seitz radius, which is a fulr)?f;tlon of the meang ()= [d*iG(w)dw/27. To simplify the notation we replace
densityn, and is defined aays=(3/4mn) ™ [1]. In this re-  5(,) by q. This results in equations for the eigenmodes of
gime thoe ions are localized at the classical equilibrium POSifrequencyw that are similar to Eq(6), but with & replaced
tions r} ) which satisfy the equations;ﬁV/ﬁr”rJ{O):O, and  py —,2q. The same replacement will be performed yeit)
such that the potential energy is minimal. When the harandz(t).
monic potential is sufficiently asymmetric—i.e., for |t can be easily verified that the center-of-mass motion is
v<y—the ion equilibrium positions are confined to the trapan eigenmode of the secular equatiqs~8). The axial

axis [23], namely,r ”=(x,0,0), and satisfy the equation center-of-mass mode &="-"=qy at the characteristic fre-
describing the equilibrium of the forces: guencyw, while the transverse center-of-mass modesyare
=---z=yy andz;=--- =z, at frequencyy,. We remark that the
Q? Q? axial and transverse coupling terms appearing in E)s(8)
mAx0 == > (3) pling ppearing

+
X2 =x9)2 5 (X -x9)?’ have opposite signs. Due to this property, in the axial direc-
tion the collective excitations are of higher frequencies than
where the numbering conventionxs>x; for i>j. The sta-  the center-of-mass frequeneywhile in the transverse plane
bility of these points with respect to the transverse vibrationshe collective excitations are of lower frequencies than
depends on the number of iorié, and on the ratia;/ v, and

it is discussed in Sec. Ill B. In this section, we assume that

i>i

the configuration is stable and approximate the potential by Properties and symmetries

its second-order Taylor expansion around the pcn'ﬁ’fsWe The Hamiltonian(4) is not translationally invariant, and

denote byqizxi—xi(o) the displacements in thedirection and  this is a consequence of the nonuniformity of the ions equi-

approximate the Hamiltoniafl) as librium distribution, due to the harmonic force appearing in

Eqg. (3). The Hamiltonian(4) is, however, invariant under

H ~ Vo + Hpan reflection with respect to the center of the trap, which coin-

whereVO:V(r(lo), ...r9) s the classical minimum energy, cides with the origin of the axes. In particular,

while Hy,, describes the(classica) harmonic oscillations X0 = - x0

around the equilibrium pointR27-29, ) .
d poIntE2 g wherei=1,... N’ [here, N'=N/2 for evenN, while N’

N p? 1 1 =(N-1)/2 for oddN]. Hence, the normal modes of the chain
Hpar= > EL + 52 miAq; + EE mi(y; +2) are symmetri¢even) or antisymmetrigodd) under reflection

j=1 M i j with respect to the cent¢R8,29, such that

1 -
+ 22 K0 ) W= £ wl, (9)

L with w”=q" ,y'™ 2" andn labels the mode. Some general

1 ti n be inferred from this simple consideration. For
1 v N2 (o2 properties cal p

8E 2 Ki L= y)™+ @ = 2)7], (4) instance, the even modes of the axial motion are character-

i ) aa
, ized by constant length of the chain, smcq(h?,):q(_rz,. For

and the coefficients; ;= *V/dx; |{x|(0)} are positive and take the odd modes, on the other hand, the center of mass of the
the form chain, which coincides with the chain center, does not move.
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Clearly, the center-of-mass mode, which we denote/vﬁﬁ/, 3N<1 x2) (12

is an even mode characterized by equal displacements at the n(x) = AL\TL2)
positionsxi(o) of the chain. This property and the orthogonal-
ity between the normal modes lead to the relation which is defined forlx|<L, where 2 is the length of the
crystal at equilibrium. The densitL2) is the leading term in
Swiv=0 the expansion in powers of 1Nhand it gives a good esti-
= mate of the charge distribution in the center of the chain for
N sufficiently large[20]. The lengthL is evaluated by mini-
for all normal modes witn>1. mizing the energy of the crystal and at leading order N In
It is remarkable that also the lowest axial odd modefulfills the relation[20]
(stretch mod}eand its frequency can be exactly determined.

2
In fact, taking qi ocx(o) and substituting into Eq(6) one L(N)®=3 ( Q )NInN (13)

finds mi?

202/ 20 In the following, we use these quantities to derive an ap-

(- Vz)qi(Z) == OQ ”; +> OQ n; proximate solution for the long- and short-wavelength modes

S X0 -x2 5 (K0 -x0)? in the limit of N>1 ions. Furthermore, we compare the re-

@ sults of the derivation with the numerical calculations, which

:2VZQi ) (10)

determine the spectrum by solving E¢8) and then diago-
nalizing the matrix determining the eigenvalue equations

where we have used relatig8). Therefore, the frequency of (6)~(8) for a finite number of ions

the axial stretch modqu) is y3v and its value is independent
of the number of ion§ of the chain. This property was first
demonstrated if30]. It has also been observed by numerical
evaluation of the normal modes of chains up to ten ions \We use the ansaq(x,t)zei“’f"i(x) in Eq. (6) and define
[17,27. Analogously, the transverse stretch mode, which ighe rescaled positiong®”=x/L and the rescaled interpar-
the highest odd transverse excitation, satisfls 222x%  ticle distancesa(£)=a, (x)/L.. With these definitions, denot-

with eigenfrequency/»{~ 1%, which is also independent of ing for simplicity of notatiori; — g, Eq. (6) takes the form
N.

