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Cold ions in anisotropic harmonic potentials can form ion chains of various sizes. Here, the density of ions
is not uniform, and thus the eigenmodes are not phononic-like waves. We study chains ofN@1 ions and
evaluate analytically the long-wavelength modes and the density of states in the short-wavelength limit. These
results reproduce with good approximation the dynamics of chains consisting of dozens of ions. Moreover,
they allow one to determine the critical transverse frequency required for the stability of the linear structure,
which is found to be in agreement with results obtained by different theoretical methods[D. H. E. Dubin, Phys.
Rev. Lett. 71, 2753(1993)] and by numerical simulations[J. P. Schiffer, Phys. Rev. Lett.70, 818(1993)]. We
introduce and explore the thermodynamic limit for the ion chain. The thermodynamic functions are found to
exhibit deviations from extensivity.
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I. INTRODUCTION

Coulomb crystals are organized structures of charged par-
ticles, which interact through the Coulomb repulsion and or-
ganize in regular patterns at sufficiently low temperatures in
presence of a confining potential[1]. These potentials are
realized by means of Paul or Penning traps[2], and their
geometry determines the crystal’s structure. Several remark-
able experiments have reported crystallization of ion gases in
Paul traps[3–7], Penning traps[8], and ion-storage rings[9].
The Bragg scattering in three-dimensional structures was
studied, providing information about the internal structure of
the crystal[10,11]. These crystals represent a kind of rarefied
condensed matter, the interparticle distance being of the or-
der of several micrometers, allowing to study the structure
by means of optical radiation. Variation of the potential per-
mits one to control the crystal shape as well as the number of
ions, thus offering the unique opportunity to study the tran-
sition from few particles to mesoscopic systems. Besides,
these structures have been the object of growing interest as
they provide promising applications for spectroscopy
[12,13], frequency standards[14], study and control of
chemical reactions[15], and quantum information processors
[16–19].

In this work we investigate the dynamics of Coulomb
chains. These are one-dimensional structures, obtained by
means of strong transverse confinement and which usually
consist of dozens of ions localized along the trap axis[5,6].
They represent a peculiar crystallized structure: In fact, due
to the axial potential, the equilibrium charge distribution is
not uniform [20,21]. This is in contrast to the three-
dimensional case, where the density of charges in a harmonic
potential is uniform and, therefore, where the eigenmodes
are phononic-like waves. In the Coulomb chain the nonuni-
formity of the density of ions combined with the long-range
interaction results in excitations that are fundamentally dif-
ferent from the phonons in solids and leads to interesting
thermodynamic properties. The exploration of these excita-
tions and of the chain thermodynamics is the subject of the
present paper, which extends and complements the results
presented in[22].

Our starting point is the ions equilibrium configuration
evaluated in[20]. We investigate the dynamics for small os-
cillations, when the harmonic approximation is valid, in the
limit of a large number of ions. We derive analytically the
eigenfrequencies and the corresponding eigenmodes for the
long-wavelength excitations. These are compared with nu-
merical results and good agreement is found. From the re-
sulting dispersion relation the density of states of the long-
wavelength eigenmodes is determined. An analytic form of
the density of states is also found for the short-wavelength
excitations. This result allows one to evaluate the critical
aspect ratio between the frequencies of the transverse and
axial confining potential, which determines the stability of
the chain. The value we find agrees with numerical results
[23], which have been experimentally verified for chains of a
few ions [24]. In particular, it is in agreement with the ana-
lytical estimate in[25], which was obtained under different
requirements.

Using these results we discuss the statistical mechanics of
the chain and derive some thermodynamic quantities in a
specific thermodynamic limit, which is defined here by keep-
ing constant the density of ions in the chain center, as the
number of ions tends to infinity and the axial frequency to
zero, analogously to the definition for cold neutral gases in
traps [26]. Nonextensive thermodynamic properties are
found. We compare the thermodynamic functions with the
ones of a chain of a finite number of ions that are obtained
numerically and find reasonable agreement.

This work is organized as follows. In Sec. II we introduce
the basic equations and discuss the fundamental properties.
In Sec. III the spectrum of excitations is studied. In Sec. IV
we investigate the statistical mechanics of the system. Sec-
tion V presents the conclusions and outlook. In the Appen-
dixes, several details of the calculations of Sec. III are re-
ported.

II. STRING OF CHARGES IN A HARMONIC POTENTIAL

The Hamiltonian describing the dynamics of a chain ofN
ions of massm and chargeQ, which are confined by a har-
monic potential, is given by
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H = o
j=1

N
p j

2

2m
+ Vsr 1, . . . ,r Nd, s1d

where r j =sxj ,yj ,zjd and p j are the positions and conjugate
momentas j =1, . . . ,Nd. The termV accounts for the oscilla-
tor’s potential and the Coulomb repulsion,

V =
1

2o
j

mfn2xj
2 + nt

2syj
2 + zj

2dg

+
1

2o
j=1

N

o
jÞi

Q2

Îsxi − xjd2 + syi − yjd2 + szi − zjd2
, s2d

where the harmonic oscillator has rotational symmetry
around thex axis with axial and transverse frequenciesn and
nt, respectively.

For sufficiently low kinetic energy crystallization occurs.
The temperature at which the gas is crystallized corresponds
to large plasma parametersG=Q2/aWSkBT@1. Here,aWS is
the Wigner-Seitz radius, which is a function of the mean
densityn, and is defined asaWS=s3/4pnd1/3 [1]. In this re-
gime the ions are localized at the classical equilibrium posi-
tions r j

s0d, which satisfy the equationsu]V/]r jur
j
s0d=0, and

such that the potential energy is minimal. When the har-
monic potential is sufficiently asymmetric—i.e., for
n!nt—the ion equilibrium positions are confined to the trap
axis [23], namely,r j

s0d=sxj
s0d ,0 ,0d, and satisfy the equation

describing the equilibrium of the forces:

mn2xi
s0d = − o

j.i

Q2

sxj
s0d − xi

s0dd2 + o
j,i

Q2

sxi
s0d − xj

s0dd2 , s3d

where the numbering convention isxi .xj for i . j . The sta-
bility of these points with respect to the transverse vibrations
depends on the number of ions,N, and on the rationt /n, and
it is discussed in Sec. III B. In this section, we assume that
the configuration is stable and approximate the potential by
its second-order Taylor expansion around the pointsr j

s0d. We
denote byqi =xi −xi

s0d the displacements in thex̂ direction and
approximate the Hamiltonian(1) as

H < V0 + Hhar,

whereV0=Vsr 1
s0d , . . . ,r N

s0dd is the classical minimum energy,
while Hhar describes the(classical) harmonic oscillations
around the equilibrium points[27–29],