A. Eigenmodes in the long-wavelength limit

We remark that the invariance under reflection imposes 212 = 2K S 1 :
different boundary conditions than the ones that are usually (w )i = v 0_#_ 169 - §(0)|3(qi G
chosen for a crystal with uniform ion distribution. In a crys- S .
tal that is translationally invariant even and odd modes ar@vhere we have introduced the dimensionless constant
degenerate and one may choose periodic boundary condi-
tions[31]. In the presence of an external potential with cen- o= 2Q° 2
tral symmetry this invariance is broken, apart for the mirror 7 mi2L(N)®~ 3NInN’
symmetry with respect to the center. Hence, at the edges the

eigenmodes fulfill the relation_y, = +wy,, where the signis If the number of ions is largeN>1), for the long-
determined by the parity. wavelength modes one can approximate the chain by a con-

tinuous distribution of charges. In this lim#,is a continuous
variable varying in the interval-1,1), while the displace-
lll. SECULAR PROBLEM mentg, =q(&) is a continuous function, here denoteddiy).

The systematic derivation of an analytic solution of Eqs.Then’ Eq.(14) takes the form
(6)—8) is a challenging problem, since it requires one to take
systematically into account the position-dependent coupling (0?=19)q(é) = —VleoNl(é q(d), (16)
constant and the long-range interaction. Nevertheless, in the
limit of a large number of ionsN>1, we can make some \here
simplifying assumptions. In this limit, in fact, the interpar-

(14)

(15

ticle spacinga, (x,)= xf+) xi(o) is a smooth function of the f_a(g) n(¢’)
position, and |Lt is mvelrsely proportional to the density of I(¢.0(9) = f (5 & )3[q(§)—q(§ )]
ions per unit lengthj20], 1
, N
n (x;) = 1/a (x). (11 +L+a d¢ (& - )3[q H-qié)l, @7

The density of charges for unit length can be evaluated byvhile n(§)=1-£? is the density of charges normalized to
applying the Gauss theorem to a continuous distribution ofl/3. Equationg16) and(17) are valid away from the edges
charges, which is assumed to be uniformly distributed in arof the chain and for long-wavelength excitations, where the
elongated ellypsoid. The resulting one dimensional density isontinuum approximation is reasonable. The continuum limit
[25] for Eq. (7) gives
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(12— o?)y(&) = gﬂcoN I(£,y(8)). (18) IW"(9) =X (&), (25)

where)\n:—InNXn. Equation(25) is the differential equation

A similar type of equations is obtained fgr It is remarkable  ffilled by the Jacobi ponnomiaIE’%'l(Y) at the eigenvalues
that the axial trap frequency enters only as a prefactor on thezo

right-hand side of Eq(16). Consequently the axial eigenfre-

guencies are proportional @ The transverse eigenfrequen- Ny=—£(€+3) (26)
cies, instead, do not show this behavior, as one can see from " '

Eq.(18): Here, it is the quantity? - w? which is proportional ~ with ¢=0,1,... andn=¢+1. After substitution of Egs.
to 12. The proportionality constants depend on the modes ang23)—(26) into Eq. (19), the eigenfrequencies of the axial
will be calculated in what follows within some approxima- excitations are found from Eq$15) and (16) and take the
tions. The results are independent of the ch&)gend of the  form

massm.

According to Eqs(16)—18), the secular problem consists | Jac._ n(n+1)
of solving the eigenvalue equation wp =Y\ T (27)

1(EWD(E) = A wW"(&), (19 Analogously, the eigenfrequencies of the transverse modes

where w"(¢) can be the axial or transverse mode, which"€ obtained from Eq(18) with Eq. (19), resulting in

satisfies the orthogonality relation | e \/ ) (n-1)(n+2) P 8
1 n - Py 4 .
f dén(OW™ (&) * W™ (&) = 8, . (20 ,
-1 It should be noted that the solutions of E83) for £=0 and

o ] ) €=1 are exact solutions of the original problgi¥): The
By partial integration Eq(17) can be written as the sum of corresponding eigenmodes¥(x)=const (center of mass
two terms, andw®@(x) «x (stretch modg which are the continuum lim-
I=1y+Al its of the eigenmodes we have found for the discrete case, are
' in fact Jacobi polynomials. The result for the center of mass
wherel, contains the contributions of the ions around theis obvious. The exact result for the stretch mode can be un-
point & while the termAl is determined by the value of the derstood, noting tha®}'(¢) has only one node, whose posi-
density and of the eigenmode functiq(¢) and their deriva- tion coincides with the center of the char0 and thus with
tives at the end-points of the chain. In Appendix A we derivethe symmetry center for reflections. Hence, its position is
the explicit form of the two terms and discuss their order ofindependent of the number of ions in the chain, and in par-
magnitude. For the long-wavelength modes and at the poinfécular it is independent of whether the ions distribution is

¢ sufficiently far away from the chain end-poings +1, we  discrete or continuous.
find 1 =1, where It is remarkable that the dispersion relati@y) coincides
with a specific one-dimensional limit of a three-dimensional

_ 3 , , , continuum mean-field theory, like the one develope3isl,
lo(&,w(£)) = (In a(é) - 5)[n(§)V\/(§) +2n'(Hw'(é)] although there is no obvious justification for this. The two
limiting cases—the uniform spheroidal fluid 33] and the
+o(a(d), (21) case ofN strongly coupled oscillators investigated in this

work—seem to provide the same axial eigenfrequencies in
the long-wavelength regime and in the linNe>1. This re-
sult is intriguing, especially if put in connection with theory
3 3 of cold gases in low dimensions, where different dispersion
lo(§W(§) =~ (InN+ In=+In(1-&) + —)J(w( ), relations are obtained depending on the assumption on the
4 2 type of mean-field interactiof84,38 and will be the object
(22) of future investigations.
Figure 1 presents the comparison between the spectrum of
where eigenfrequencies obtained with several methods. The solid
, , lines show the result for 1000 ions, obtained by numerically
IW(E) = (1= EW'(&) — 4w’ (9). (23 giagonalizing the matrix5) in Egs.(6)~8) after calculating
In the limits of validity of Eq.(21) and for N sufficiently the equilibrium positions by numerically solving the set of

large, such that IN>1, Eq.(22) can be approximated by equations(3). The grey line shows the results in E¢87)
the leading order in IN and(28), which have been truncated, as they do not correctly

reproduce the short-wavelength eigenmodes. The short-

anda(¢) is an infinitesimal quantity of the order M/ Using
Egs.(11) and(12) in Eqg. (21) we obtain

lo(&,W(8) = — INNI(W()), (24)  wavelength modes are better evaluated by using a more
proper approximation for this regime. The dotted line gives
and the eigenvalue equatigh9) reduces to the spectra evaluated using the method of Dyg25j, dis-
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400
1 30
" o -
20 //
300 1 P T
/ ,//
e
20 5 a0 80 0 20 n 40
400 -------- -------- ------ FIG. 2. Long-wavelength excitations of the axial spectrum of
ol ; : : ; eigenfrequencies. Same notation and parameters as in Fig. 1.
(4T R RRRARE 37 SE SLLLL 3
200 oot por il The evaluation of the correction to the resul®y) and
; ; g g (28) should be done in perturbation theory in the parameter
------ S TRET RPN RPN 1/InN, following an analogous procedure to the one applied
: L) in [20] for evaluating the correction to the density of ions
0 200 800 (12) and to the equilibrium lengtfil3). In practice, this ex-
n pansion has a very slow convergence and does not allow for

a simple analytical expression. Nevertheless, the comparison
with the spectrum evaluated numerically, by solving Egs.
and (6)—(8), shows that Eqs(27) and (28) give already a
good estimate of the eigenfrequencies for a chain of ten ions,

have been truncated, as they do not correctly reproduce the sho s can be seen in Fig(e, where the relative deviation of the

wavelength eigenmodes. The dotted line gives the spectra evaluatd@dUuency given by Eq(27) from the numerical result is
using the method of Dysof85] implemented in Sec. 11l B. plotted for ch_auns with different number of ions. Flggr(ebjs
shows the shiftY2*- ! compared with the spectral distance

cussed in Sec. Il B and implemented in order to reproducdetween neighboring levels. The agreement is in general
the density of states in the short-wavelength limit. valid, respectively, for the axial low modes and the trans-
Figure 2 exhibits the part of the spectrum with the long-verse high modes, and exhibits a very slow improvement as

wavelength axial modes: Here, one sees that @@ ap-  the number of ions in the chain increases, due to the slow
proximates well the lowest part of the axial spectrum, wherg;gnvergence of the 1/kexpansion.

the limit of continuous charge distribution is reasonable.
We remark that, apart from the first two eigenmodes, the

FIG. 1. (a) Transverse an¢b) axial spectrum of eigenfrequen-
cies(in units of v) for a chain ofN=1000 ions and with,;=400p.
The solid line corresponds to the numerical solution of EGs«8)
with Eg. (3). The grey line showsa) w7 (b) »lY2 These curves

JaCO_bi p0|ynqmia|s describe the eigenmode eX-Citation at B. Density of states in the Short_wave|ength limit
leading order in IN and near the center of the chain, where , , , ,
the interparticle separation is of orderNLAnd the distribu- Simple physical considerations show that the short-

tion of charges can be treated as a continuum for sufficientiyv@velength eigenmodes are characterized by relatively large
long wavelengths. The continuum approximation fails at thedisplacements of the ions around the center of the chain,
edges, where the interparticle spacing is significantly largeyhile the ions at the edges nearly do not move. In fact, the
and Eq.(12) is not meaningful. In particular, E¢13) gives interparticle distance is minimal in the middle of the chain,
the upper bound for the chain length, which would be ob-and forN>1 itis of order 1N, while it is consistently larger
tained in the limit of N>1 particles. Hence, a reasonable at the edges. Hence, a wave cannot propagate in a region
boundary condition is to assume that the eigemodes and theithere the interparticle spacing is larger than the wavelength.
derivatives vanish at=*L, where there are no charges and Here, we can make some simplifying assumptions in solving
hence the energy density is zero. The soluii@8) taken at the eigenvalue equation®)—8) for the short-wavelength

the center of the chain neglects the charges at the edges omdes. In fact, in the center of the chain we expect that the
the basis of the observation that there the number of ions igelevant contributions to the force on an ion originate from
much smaller than at the center and their contribution to théhe neighboring charges, as nearby groups of charges move
integral (17) can therefore be neglected. in opposite directions, resulting in forces that mutually can-

&'J-M-I @ / &J'I{A"Jr! (b) /

0.2 2] 1 / FIG. 3. (8 dwl/w! and (b) dwl/Aw) as
i Ry a function ofn, where dw,= 0}~ w) and Aw)
ot / g4 =w),,— ). The frequencieso, are obtained by

01 = 05 . solving numerically Eq(6) with Eq. (3). From

ot top to bottom:N=10, 50, 200, 500, 1000.
0
0 10 20 30 2 6 n 10
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cel. By this hypothesis, in Eqg6)—<8) we keep only the 400 A
nearest-neighbor interaction, so that the equations to solve /
are “’lrl //

(29) 300 /

G + 1705 = A[0, Giea ],

Z;

.. 1 /
i+ 15y = = AL Yisal, (30) ”00
600 800 1000
w2 FIG. 4. Short-wavelength excitations of the axial spectrum of
4+ng=- §A[Zi’ziil]’ (31) eigenfrequencies. Same notation and parameters as in Fig. 1.