Hhar= o
j=1

N
p j

2

2m
+

1

2o
j

mn2qj
2 +

1

2o
j

mnt
2syj

2 + zj
2d

+
1

4o
i

o
jÞi

Ki,jsqi − qjd2

−
1

8o
i

o
jÞi

Ki,jfsyi − yjd2 + szi − zjd2g, s4d

and the coefficientsKi,j = u]2V/]xj
2uhx

l
s0dj are positive and take

the form

Ki,j =
2Q2

uxi
s0d − xj

s0du3
. s5d

Equation(4) shows that the axial motion is decoupled from
the transverse motion in the harmonic expansion. The corre-
sponding equations of motion are

q̈i = − n2qi − o
jÞi

Ki,j

m
sqi − qjd, s6d

ÿi = − nt
2yi +

1

2o
jÞi

Ki,j

m
syi − yjd, s7d

z̈i = − nt
2zi +

1

2o
jÞi

Ki,j

m
szi − zjd, s8d

and describe a system of coupled oscillators, with long-range
interaction and position-dependent coupling strength. In this
paper eigenmodes will be calculated. For this we assume
qistd=eeivtq̃isvddv /2p. To simplify the notation we replace
q̃isvd by qi. This results in equations for the eigenmodes of
frequencyv that are similar to Eq.(6), but with q̈i replaced
by −v2qi. The same replacement will be performed foryistd
andzistd.

It can be easily verified that the center-of-mass motion is
an eigenmode of the secular equations(6)–(8). The axial
center-of-mass mode isq1=¯ =qN at the characteristic fre-
quencyn, while the transverse center-of-mass modes arey1
=¯ =yN andz1=¯ =zN at frequencynt. We remark that the
axial and transverse coupling terms appearing in Eqs.(6)–(8)
have opposite signs. Due to this property, in the axial direc-
tion the collective excitations are of higher frequencies than
the center-of-mass frequencyn, while in the transverse plane
the collective excitations are of lower frequencies thannt.

Properties and symmetries

The Hamiltonian(4) is not translationally invariant, and
this is a consequence of the nonuniformity of the ions equi-
librium distribution, due to the harmonic force appearing in
Eq. (3). The Hamiltonian(4) is, however, invariant under
reflection with respect to the center of the trap, which coin-
cides with the origin of the axes. In particular,

xi
s0d = − x−i

s0d,

where i =1, . . . ,N8 [here, N8=N/2 for even N, while N8
=sN−1d /2 for oddN]. Hence, the normal modes of the chain
are symmetric(even) or antisymmetric(odd) under reflection
with respect to the center[28,29], such that

wi
snd = ± w−i

snd, s9d

with wi
snd=qi

snd ,yi
snd ,zi

snd andn labels the mode. Some general
properties can be inferred from this simple consideration. For
instance, the even modes of the axial motion are character-
ized by constant lengthL of the chain, sinceq

N8
snd=q

−N8
snd . For

the odd modes, on the other hand, the center of mass of the
chain, which coincides with the chain center, does not move.
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Clearly, the center-of-mass mode, which we denote bywi
s1d,

is an even mode characterized by equal displacements at the
positionsxi

s0d of the chain. This property and the orthogonal-
ity between the normal modes lead to the relation

o
j

wj
snd = 0

for all normal modes withn.1.
It is remarkable that also the lowest axial odd mode

(stretch mode) and its frequency can be exactly determined.
In fact, taking qi

s2d~xi
s0d and substituting into Eq.(6) one

finds

sv2 − n2dqi
s2d = − o

j.i

2Q2/m

sxj
s0d − xi

s0dd2 + o
j,i

2Q2/m

sxi
s0d − xj

s0dd2

= 2n2qi
s2d, s10d

where we have used relation(3). Therefore, the frequency of
the axial stretch modeqi

s2d is Î3n and its value is independent
of the number of ionsN of the chain. This property was first
demonstrated in[30]. It has also been observed by numerical
evaluation of the normal modes of chains up to ten ions
[17,27]. Analogously, the transverse stretch mode, which is
the highest odd transverse excitation, satisfiesyi

s2d, zi
s2d~xi

s0d

with eigenfrequencyÎnt
2−n2, which is also independent of

N.
We remark that the invariance under reflection imposes

different boundary conditions than the ones that are usually
chosen for a crystal with uniform ion distribution. In a crys-
tal that is translationally invariant even and odd modes are
degenerate and one may choose periodic boundary condi-
tions [31]. In the presence of an external potential with cen-
tral symmetry this invariance is broken, apart for the mirror
symmetry with respect to the center. Hence, at the edges the
eigenmodes fulfill the relationw−N8= ±wN8, where the sign is
determined by the parity.

III. SECULAR PROBLEM

The systematic derivation of an analytic solution of Eqs.
(6)–(8) is a challenging problem, since it requires one to take
systematically into account the position-dependent coupling
constant and the long-range interaction. Nevertheless, in the
limit of a large number of ions,N@1, we can make some
simplifying assumptions. In this limit, in fact, the interpar-
ticle spacingaLsxid=xi+1

s0d −xi
s0d is a smooth function of the

position, and it is inversely proportional to the density of
ions per unit length[20],

nLsxid = 1/aLsxid. s11d

The density of charges for unit length can be evaluated by
applying the Gauss theorem to a continuous distribution of
charges, which is assumed to be uniformly distributed in an
elongated ellypsoid. The resulting one dimensional density is
[25]

nLsxd =
3

4

N

L
S1 −

x2

L2D , s12d

which is defined foruxuøL, where 2L is the length of the
crystal at equilibrium. The density(12) is the leading term in
the expansion in powers of 1/ lnN and it gives a good esti-
mate of the charge distribution in the center of the chain for
N sufficiently large[20]. The lengthL is evaluated by mini-
mizing the energy of the crystal and at leading order in lnN
fulfills the relation[20]

LsNd3 = 3S Q2

mn2DN lnN. s13d

In the following, we use these quantities to derive an ap-
proximate solution for the long- and short-wavelength modes
in the limit of N@1 ions. Furthermore, we compare the re-
sults of the derivation with the numerical calculations, which
determine the spectrum by solving Eqs.(3) and then diago-
nalizing the matrix determining the eigenvalue equations
(6)–(8) for a finite number of ions.