where the tridiagonal matriA is defined by its action on the 1
vector (Wy, ... Wi_1,W;,Wi,q, ... ,Wy) through 06,8 = 5[\;"1 +40A(LE) - 1], (38)
ALWE Wi ] = Aj(Wipq = Wi) + Aj_g (Wi — W 32 , - .
(W Wit ] = AWy =) + Ajoa (Wi W) (32) leading to the characteristic function
andA;=K;;,1/mwherek; ; is given in Eq.(5). The matrixA

is symmetric, and we denote its characteristic frequencies by — i 2 . 1 M+ 20N ()
-?. Following the derivation of Dysof5], which is sum- 29) ;\Ijlinﬁ Ng In| LV +46A0¢) + 1]
marized in Appendix B, the density of stat®y®?) for
N> 1 is found from the characteristic functi&(#) accord- f dén() In[ [V1+40A(L¢) + 1]] (39)
ing to
1 . do . where we have used the rescaled varigbéand the fact that
— _ 52 _ (=
D(1/2=-Z'R i IE'LTE) dg( z+ie) |, (33 the integrand is even in the intervatl,1). Equation(39)

corresponds to the continuum limit of the discrete summa-
while Q(6) is explicitly evaluated by using the properties of tjon in Eq. (34), and it is valid away from the edges for

antisymmetric matrices and takes the form N> 1. Substituting Eq(39) into Eq.(33) we obtain the equa-
2N-1 tion for the density of states as a function of the physical
Q(0) = lim = E In[1+£(6,j)]. (34)  Pparameters,
N~>oc 62 f(Z)
Here, £(#,]) is the infinite continued fraction, D(/2)= ;JO dén() -1+ AZA(_Lg) ’ (40)
_ O, OA wheref(z)=\1-(1/4Aq2)*3, while
26,j) = - =1+00j70) (35) ) -
" OA 41 ] AL =Ao(1-£&)°, (41)
14 OA ;o with . 2
9 N
No= P = (42)

and 7\2i_1:7\2i:Ai. For N>1 and around the center of the a(¢= 0)3 32In N

chain we may assumé&(¢) to be a slowly varying function at leading order in IiN.

of the position¢, such thatA;,;=A;+JA; and oA/ A;j<1. Equation(40) with @?=1/z gives the density of states of
This allows us to evaluate exphcnlg(a ]) at f|rst order in  the short-wavelength modes. The corresponding spectrum,
SA;. For this purpose, we defmﬁl 1—A =A and AJ+1 evaluated by integrating the density of staté), is com-
-A1+2—A+5A where 8A is the first-order variation. Fur- Paréd with the ‘numerical result In Fig. 1. The short-
thermore, we denoté(,j)=¢ and assume(6,j+2)= ¢+ ¢, wavelength part of the spectrum is shown in Fig. 4. The

where &8¢ is a first-order variation. We substitute these quan-, Ssxlitfle]r;z;‘g;rtnntehlehnbuorpe:gﬁalmr]esglrg da;eredlsjrenzt;l)l meth?eszﬁ?rg-
tities into Eq.(35), keeping only the terms up to first order, 9 piing

and look for a consistent solution. The resulting equation is Wavelength part of the spectrum, showing that &) pro-
vides a good approximation in this regime. In particular, this

S1(2¢+1) = 68A, (36) result allows us to evaluate explicitly the value of the maxi-

o mal axial frequencyu the minimal transverse frequency
which is integrated to o, and the spectrum 1 of the eigenfrequencies in their neigh-

2+ - 0A=0. 37) borhood. The maximal axial frequency and the minimal

transverse frequency are found from the maximal value of
Here, we have taken the integration constant to be zero sinder which the integrand in Eq40) is real, corresponding to
at the boundaries of the chait— 0. The resulting solution f(z)=0. For larger values af the density of states vanishes.
has the form The corresponding eigenvalue of the mathixis ®?=4A,,.
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10" the density in the center is fixed. From Eg$2) and (13)
this requires that the ratie?N?/In N be kept constant. From
Cor Eq. (45) it is clear that in this limit the critical transverse
. frequency tends to a well-defined value. The exploration of
10 the properties of this transition in the thermodynamic limit
will be object of further studies. Particularly interesting is the
comparison with standard phase transiti¢d8].
10°
10 100 1000
N C. Phonon-like approximation

FIG. 5. a,, as a function of the number of ions. The solid curve It i§ natural to introduce a phonon-_like appro_ximz_;ltion for
gives the resul{46). The dashed curve is a fit according to the the €igenmodes of Eq$6)«8). In this approximation, a

function cN"173 with ¢=2.53, as calculated numerically 23] ~ Phonon-like solution is superimposed by a slowly varying
(see alsq24]). amplitude, which takes into account the slow variation of the

coupling strengtlK; ; of Eq. (5) as a function of both andj.
s e e This approximation, which is outlined in Appendix C, is rea-
From Egs.(29—31) one finds ! ,=V?+4A, and on;, . . ’ N
22, Therefore, the largest value of the axial fre- sonable for a relatively wide range of long-wavelength exci

:\;‘Jyt . ) . . o
quency is determined by the largest value of the spring Ccmt_atlons compared to the Jacobi polynomials solution, dis

o . cussed in Sec. Il Asee Fig. 7 in Appendix LIt is inferior
stant, which is the value of the spring constant at the cente : : : i
of the chain, and at leading order inhis éompared to the Jacobi polynomials in the very-long

wavelength limit, and it is a bad approximation for the short-
| 9 N? wavelength regime. Therefore, the phonon-like approxima-
Omax = v\ 1+ aINN’ (43 tion, which is natural in condensed matter physics, is not an
asymptotic approximation in the thermodynamic limit
Analogously, the smallest value of the transverse modes freN— o both for the long-wavelength as well as for the short-

guency is wavelength parts of the spectrum.
9 ,N?
Oin = \[ 1 = o (44)
16 InN IV. STATISTICAL MECHANICS
From Eq.(44) one sees thab,,, can vanish for certain val- In this section we use the density of states, which was
ues ofv, 1, andN. We denote by evaluated in the preceding section, in order to derive the
> thermodynamic quantities of a linear crystal dfions. The
9 . N . S - . -
Vo= \| 1P (45) linear chain is assumed to be in the regime of stability and to
’ 16 InN be in equilibrium with a thermal bath at temperatdieThe

oscillations around the classical equilibrium points are quan-

éized using standard proceduri@y]. It should be noted that

in this limit the quantum statistics of the atoms is irrelevant:
n fact, the single-particle wave packet is much smaller than
he interparticle distanci87]. The dynamics of the crystal is

the value of the transverse frequency, such thatfer v,
the linear chain is unstable with respect to excitations of th
transverse vibrations. Using the notation introduced2B]
we define the critical value of the aspect ratio between th