A. Eigenmodes in the long-wavelength limit

We use the ansatzqisx,td=eivtq̃isxd in Eq. (6) and define
the rescaled positionsji

s0d=xi
s0d /L and the rescaled interpar-

ticle distancesasjid=aLsxid /L. With these definitions, denot-
ing for simplicity of notationq̃i →qi, Eq. (6) takes the form

sv2 − n2dqi = n2K0o
jÞi

1

uji
s0d − j j

s0du3
sqi − qjd, s14d

where we have introduced the dimensionless constant

K0 =
2Q2

mn2LsNd3 =
2

3N lnN
. s15d

If the number of ions is largesN@1d, for the long-
wavelength modes one can approximate the chain by a con-
tinuous distribution of charges. In this limit,j is a continuous
variable varying in the intervals−1,1d, while the displace-
mentqi =qsjid is a continuous function, here denoted byqsjd.
Then, Eq.(14) takes the form

sv2 − n2dqsjd =
3

4
n2K0NI„j,qsjd…, s16d

where

I„j,qsjd… =E
−1

j−asjd

dj8
nsj8d

sj − j8d3fqsjd − qsj8dg

+E
j+asjd

1

dj8
nsj8d

sj8 − jd3fqsjd − qsj8dg, s17d

while nsjd=1−j2 is the density of charges normalized to
4/3. Equations(16) and (17) are valid away from the edges
of the chain and for long-wavelength excitations, where the
continuum approximation is reasonable. The continuum limit
for Eq. (7) gives
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snt
2 − v2dysjd =

3

8
n2K0NI„j,ysjd…. s18d

A similar type of equations is obtained forzi. It is remarkable
that the axial trap frequency enters only as a prefactor on the
right-hand side of Eq.(16). Consequently the axial eigenfre-
quencies are proportional ton. The transverse eigenfrequen-
cies, instead, do not show this behavior, as one can see from
Eq. (18): Here, it is the quantitynt

2−v2 which is proportional
to n2. The proportionality constants depend on the modes and
will be calculated in what follows within some approxima-
tions. The results are independent of the chargeQ and of the
massm.

According to Eqs.(16)–(18), the secular problem consists
of solving the eigenvalue equation

I„j,wsndsjd… = lnw
sndsjd, s19d

where wsndsjd can be the axial or transverse mode, which
satisfies the orthogonality relation

E
−1

1

djnsjdwsndsjd * wsmdsjd = dn,m. s20d

By partial integration Eq.(17) can be written as the sum of
two terms,

I = I0 + DI ,

where I0 contains the contributions of the ions around the
point j, while the termDI is determined by the value of the
density and of the eigenmode functionqsjd and their deriva-
tives at the end-points of the chain. In Appendix A we derive
the explicit form of the two terms and discuss their order of
magnitude. For the long-wavelength modes and at the points
j sufficiently far away from the chain end-pointsj= ±1, we
find I < I0 where

I0„j,wsjd… = Sln asjd −
3

2
Dfnsjdw9sjd + 2n8sjdw8sjdg

+ o„asjd…, s21d

andasjd is an infinitesimal quantity of the order 1/N. Using
Eqs.(11) and (12) in Eq. (21) we obtain

I0„j,wsjd… = − SlnN + ln
3

4
+ lns1 − j2d +

3

2
DJ„wsjd…,

s22d

where

J„wsjd… = s1 − j2dw9sjd − 4jw8sjd. s23d

In the limits of validity of Eq. (21) and for N sufficiently
large, such that lnN@1, Eq. (22) can be approximated by
the leading order in lnN,

I0„j,wsjd… < − lnNJ„wsjd…, s24d

and the eigenvalue equation(19) reduces to

J„wsndsjd… = l̃nw
sndsjd, s25d

whereln=−lnNl̃n. Equation(25) is the differential equation
fulfilled by the Jacobi polynomialsP,

1,1sx̄d at the eigenvalues
[32]

l̃n = − ,s, + 3d, s26d

with ,=0,1, . . . and n=,+1. After substitution of Eqs.
(23)–(26) into Eq. (19), the eigenfrequencies of the axial
excitations are found from Eqs.(15) and (16) and take the
form

vn
i Jac= nÎnsn + 1d

2
. s27d

Analogously, the eigenfrequencies of the transverse modes
are obtained from Eq.(18) with Eq. (19), resulting in

vn
' Jac=Înt

2 −
sn − 1dsn + 2d

4
n2. s28d

It should be noted that the solutions of Eq.(23) for ,=0 and
,=1 are exact solutions of the original problem(14): The
corresponding eigenmodesws1dsxd=const (center of mass)
andws2dsxd~x (stretch mode), which are the continuum lim-
its of the eigenmodes we have found for the discrete case, are
in fact Jacobi polynomials. The result for the center of mass
is obvious. The exact result for the stretch mode can be un-
derstood, noting thatP1

1,1sjd has only one node, whose posi-
tion coincides with the center of the chainj=0 and thus with
the symmetry center for reflections. Hence, its position is
independent of the number of ions in the chain, and in par-
ticular it is independent of whether the ions distribution is
discrete or continuous.

It is remarkable that the dispersion relation(27) coincides
with a specific one-dimensional limit of a three-dimensional
continuum mean-field theory, like the one developed in[33],
although there is no obvious justification for this. The two
limiting cases—the uniform spheroidal fluid of[33] and the
case ofN strongly coupled oscillators investigated in this
work—seem to provide the same axial eigenfrequencies in
the long-wavelength regime and in the limitN@1. This re-
sult is intriguing, especially if put in connection with theory
of cold gases in low dimensions, where different dispersion
relations are obtained depending on the assumption on the
type of mean-field interaction[34,38] and will be the object
of future investigations.

Figure 1 presents the comparison between the spectrum of
eigenfrequencies obtained with several methods. The solid
lines show the result for 1000 ions, obtained by numerically
diagonalizing the matrix(5) in Eqs.(6)–(8) after calculating
the equilibrium positions by numerically solving the set of
equations(3). The grey line shows the results in Eqs.(27)
and(28), which have been truncated, as they do not correctly
reproduce the short-wavelength eigenmodes. The short-
wavelength modes are better evaluated by using a more
proper approximation for this regime. The dotted line gives
the spectra evaluated using the method of Dyson[35], dis-
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cussed in Sec. III B and implemented in order to reproduce
the density of states in the short-wavelength limit.