; — 2
trap frequenciest,=1"/ ;. It takes the value thus described by’ harmonic oscillators of frequencies,
16InN (46) oy, where the frequencies; are doubly degenerate. It is

T 9 N2’ modeled by the HamiltoniaH, obtained fromH after quan-

which fixes the condition om, for the chain stability accord- 1izing the eigenmodes dfin, in Eq. (4). Here,H=Hq+H,,
ing to the inequalitys?> o112, and it is in agreement with WhereHo is the ground-state energy,

the analytical estimate ifi25], which was obtained under N
different requirements. In Fig. 5 we compare the resif) Ho= Vo + EE (wh+207),

with the relationcNAz, with 8,=-1.73 andc=2.53, obtained 2

in [23] by fitting points calculated with molecular dynamics -

simulations and verified experimentally [24]. Our result ~While H, describes the contribution of the collective excita-

reproduces approximately this curve. A, the crystal un-  tions,

Acr

n=1

dergoes a structural transition from a linear string to a zigzag N N
configuration, as has been observedah It is interesting to A =20 N +> 0f(NE + NE
ask whether this structural transition can be considered as a " n% mn n% n(Noy +No)

phase transition, as discussed23—25. A systematic inves- L .

tigation in this direction requires a proper definition of the whereN}, N,{y, andNr{Z are the operators counting the num-
thermodynamic limit for this kind of system. A natural ther- ber of excitations. The tern, corresponds to the classical
modynamic limit, which will be discussed in the next sec-minimum energy of the Coulomb crystal. For an infinite
tion, is one where aNl— o, the axial frequency— 0 so that  chain, it is obtained by minimizing the classical energy with
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respect to the length using the density of charges in Eq. tribution due to their excitations to the crystal’s thermody-

(12), and it is evaluated to bg0] namic properties can be neglected, and the dynamics of the
3 system is one dimensional. The thermal energy of the crystal
Vo = —miANL(N)?, (47) is given by
10 i II
~ w,
whereL(N) is given in Eq.(13). Un=(Hp =2 —exp(ﬂﬁc:”) R (49)
We remark that we investigate the thermodynamic quan- " n
tities for crystals characterized by a finite number of particlesThe heat capacitg,= dUy,/ JT]| N IS
N and finite axial frequencies—i.e., crystals of finite size— |
which may be close to experimental situations. It is, how- C.= iz hay (50)
a

ever, instructive to consider the definition of the thermody- aT Y expphol) -1

namic limit for this kind of system characterized by strong _ ) !
correlations, where the effect of the charges at the edgekhe behavior at high temperatures, such thg> 7w,y
cannot be neglected priori in evaluating the statistical (PUt KsT<fwg;), is given by the Dulong-Petit law
properties. Here, the thermodynamic limit can be appropriCa=Nks as is clear from Eq(50). On the other hand, for
ately defined by assuming constant interparticle spacings! <7v all modes are frozen and the energy of the chain is
(thus constant linear densjtyat the center of the chain the zero-point energH,. For large number of particles
x=0—namely, requiringg, (0) to be constant. Denoting by N> 1 we can approximate the sum in E§0) by the integral

ap,=a,(0), it scales as g [l ho
Co~— d _—
(\,M)zls a <9TJV wg(w)exp(ﬁhw)— 1
=9 ;
vN

whereg(w)=dn/dw is the density of states. In particular, at
where g=(3Q2/m)Y3. This requirement corresponds to a temperatures such that the contribution of the long-
vanishing axial frequency, according to~ \in N/N, as N wavelength excitations to the sum is predominant and is
—.o0, With this definition, in the thermodynamic limit the 9iven by Eq.(27), the resulting density of states is

maximum axial frequency43) and the critical transverse 1 4o
frequency(45) are independent o and of v, taking the g(w)||owT:;—,W
Yow 14

valuesw).,=3(9/2a0)*? and v, ,;=3/4(g/ap)*2 In the fol-
lowing, we derive the thermodynamic quantities for ionand the heat capacity is given by the integral
chains of finite size characterized by a fixed and finite value =5 " 5
of the number of particledl and of the axial frequency, \’ZkBiTzf dx 1 X (51)
and discuss how these quantities behave when we take the hv JT e-1x2+ xg/g’

specific thermodynamic limit that was defined above. . .

Assuming thermal equilibrium with the bath, the state ofWhere we have defineg,=p%v. Hence, the integrand and
the system at constant number of idiss described by the integration limits depend on the temperature throughin
density matrix of the canonical ensemble this regime and fokgT>7iv we can set,~0 in Eq. (51)
and recover the resuf,=CT, with ¢= \s’8§(2)k25/ﬁv, where
{(2) is Riemann’s zeta function. Therefore, for the consid-
ered regime the heat capacity is proportional to the tempera-
ture, which is a characteristic behavior encountered in a one-
dimensional Debye cryst@B1]. In Fig. a) the specific heat
c,=C,/N for N=1000 ions is plotted as a function of the
temperaturel. In the inset, the low-temperature behavior is
shown and compared with the curd&/N estimated above.
which determines the Helmholtz free energy The figure shows that the evaluated behavior, valid in the
asymptotic limit of an infinite number of ions, provides a