Figure 2 exhibits the part of the spectrum with the long-
wavelength axial modes: Here, one sees that Eq.(27) ap-
proximates well the lowest part of the axial spectrum, where
the limit of continuous charge distribution is reasonable.

We remark that, apart from the first two eigenmodes, the
Jacobi polynomials describe the eigenmode excitation at
leading order in lnN and near the center of the chain, where
the interparticle separation is of order 1/N and the distribu-
tion of charges can be treated as a continuum for sufficiently
long wavelengths. The continuum approximation fails at the
edges, where the interparticle spacing is significantly larger
and Eq.(12) is not meaningful. In particular, Eq.(13) gives
the upper bound for the chain length, which would be ob-
tained in the limit ofN@1 particles. Hence, a reasonable
boundary condition is to assume that the eigemodes and their
derivatives vanish atx= ±L, where there are no charges and
hence the energy density is zero. The solution(23) taken at
the center of the chain neglects the charges at the edges on
the basis of the observation that there the number of ions is
much smaller than at the center and their contribution to the
integral (17) can therefore be neglected.

The evaluation of the correction to the results(27) and
(28) should be done in perturbation theory in the parameter
1/ lnN, following an analogous procedure to the one applied
in [20] for evaluating the correction to the density of ions
(12) and to the equilibrium length(13). In practice, this ex-
pansion has a very slow convergence and does not allow for
a simple analytical expression. Nevertheless, the comparison
with the spectrum evaluated numerically, by solving Eqs.(3)
and (6)–(8), shows that Eqs.(27) and (28) give already a
good estimate of the eigenfrequencies for a chain of ten ions,
as can be seen in Fig. 3(a), where the relative deviation of the
frequency given by Eq.(27) from the numerical result is
plotted for chains with different number of ions. Figure 3(b)
shows the shiftvn

iJac−vn
i compared with the spectral distance

between neighboring levels. The agreement is in general
valid, respectively, for the axial low modes and the trans-
verse high modes, and exhibits a very slow improvement as
the number of ions in the chain increases, due to the slow
convergence of the 1/ lnN expansion.

B. Density of states in the short-wavelength limit

Simple physical considerations show that the short-
wavelength eigenmodes are characterized by relatively large
displacements of the ions around the center of the chain,
while the ions at the edges nearly do not move. In fact, the
interparticle distance is minimal in the middle of the chain,
and forN@1 it is of order 1/N, while it is consistently larger
at the edges. Hence, a wave cannot propagate in a region
where the interparticle spacing is larger than the wavelength.
Here, we can make some simplifying assumptions in solving
the eigenvalue equations(6)–(8) for the short-wavelength
modes. In fact, in the center of the chain we expect that the
relevant contributions to the force on an ion originate from
the neighboring charges, as nearby groups of charges move
in opposite directions, resulting in forces that mutually can-

FIG. 2. Long-wavelength excitations of the axial spectrum of
eigenfrequencies. Same notation and parameters as in Fig. 1.

FIG. 1. (a) Transverse and(b) axial spectrum of eigenfrequen-
cies (in units of n) for a chain ofN=1000 ions and withnt=400n.
The solid line corresponds to the numerical solution of Eqs.(6)–(8)
with Eq. (3). The grey line shows(a) vn

'Jac, (b) vn
iJac: These curves

have been truncated, as they do not correctly reproduce the short-
wavelength eigenmodes. The dotted line gives the spectra evaluated
using the method of Dyson[35] implemented in Sec. III B.

FIG. 3. (a) dvn
i /vn

i and (b) dvn
i /Dvn

i as
a function ofn, wheredvn=vn

iJac−vn
i and Dvn

i

=vn+1
i −vn

i . The frequenciesvn
i are obtained by

solving numerically Eq.(6) with Eq. (3). From
top to bottom:N=10, 50, 200, 500, 1000.
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cel. By this hypothesis, in Eqs.(6)–(8) we keep only the
nearest-neighbor interaction, so that the equations to solve
are

q̈i + n2qi = Lfqi,qi±1g, s29d

ÿi + nt
2yi = −

1

2
Lfyi,yi±1g, s30d

z̈i + nt
2zi = −

1

2
Lfzi,zi±1g, s31d

where the tridiagonal matrixL is defined by its action on the
vector sw1, . . . ,wi−1,wi ,wi+1, . . . ,wNd through

Lfwi,wi±1g = Liswi+1 − wid + Li−1swi−1 − wid s32d

andLi =Ki,i+1/m whereKi,j is given in Eq.(5). The matrixL
is symmetric, and we denote its characteristic frequencies by
−ṽ2. Following the derivation of Dyson[35], which is sum-
marized in Appendix B, the density of statesDsṽ2d for
N@1 is found from the characteristic functionVsud accord-
ing to

Ds1/zd = − z2 ReF 1

ip
lim
e→0

dV

du
s− z+ iedG , s33d

while Vsud is explicitly evaluated by using the properties of
antisymmetric matrices and takes the form

Vsud = lim
N→`

1

N o
j=1

2N−1

lnf1 + zsu, jdg. s34d

Here,zsu , jd is the infinite continued fraction,

zsu, jd =
uL̃ j

1 +
uL̃ j+1

1 +
uL̃ j+2

¯

=
uL̃ j

1 + zsu, j + 1d
s35d

and L̃2i−1=L̃2i =Li. For N@1 and around the center of the
chain we may assumeLsjd to be a slowly varying function
of the positionj, such thatLi+1=Li +dLi and dLi /Li !1.
This allows us to evaluate explicitlyzsu , jd at first order in

dLi. For this purpose, we defineL̃ j−1=L̃ j =L and L̃ j+1

=L̃ j+2=L+dL, where dL is the first-order variation. Fur-
thermore, we denotezsu , jd=z and assumezsu , j +2d=z+dz,
wheredz is a first-order variation. We substitute these quan-
tities into Eq.(35), keeping only the terms up to first order,
and look for a consistent solution. The resulting equation is

dzs2z + 1d = udL, s36d

which is integrated to

z2 + z − uL = 0. s37d

Here, we have taken the integration constant to be zero since
at the boundaries of the chainL→0. The resulting solution
has the form

zsu,jd =
1

2
fÎ1 + 4uLsLjd − 1g, s38d

leading to the characteristic function

Vsud = lim
N→`

2

No
j=1

N−1

lnF1

2
fÎ1 + 4uLsxjd + 1gG

= 3E
0

1

dj nsjdlnF1

2
fÎ1 + 4uLsLjd + 1gG , s39d

where we have used the rescaled variablej and the fact that
the integrand is even in the intervals−1,1d. Equation(39)
corresponds to the continuum limit of the discrete summa-
tion in Eq. (34), and it is valid away from the edges for
N@1. Substituting Eq.(39) into Eq.(33) we obtain the equa-
tion for the density of states as a function of the physical
parameters,

Ds1/zd =
6z

p
E

0

fszd

dj nsjdF 1
Î− 1 + 4zLsLjd

G , s40d

where fszd=Î1−s1/4L0zd1/3, while

LsLjd = L0s1 − j2d3, s41d

with

L0 =
K0

asj = 0d3n2 <
9

32

N2

ln N
n2 s42d

at leading order in lnN.
Equation(40) with ṽ2=1/z gives the density of states of

the short-wavelength modes. The corresponding spectrum,
evaluated by integrating the density of states(40), is com-
pared with the numerical result in Fig. 1. The short-
wavelength part of the spectrum is shown in Fig. 4. The
deviations from the numerical result are due to the assump-
tion of nearest-neighbor coupling and are small in the short-
wavelength part of the spectrum, showing that Eq.(40) pro-
vides a good approximation in this regime. In particular, this
result allows us to evaluate explicitly the value of the maxi-
mal axial frequencyvmax

i , the minimal transverse frequency
vmin

' , and the spectrum of the eigenfrequencies in their neigh-
borhood. The maximal axial frequency and the minimal
transverse frequency are found from the maximal value ofz
for which the integrand in Eq.(40) is real, corresponding to
fszd=0. For larger values ofz the density of states vanishes.
The corresponding eigenvalue of the matrixL is ṽ2=4L0.

FIG. 4. Short-wavelength excitations of the axial spectrum of
eigenfrequencies. Same notation and parameters as in Fig. 1.
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From Eqs. (29)–(31) one finds vmax
i =În2+4L0 and vmin

'

=Înt
2−2L0. Therefore, the largest value of the axial fre-

quency is determined by the largest value of the spring con-
stant, which is the value of the spring constant at the center
of the chain, and at leading order in lnN is

vmax
i < nÎ1 +

9

8

N2

lnN
. s43d

Analogously, the smallest value of the transverse modes fre-
quency is

vmin
' <Înt

2 −
9

16
n2 N2

lnN
. s44d

From Eq.(44) one sees thatvmin
' can vanish for certain val-

ues ofn, nt, andN. We denote by

nt,cr =Î 9

16
n2 N2

lnN
s45d

the value of the transverse frequency, such that fornt,nt,cr
the linear chain is unstable with respect to excitations of the
transverse vibrations. Using the notation introduced in[23]
we define the critical value of the aspect ratio between the
trap frequenciesacr=n2/nt,cr

2 . It takes the value

acr =
16

9

lnN

N2 , s46d

which fixes the condition onnt for the chain stability accord-
ing to the inequalitynt

2.acr
−1n2, and it is in agreement with

the analytical estimate in[25], which was obtained under
different requirements. In Fig. 5 we compare the result(46)
with the relationcNb1, with b1=−1.73 andc=2.53, obtained
in [23] by fitting points calculated with molecular dynamics
simulations and verified experimentally in[24]. Our result
reproduces approximately this curve. Atacr the crystal un-
dergoes a structural transition from a linear string to a zigzag
configuration, as has been observed in[6]. It is interesting to
ask whether this structural transition can be considered as a
phase transition, as discussed in[23–25]. A systematic inves-
tigation in this direction requires a proper definition of the
thermodynamic limit for this kind of system. A natural ther-
modynamic limit, which will be discussed in the next sec-
tion, is one where asN→`, the axial frequencyn→0 so that

the density in the center is fixed. From Eqs.(12) and (13)
this requires that the ration2N2/ ln N be kept constant. From
Eq. (45) it is clear that in this limit the critical transverse
frequency tends to a well-defined value. The exploration of
the properties of this transition in the thermodynamic limit
will be object of further studies. Particularly interesting is the
comparison with standard phase transitions[36].

C. Phonon-like approximation

It is natural to introduce a phonon-like approximation for
the eigenmodes of Eqs.(6)–(8). In this approximation, a
phonon-like solution is superimposed by a slowly varying
amplitude, which takes into account the slow variation of the
coupling strengthKi,j of Eq. (5) as a function of bothi and j .
This approximation, which is outlined in Appendix C, is rea-
sonable for a relatively wide range of long-wavelength exci-
tations compared to the Jacobi polynomials solution, dis-
cussed in Sec. III A(see Fig. 7 in Appendix C). It is inferior
compared to the Jacobi polynomials in the very-long-
wavelength limit, and it is a bad approximation for the short-
wavelength regime. Therefore, the phonon-like approxima-
tion, which is natural in condensed matter physics, is not an
asymptotic approximation in the thermodynamic limit
N→` both for the long-wavelength as well as for the short-
wavelength parts of the spectrum.

IV. STATISTICAL MECHANICS

In this section we use the density of states, which was
evaluated in the preceding section, in order to derive the
thermodynamic quantities of a linear crystal ofN ions. The
linear chain is assumed to be in the regime of stability and to
be in equilibrium with a thermal bath at temperatureT. The
oscillations around the classical equilibrium points are quan-
tized using standard procedures[27]. It should be noted that
in this limit the quantum statistics of the atoms is irrelevant:
In fact, the single-particle wave packet is much smaller than
the interparticle distance[37]. The dynamics of the crystal is
thus described by 3N harmonic oscillators of frequenciesvn

i ,
vn

', where the frequenciesvn
' are doubly degenerate. It is

modeled by the HamiltonianĤ, obtained fromH after quan-

tizing the eigenmodes ofHhar in Eq. (4). Here,Ĥ=H0+Ĥn,
whereH0 is the ground-state energy,

H0 = V0 +
"