Ca||ow T
X0

1
pP=5 exp(- BH), (48)
where 8=1/kgT andZ is the partition function,

Z=exp- BHY [ [1 - exd- Brwy) 1™,

F=-ksTInZ. reasonable description of the specific heat at low tempera-
We identify the thermodynamic variables withthe tem-  tures.
perature N, the number of atoms, ang the axial trap fre- It is remarkable that the heat capacity in E§1) scales

guency, whose variation corresponds to a variation in thdike C,~1/v. The specific heat per particle,=C,/N be-
length of the chairi1]. These are not a complete set of ther-haves thus likec,~1/Nv at low temperatures, and in the
modynamic variables, but they fully determine the state ofthermodynamic limit it vanishes ag~1/yIn N. It thus de-

the crystal for the thermodynamic quantities we investigatgpends on the number of ions, and this is a manifestation of
in the following. In particular, we take; as constant and the deviation from extensivity of the system’s behavior. Note
assumew! . <wr., i.e., that there is a large gap betweenthat the relative energy fluctuations are of the order
axial and transverse excitations. In this limit, we consider(\In N/N)¥? therefore, the usual equivalence of ensembles
temperaturesT such thatkgT<# o, In this regime the holds.

transverse modes can be considered frozen; hence, the con-The pressuré in the axial direction is defined as
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FIG. 6. (a) Specific heat,=C,/N, in units ofkg, and(b) coef-
ficient of thermal expansiony, in arbitrary units, as a function of
T, in units of fiw), .. /ks. Here, N=1000 and o), ,,< . This
would correspond to an experiment with=27 X 1 kHz and »;
=27 X4 MHz. For these parameters and berillium atofss in
units of the Debye temperatuf@py, with @D:hw‘,'naX/kaZO uK,
and a7 in units of 10° uK™1. The inset of(a) shows the low-
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which are obtained from the functional dependencewpf
and @, on v, as can be extracted from Eq46) and (18).
Note that a variation of the axial trap frequency implies also
a variation of the transverse eigenfrequencies, which give a
contribution of opposite sign to the pressure, as is obvious
from Eq. (54). However, the contribution due to the
guantum-mechanical zero-point energy is very small com-
pared to the classical teriy/L. Therefore Py is dominated

by Vy/L and, using Eq(47), in the thermodynamic limit it
scales a®,~In N. The termP; depends on the temperature.
For low temperatures, such theiT>7%v, it scales asPr
~1/Lv~1/4In N. At high temperatures, in the Dulong-Petit
regime, Pt depends on neithé¥ nor v. In the regime where
the chain is thermally stable, which we consider here,
Vo> Uy, giving P=P,. Thus, the pressure is dominated by
the zero-temperature contribution and in the thermodynamic
limit P=Py~In N. A useful relation for the following dis-
cussion is

»
ot

3

=—~C,. (56)
Ly 2L

The isothermal compressibility; is evaluated from the

temperature behavior of the specific heat, and the dashed line is thgessure according to

estimated slope, witli= \f§§(2)k§/hv (see text

F

P=-
i

(52)

i)
T.N

and it is the variation of the free energy with the length of the
string at constantl andT. Under these conditions, the length
of the crystal is varied by changing the axial trap frequency

v, according to

L

v "3y (53)

T.N

as obtained from Eq.13). Substituting the explicit form of
the free energy into Eq52), we find

P=Py+ Py,
where
oH V, 3k 2
Po=— 22| =0.2% w'r']+2wr¢<1—%>
&L TN L 4L n (1)n

(54)

is the pressure at zero temperature &jdgives the contri-
bution of the excitations,

3

PT = Zuth.

In deriving Egs.(54) and (55 we have usediVy/dL=
-Vy/L, which results from Eq47), and the relations

(55)

I
J i _ @y

2% n-

: (57
TN

whereB is the bulk modulus. Using Eq&4) and(55) in Eq.
(57) we find

(58)

= —La—Po+i(5U -3C.T) B
KT = 4L th a .

In the thermodynamic limit the bulk modulisis dominated
by the zero-temperature contributiorL#Py/dL, which in
turn is dominated by the term LoVy/dL~Vy/L~InN.
Therefore,B~In N and the compressibility; vanishes as
1/InN.

The coefficient of thermal expansiai can be evaluated
from knowledge ofxky andC, according to[31]

_la 1 9PldT|. _ 3

= = - _—KT
L dT|pn L aPlALIr 2L

ar Ca! (59)
where we have used E¢56). Since the compressibility is
dominated by the zero-temperature term, the behavior of the
coefficient of thermal expansion; as a function ofT is
determined by the heat capacity: linear dependence at low
temperatures and saturation at high temperatures. At low
temperatureC,~1/v, and as the thermodynamic limit is
approachedrr~ (In N)™32, At higher temperatures, when the
heat capacity manifests the Dulong-Petit beha@gs Nkg,

the coefficient of thermal expansion vanishes like
ar~1/InN. In Fig. §b) the coefficient of thermal expansion
for a chain of 1000 ions is presented. Calculations made with
different numbers of ions, taking the trap frequencguch