2o
n=1

N

svn
i + 2vn

'd,

while Ĥn describes the contribution of the collective excita-
tions,

Ĥn = o
n=1

N

"vn
i N̂n

i + o
n=1

N

"vn
'sN̂n,y

' + N̂n,z
' d,

whereN̂n
i , N̂n,y

' , andN̂n,z
' are the operators counting the num-

ber of excitations. The termV0 corresponds to the classical
minimum energy of the Coulomb crystal. For an infinite
chain, it is obtained by minimizing the classical energy with

FIG. 5. acr as a function of the number of ions. The solid curve
gives the result(46). The dashed curve is a fit according to the
function cN−1.73, with c=2.53, as calculated numerically in[23]
(see also[24]).
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respect to the lengthL using the density of charges in Eq.
(12), and it is evaluated to be[20]

V0 =
3

10
mn2NLsNd2, s47d

whereLsNd is given in Eq.(13).
We remark that we investigate the thermodynamic quan-

tities for crystals characterized by a finite number of particles
N and finite axial frequenciesn—i.e., crystals of finite size—
which may be close to experimental situations. It is, how-
ever, instructive to consider the definition of the thermody-
namic limit for this kind of system characterized by strong
correlations, where the effect of the charges at the edges
cannot be neglecteda priori in evaluating the statistical
properties. Here, the thermodynamic limit can be appropri-
ately defined by assuming constant interparticle spacing
(thus constant linear density) at the center of the chain
x=0—namely, requiringaLs0d to be constant. Denoting by
a0=aLs0d, it scales as

a0 = gSÎln N

nN
D2/3

,

where g=s3Q2/md1/3. This requirement corresponds to a
vanishing axial frequency, according ton,Îln N/N, as N
→`. With this definition, in the thermodynamic limit the
maximum axial frequency(43) and the critical transverse
frequency(45) are independent ofN and of n, taking the
valuesvmax

i =3sg/2a0d3/2 and nt,cr=3/4sg/a0d3/2. In the fol-
lowing, we derive the thermodynamic quantities for ion
chains of finite size characterized by a fixed and finite value
of the number of particlesN and of the axial frequencyn,
and discuss how these quantities behave when we take the
specific thermodynamic limit that was defined above.

Assuming thermal equilibrium with the bath, the state of
the system at constant number of ionsN is described by the
density matrix of the canonical ensemble

r =
1

Z
exps− bHd, s48d

whereb=1/kBT andZ is the partition function,

Z = exps− bH0dp
n

f1 − exps− b"vndg−1,

which determines the Helmholtz free energy

F = − kBT ln Z.

We identify the thermodynamic variables withT, the tem-
perature,N, the number of atoms, andn, the axial trap fre-
quency, whose variation corresponds to a variation in the
length of the chain[1]. These are not a complete set of ther-
modynamic variables, but they fully determine the state of
the crystal for the thermodynamic quantities we investigate
in the following. In particular, we takent as constant and
assumevmax

i
!vmin

' , i.e., that there is a large gap between
axial and transverse excitations. In this limit, we consider
temperaturesT such thatkBT!"vmin

' . In this regime the
transverse modes can be considered frozen; hence, the con-

tribution due to their excitations to the crystal’s thermody-
namic properties can be neglected, and the dynamics of the
system is one dimensional. The thermal energy of the crystal
is given by

Uth = kĤnl = o
n

"vn
i

expsb"vn
i d − 1

. s49d

The heat capacityCa= u]Uth/]Tun,N is

Ca =
]

]T
o
n

"vn
i

expsb"vn
i d − 1

. s50d

The behavior at high temperatures, such thatkBT@"vmax
i

(but kBT!"vmin
' ), is given by the Dulong-Petit law

Ca=NkB as is clear from Eq.(50). On the other hand, for
kBT!"n all modes are frozen and the energy of the chain is
the zero-point energyH0. For large number of particles
N@1 we can approximate the sum in Eq.(50) by the integral

Ca ,
]

]T
E

n

vmax
i

dvgsvd
"v

expsb"vd − 1
,

wheregsvd=]n/]v is the density of states. In particular, at
temperatures such that the contribution of the long-
wavelength excitations to the sum is predominant and is
given by Eq.(27), the resulting density of states is

ugsvdulow T =
1

n

4v

Î8v2 + n2

and the heat capacity is given by the integral

uCaulow T ,
Î2kB

2

"n

]

]T
T2E

x0

`

dx
1

ex − 1

x2

Îx2 + x0
2/8

, s51d

where we have definedx0=b"n. Hence, the integrand and
integration limits depend on the temperature throughx0. In
this regime and forkBT@"n we can setx0,0 in Eq. (51)
and recover the resultCa= c̃T, with c̃=Î8zs2dkB

2 /"n, where
zs2d is Riemann’s zeta function. Therefore, for the consid-
ered regime the heat capacity is proportional to the tempera-
ture, which is a characteristic behavior encountered in a one-
dimensional Debye crystal[31]. In Fig. 6(a) the specific heat
ca=Ca/N for N=1000 ions is plotted as a function of the
temperatureT. In the inset, the low-temperature behavior is
shown and compared with the curvec̃T/N estimated above.
The figure shows that the evaluated behavior, valid in the
asymptotic limit of an infinite number of ions, provides a
reasonable description of the specific heat at low tempera-
tures.

It is remarkable that the heat capacity in Eq.(51) scales
like Ca,1/n. The specific heat per particleca=Ca/N be-
haves thus likeca,1/Nn at low temperatures, and in the
thermodynamic limit it vanishes asca,1/Îln N. It thus de-
pends on the number of ions, and this is a manifestation of
the deviation from extensivity of the system’s behavior. Note
that the relative energy fluctuations are of the order
sÎln N/Nd1/2; therefore, the usual equivalence of ensembles
holds.

The pressureP in the axial direction is defined as
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P = −U ]F

]L
U

T,N
, s52d

and it is the variation of the free energy with the length of the
string at constantN andT. Under these conditions, the length
of the crystal is varied by changing the axial trap frequency
n, according to

U ]L

]n
U

T,N
= −

2L

3n
, s53d

as obtained from Eq.(13). Substituting the explicit form of
the free energy into Eq.(52), we find

P = P0 + PT,

where

P0 = −U ]H0

]L
U

T,N
=

V0

L
+

3"

4L
o
n
Fvn

i + 2vn
'S1 −

nt
2

vn
'2DG

s54d

is the pressure at zero temperature andPT gives the contri-
bution of the excitations,

PT =
3

2L
Uth. s55d

In deriving Eqs. (54) and (55) we have used]V0/]L=
−V0/L, which results from Eq.(47), and the relations

]

]n
vn

i =
vn

i

n
,

]

]n
vn

' =
vn

'

n
F1 −S nt

vn
'D2G ,

which are obtained from the functional dependence ofvn
i

and vn
' on n, as can be extracted from Eqs.(16) and (18).

Note that a variation of the axial trap frequency implies also
a variation of the transverse eigenfrequencies, which give a
contribution of opposite sign to the pressure, as is obvious
from Eq. (54). However, the contribution due to the
quantum-mechanical zero-point energy is very small com-
pared to the classical termV0/L. Therefore,P0 is dominated
by V0/L and, using Eq.(47), in the thermodynamic limit it
scales asP0, ln N. The termPT depends on the temperature.
For low temperatures, such thatkBT@"n, it scales asPT

,1/Ln,1/Îln N. At high temperatures, in the Dulong-Petit
regime,PT depends on neitherN nor n. In the regime where
the chain is thermally stable, which we consider here,
V0@Uth, giving P< P0. Thus, the pressure is dominated by
the zero-temperature contribution and in the thermodynamic
limit P< P0, ln N. A useful relation for the following dis-
cussion is

U ]P

]T
U

L,N
=

3

2L
Ca. s56d

The isothermal compressibilitykT is evaluated from the
pressure according to

1

kT
= B = − LU ]P

]L
U

T,N
, s57d

whereB is the bulk modulus. Using Eqs.(54) and(55) in Eq.
(57) we find

kT = F− L
]P0

]L
+

3

4L
s5Uth − 3CaTdG−1

. s58d

In the thermodynamic limit the bulk modulusB is dominated
by the zero-temperature contribution −L]P0/]L, which in
turn is dominated by the term −L]V0/]L,V0/L, ln N.
Therefore,B, ln N and the compressibilitykT vanishes as
1/ ln N.

The coefficient of thermal expansionaT can be evaluated
from knowledge ofkT andCa according to[31]

aT =
1

L
U ]L

]T
U

P,N
= −

1

L

u]P/]TuL
u]P/]LuT

=
3

2L
kTCa, s59d

where we have used Eq.(56). Since the compressibility is
dominated by the zero-temperature term, the behavior of the
coefficient of thermal expansionaT as a function ofT is
determined by the heat capacity: linear dependence at low
temperatures and saturation at high temperatures. At low
temperaturesCa,1/n, and as the thermodynamic limit is
approachedaT,sln Nd−3/2. At higher temperatures, when the
heat capacity manifests the Dulong-Petit behaviorCa=NkB,
the coefficient of thermal expansion vanishes like
aT,1/ lnN. In Fig. 6(b) the coefficient of thermal expansion
for a chain of 1000 ions is presented. Calculations made with
different numbers of ions, taking the trap frequencyn such
that the linear density at the center of the chain remains

FIG. 6. (a) Specific heatca=Ca/N, in units ofkB, and(b) coef-
ficient of thermal expansionaT, in arbitrary units, as a function of
T, in units of "vmax

i /kB. Here, N=1000 andvmax
i

!vmin
' . This

would correspond to an experiment withn=2p31 kHz and nt

=2p34 MHz. For these parameters and berillium atoms,T is in
units of the Debye temperatureQD, with QD="vmax

i /kB<20 mK,
and aT in units of 10−5 mK−1. The inset of(a) shows the low-
temperature behavior of the specific heat, and the dashed line is the
estimated slope, withc̃=Î8zs2dkB

2 /"n (see text).
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constant, show thataT decreases withN. The numerical re-
sults are consistent with the behavior we expect in different
temperature regimes, according to the above considerations.
In particular, for finiteN it is significantly different from
zero. This is in contrast to the behavior found for uniform
harmonic solids, where the coefficient of thermal expansion
vanishes[31].

The thermodynamic quantities of a linear string of
charges confined by a harmonic trap are affected by the way
the thermodynamic limit is taken. Nevertheless, the behavior
of the system is intrinsically nonextensive. The nonextensi-
tivity is due to the strong correlation and the dimensionality
of the crystal, which determine a regime where the correla-
tion energy, associated with the discreteness of the individual
charges, cannot be neglected[20]. It manifests in particular
in the lnN terms appearing in the thermodynamic quantities.
A representative example is the dependence of the specific
heat per particle onN.

We finally remark on the thermal stability of the chain.
The derivation presented in this section, in fact, relies on the
assumption that the thermal excitations do not affect the sta-
bility of the system and thus the validity of the physical
model we are considering—namely, of ions oscillating
around their equilibrium positions. This condition is equiva-
lent to the statement that the thermal energy at the considered
temperatures is considerably lower than the equilibrium en-
ergy, and the displacements are much smaller than the re-
spective interparticle distance. Hence, this condition is valid
when

Q2

a0
lnN @ kBT.

This relation is amply satisfied for the parameters of the nu-
merical evaluation of the thermodynamic quantities consid-
ered in this section.

V. SUMMARY AND CONCLUSIONS

We have investigated the dynamics of a linear crystal ex-
citations with Coulomb interaction and in the presence of an
external potential. We have derived an analytical formula for
the density of states at long and short wavelengths. In the
long-wavelength part of the spectrum, we have calculated
analytically the eigenmodes and eigenfrequencies. The
eigenmodes and eigenfrequencies for the center of mass and
the first excitation of the axial and of the transverse motion
are exact and independent of the number of ions. Apart for
these modes, the results we derive are valid in the limit of an
infinite number of ions. Nevertheless, they already give a
good description of the spectrum of excitations of chains of
dozens of ions. Using our results we study the statistical
mechanics and thermodynamics of the linear chain.

Our derivation allows us to find an analytical formula for
the critical transverse frequency required for determining the
stability of the linear chain. It agrees with the analytical es-
timate by[25], which was obtained under different assump-
tions, and it is consistent with the formula fitted from nu-
merical data[23] and verified experimentally[24]. It was
suggested that this instability of the ion chain, resulting in a

transition from a linear to a zigzag equilibrium configuration,
can be treated as a phase transition[23,24]. In future works
we will explore, using the formulation developed in this
work, whether the thermodynamic quantities exhibit singu-
larities characteristic of phase transitions[36]. This system
differs from systems that are traditionally studied in the
framework of statistical physics, since it is not extensive. In
particular the specific heat per particle depends on the num-
ber of ions.