that the linear density at the center of the chain remains
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constant, show that; decreases wittN. The numerical re- transition from a linear to a zigzag equilibrium configuration,
sults are consistent with the behavior we expect in differentan be treated as a phase transi{i®8,24. In future works
temperature regimes, according to the above considerationgie will explore, using the formulation developed in this
In particular, for finiteN it is significantly different from  work, whether the thermodynamic quantities exhibit singu-
zero. This is in contrast to the behavior found for uniformlarities characteristic of phase transitiof&]. This system
harmonic solids, where the coefficient of thermal expansioliffers from systems that are traditionally studied in the
vanisheg31]. framework of statistical physics, since it is not extensive. In
The thermodynamic quantities of a linear string of particular the specific heat per particle depends on the num-
charges confined by a harmonic trap are affected by the waler of ions.
the thermodynamic limit is taken. Nevertheless, the behavior The results presented in this work show a statistical me-
of the system is intrinsically nonextensive. The nonextensichanics approach applied to a strongly correlated mesoscopic
tivity is due to the strong correlation and the dimensionalitySystem. They contribute to ongoing research on low-
of the crystal, which determine a regime where the correladimensional cold gas€¢88,39 and may be relevant to stud-
tion energy, associated with the discreteness of the individudes of the quantum dynamics of many-particle Coulomb sys-
charges, cannot be neglectgD]. It manifests in particular tems like ion crystals in storage ring8] and cold neutral
in the INN terms appearing in the thermodynamic quantities Plasmas{40,41, which at sufficiently low temperatures are
A representative example is the dependence of the specifRfedicted to crystallizg42]. The connection with Wigner
heat per particle oiN. crystals, where the quantum statistics may play a relevant
We finally remark on the thermal stability of the chain. role [43], will be explored.
The derivation presented in this section, in fact, relies on the Moreover, the spectra of excitations here evaluated are
assumption that the thermal excitations do not affect the stdelevant for implementations of quantum logic with ion
bility of the system and thus the validity of the physical traps, where knowledge of the long-wavelength modes is im-
model we are considering—namely, of ions oscillatingPortant for the realization of logic gat¢$6-19, as well as
around their equilibrium positions. This condition is equiva-realization of solid-state mode[¢4].
lent to the stat_ement t'hat the thermal energy at thgcqn&dered ACKNOWLEDGMENTS
temperatures is considerably lower than the equilibrium en-
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the density of states at long and short wavelengths. In the APPENDIX A: SECULAR EQUATION OF THE
Iong-wavelength pgrt of the spectrum_, we have calculated LONG-WAVELENGTH EIGENMODES
analytically the eigenmodes and eigenfrequencies. The ) ] ] o .
eigenmodes and eigenfrequencies for the center of mass and In this appendix we outline the derivation of the differen-
the first excitation of the axial and of the transverse motiorfial equation(22) and (23) from Eq. (17) and estimate the
are exact and independent of the number of ions. Apart foforrection to the solution we find. By integration by parts,
these modes, the results we derive are valid in the limit of afEd- (17) takes the form
infinite number of ions. Nevertheless, they already give a =1+ 1y +1y,
good description of the spectrum of excitations of chains of
dozens of ions. Using our results we study the statisticahere
mechanics and thermodynamics of the linear chain. 1
Our derivation allows us to find an analytical formula for lo= w
the critical transverse frequency required for determining the

[fé-a)+fé+a)]

stability of the linear chain. It agrees with the analytical es- 1, ,

timate by[25], which was obtained under different assump- - Za(g)[fg(g_ a) - fyé+a)]

tions, and it is consistent with the formula fitted from nu- L

merical data[23] and verified experimentally24]. It was _= (g 2

suggested that this instability of the ion chain, resulting in a 2 Ina(@lf (e~ + T (& +a)l, (AL)
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1 f(-1) fo(1) stituting into Eq.(B2) and integrating, we get the first-order
= o\ (1+¢)? ¥ (1-¢7? differential equatiorg;= \ﬁxjsj—\fAj_lsj_l._We introduce the
, , variablesuy, ... ,Uxy-1, such thatuy_;=q;, Uy;=s;, and the
1/fE€(-1) () . ~ OO .
o = new matrix elements\;, such thatA,=A,_1=A;. With
2\ 1+¢  1-¢ these definition, we have now a set dfi21 first-order dif-

ferential equations

0= VAt~ VA

1[ ea®
Izz—lf d¢’ In(g—g’)f(;)(g’) which are now defined by th&2N-1) X (2N-1) antisym-

+ %[f@(— Din(1++fPDIn(1-9], (A2)

2L metric matrix A, whose elements arAJ-,,lJ:—AJ-JJ,l:i\/A—J-.
! , , @) o The characteristic frequenciég of the chain are the square
B J d¢’ In(¢’ - (&) |, (A3) roots of the characteristic roots of\; of which one is 0 and
£rald) the other N—-2 come in pairs B.
andf (&) =n(&")[w(&)-w(&')]. Clearly the integral, results Using the matrixA, in the limit N>1 the spectrum of

of the contribution of the ions around the ioné&tFor long-  characteristic frequencied(@?), which is defined as the
wavelength modes and away from the end-poitst1, the  proportion of roots withi?< @2, and the corresponding den-
interparticle spacin@(¢) scales as IN and it can be treated sjty D(3?)= dM(u)/dp|,—z2 can be derived from the char-

as an infinitesimal quantity. Expanding Eé\1) in a(¢) and  acteristic function2(6), which is defined a§35]
keeping the leading order, we obtain E81). The integral

(A2) contains the contribution of the end-points of the chain. 2N-1
Also, the integral(A3) is dominated by the end-points, as Q6) = lim —— 2 |n(1+95,j2), (B3)
can be seen by integrating repeatedly by parts, taking the N—-=2N =175

indefinite integral of Irx, and making the reasonable as- _ _ _ o

sumption thatf(x) is an analytic function on the intervédl Where g is a complex variable. The density of characteristic

-1,1). frequencieD(u) and the spectrurv(w) are found by using
By imposing the requirement that the density of ions andthe properties of the analytic continuation @t ),

its derivatives vanish at the end-points, whil¢é) and its

derivatives are bounded, the tetkh=1,+I, is much smaller 1. N _

thanl,. In particular, the contributions at the end-points van- R iwlelm) Q-ztie) | = 12 duD(u)=1-M(172),

ish, whereas the contributions tpfrom the ions around the

point £ are of ordera(¢) ~1/N. from which Eq.(33) is obtained.

APPENDIX B: CHARACTERISTIC FUNCTION FOR THE APPENDIX C: AN ANSATZ FOR THE SECULAR
SHORT-WAVELENGTH SPECTRUM EQUATION: SLOWLY VARYING ENVELOPE

teristic function for the eigenvalue problem in E@9) fol-  phononic solution for a translationally invariant crystal,

lowing the treatment developed by Dys@8b]. The proce- \yhere we assume that the envelope, superimposed on the
dure can be immediately generalized to the eigenvalues Qfmplitude and the phase of the phononic solution, varies
the transverse motion. Substituting(t)=/dweGj(w)/2m  glowly as a function of the position. This ansatz is supposed
into Eq. (29) and replacingj(w) with g;, we obtain to be valid for long-wavelength excitations and chains with
2 2 _ N>1 atoms.

(@7 =90 = Aj(Qa = ) + Aj-a(Ga = ). (BD) The exact solution of Eq$6)—<(8) in the limit of uniform
The roots »? of the matrix A are related to the eigenfre- charge distribution with constant spacirg K;;/m=«/|i
quenciesw by - with k=2Q?/a3, is [31]

=32+ 12 i (kia—w
W=V + 1. qjNel(kJa v (C1)

These roots can be found by solving the second-order differ- . .
ential e . Here, w is the eigenfrequencyk the wave vector, and the
quation e : ; )
boundary conditions for the uniform chain are fixed so that
G=A @ =F) + A e Ty =), B2 On=0Co. giving €@=1. Hence, ka=2#l/N with
B G l@ 17 0) + A1 - G) (82 1=0,1, ... N-1. The dispersion relation is obtained by sub-

whereq;(t) = fdw €“'q;(w)/27r. Following [35], this problem  stituting Eq.(C1) into Eq. (6) with K; ;/m=x«/[i-j[>. If the
reduces to the diagonalization of an antisymmetric matrix. Innteraction is determined by the nearest neighbors, while the
what follows we review the fundamental steps. We define thénteraction with the other ions is neglected, then the eigen-
variabless, ... ,sy-1, such thats;=VA(q;.;—q;). After sub-  frequencies are given by

066141-11



G. MORIGI AND S. FISHMAN

Vo? = 12=2\k (C2)

) ka’
sin—| .
2

Note that o depends onka, which takes the values
ka=271/N.

We now construct from this solution an ansatz for the
inhomogeneous chain, in the limit of slowly varying spring
constantK; ;,, over the wavelength of the propagating per-

turbation. We assume thus the local solution
q = Ajei(kja—wt), (C3)

wherekais a constant; i.e., we have assunk?éio)=jka. The

nonlinear variation of the phase with the site is included in

A;. The ansat2C3) assumes that it is possible to write the
solution as the product of a slowly varying amplitude and
phase, represented by the facty; and a fast oscillating
part, which is the exponential term in E@1). The validity
of this assumption is checked later on.

By substituting Eq(C3) into Eq. (6), keeping only the
nearest-neighbor interaction, we obtain

((1)2 — VZ)A]- = Kj(Aj - Aj+1eika) + Kj—l(Aj - Aj_le—ika),
(CH

where «;=K; ;;1/m. We make use of the fact that varies
slowly with position, which allows us to expag and«; in
6], of order unity, according to

Asi~Az A, (C5)
K=~ K+ Ak + 0Kl2, (Co6)
K1 =~ k+ Ak = 0kjl2, (C7)

where A=(9A/j) 5] with §j=+1. The spring constant has
been divided into three contributions:is constant and ful-
fills Eqg. (C2), Ak is also constant, andx;=«'dj, with
k' =dk;jl ], such thatk+Ax> dk;. The chosen variation of

«; reflects the symmetry under reflection of the crystal, suctg

that the ion at the center is characterized by equal couplin
on both sidegwhich implies the conditiodx=0). The term
Ak does not depend ojy and it is the correction ta, the
spring constant fulfilling the dispersion relation for the cas
of a uniform chain: Ak~ ;- . Substituting Eqs(C5—C7)
into Eq. (C4) yields

. ka . . . .
4AKAS|n2E—2|K5AS|nka—2|A5KS|nka:0,

where we have applied the dispersion relati@®). Since
there is only one zeroth-order term jnit is evident that

§
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FIG. 7. Long-wavelength part of the axial eigenmodes spectrum
for N=1000 ions. The dot-dashed line gives the spectrum evaluated
using Eqs(C10) and(C11), the solid line the numerical results, and
the grey line the spectrum evaluated using &7).

thus a differential equatio(valid for sinka+ 0)
A

= , C8
A 2k (8
which admits the solution
A=Ay =2 (C9)
K
The eigenmode has then the form
g = " e, (C10
K;

and the wave vector takes the same values as for a uniform
crystal with half-periodic boundary conditions, taking into
account the symmetry under reflection,

kNa= ml, (C11)

where k=k(w) is given by Eq.(C2) and1=0,1,... N-1.

Therefore, this ansatz gives simply a variation of the ampli-
tude of the displacement of the ion as a function of the local
spring constant, but no change in the phase, which is the
ame as the one of a uniform crystal. The amplitude is

9Smaller at the center of the chain, where the ions are closer

and the coupling constant is larger. TakirRg=A, as given
by Eq.(42—i.e., the maximum value of the spring constant
n the chain—and using EqC2), we obtain the maximal
frequency as given in Eq43). A similar argument can be
developed for the transverse frequency.

Figure 7 compares the prediction of the slowly varying
ansatz with the numerical results and the Jacobi polynomials
results given by Eq(27). Here, it is obvious that the Jacobi
polynomials provide a better approximation for the spectrum
at the lowest eigenfrequencies. The curve evaluated from Eq.

Ak=0: Thus, there is no zeroth-order correction to the springC2) using Eqgs.(C3) and (C1)) lies close to the spectrum

constantk of the uniform chain, and its value in this order is
accounted for by Eq(C2). The first-order expansion gives

evaluated numerically for a larger range of modes, but it
does not reproduce its asymptotic behavior Ko cc.
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