The results presented in this work show a statistical me-
chanics approach applied to a strongly correlated mesoscopic
system. They contribute to ongoing research on low-
dimensional cold gases[38,39] and may be relevant to stud-
ies of the quantum dynamics of many-particle Coulomb sys-
tems like ion crystals in storage rings[9] and cold neutral
plasmas[40,41], which at sufficiently low temperatures are
predicted to crystallize[42]. The connection with Wigner
crystals, where the quantum statistics may play a relevant
role [43], will be explored.

Moreover, the spectra of excitations here evaluated are
relevant for implementations of quantum logic with ion
traps, where knowledge of the long-wavelength modes is im-
portant for the realization of logic gates[16–19], as well as
realization of solid-state models[44].
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APPENDIX A: SECULAR EQUATION OF THE
LONG-WAVELENGTH EIGENMODES

In this appendix we outline the derivation of the differen-
tial equation(22) and (23) from Eq. (17) and estimate the
correction to the solution we find. By integration by parts,
Eq. (17) takes the form

I = I0 + I1 + I2,

where

I0 =
1

2asjd2ffjsj − ad + fjsj + adg

−
1

2asjd
ffj8sj − ad − fj8sj + adg

−
1

2
ln asjdffj

s2dsj − ad + fj
s2dsj + adg, sA1d
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I1 = −
1

2
S fjs− 1d

s1 + jd2 +
fjs1d

s1 − jd2D
+

1

2
S fj8s− 1d

1 + j
−

fj8s1d
1 − j

D
+

1

2
ffj

s2ds− 1dlns1 + jd + fj
s2ds1dlns1 − jdg, sA2d

I2 =
1

2FE−1

j−asjd

dj8 lnsj − j8dfj
s3dsj8d

−E
j+asjd

1

dj8 lnsj8 − jdfj
s3dsj8dG , sA3d

and fjsj8d=nsj8dfwsjd−wsj8dg. Clearly the integralI0 results
of the contribution of the ions around the ion atj. For long-
wavelength modes and away from the end-pointsj= ±1, the
interparticle spacingasjd scales as 1/N and it can be treated
as an infinitesimal quantity. Expanding Eq.(A1) in asjd and
keeping the leading order, we obtain Eq.(21). The integral
(A2) contains the contribution of the end-points of the chain.
Also, the integral(A3) is dominated by the end-points, as
can be seen by integrating repeatedly by parts, taking the
indefinite integral of lnx, and making the reasonable as-
sumption thatfsxd is an analytic function on the intervals
−1,1d.

By imposing the requirement that the density of ions and
its derivatives vanish at the end-points, whilewsjd and its
derivatives are bounded, the termDI = I1+ I2 is much smaller
thanI0. In particular, the contributions at the end-points van-
ish, whereas the contributions toI2 from the ions around the
point j are of orderasjd,1/N.

APPENDIX B: CHARACTERISTIC FUNCTION FOR THE
SHORT-WAVELENGTH SPECTRUM

In this appendix we discuss the evaluation of the charac-
teristic function for the eigenvalue problem in Eq.(29) fol-
lowing the treatment developed by Dyson[35]. The proce-
dure can be immediately generalized to the eigenvalues of
the transverse motion. Substitutingqjstd=edv eivtq̃jsvd /2p
into Eq. (29) and replacingq̃isvd with qi, we obtain

− sv2 − n2dqj = L jsqj+1 − qjd + L j−1sqj−1 − qjd. sB1d

The roots −ṽ2 of the matrixL are related to the eigenfre-
quenciesv by

v = Îṽ2 + n2.

These roots can be found by solving the second-order differ-
ential equation

q̈̄j = L jsq̄j+1 − q̄jd + L j−1sq̄j−1 − q̄jd, sB2d

whereq̄jstd=edṽ eiṽtqjsṽd /2p. Following [35], this problem
reduces to the diagonalization of an antisymmetric matrix. In
what follows we review the fundamental steps. We define the
variabless1, . . . ,sN−1, such thatṡj =ÎL jsq̄j+1− q̄jd. After sub-

stituting into Eq.(B2) and integrating, we get the first-order

differential equationq̇̄j =ÎL jsj −ÎL j−1sj−1. We introduce the
variablesu1, . . . ,u2N−1, such thatu2j−1= q̄j, u2j =sj, and the

new matrix elementsL̃ j, such thatL̃2j =L̃2j−1=L j. With
these definition, we have now a set of 2N−1 first-order dif-
ferential equations

u̇j = ÎL̃ juj+1 − ÎL̃ j−1uj−1,

which are now defined by thes2N−1d3 s2N−1d antisym-

metric matrix L̄, whose elements areL̄ j+1,j =−L̄ j ,j+1= iÎL̃ j.
The characteristic frequenciesṽ j of the chain are the square
roots of the characteristic roots of −L, of which one is 0 and
the other 2N−2 come in pairs ±ṽ j.

Using the matrixL̄, in the limit N@1 the spectrum of
characteristic frequenciesMsṽ2d, which is defined as the
proportion of roots withṽ j

2,ṽ2, and the corresponding den-
sity Dsṽ2d= udMsmd /dmum=ṽ2 can be derived from the char-
acteristic functionVsud, which is defined as[35]

Vsud = lim
N→`

1

2N − 1 o
j=1

2N−1

lns1 + uṽ j
2d, sB3d

whereu is a complex variable. The density of characteristic
frequenciesDsmd and the spectrumMsmd are found by using
the properties of the analytic continuation ofVsud,

ReF 1

ip
lim
e→0

Vs− z+ iedG =E
1/z

`

dm Dsmd = 1 −Ms1/zd,

from which Eq.(33) is obtained.

APPENDIX C: AN ANSATZ FOR THE SECULAR
EQUATION: SLOWLY VARYING ENVELOPE

In this appendix we discuss an ansatz based on the
phononic solution for a translationally invariant crystal,
where we assume that the envelope, superimposed on the
amplitude and the phase of the phononic solution, varies
slowly as a function of the position. This ansatz is supposed
to be valid for long-wavelength excitations and chains with
N@1 atoms.

The exact solution of Eqs.(6)–(8) in the limit of uniform
charge distribution with constant spacinga, Ki,j /m=k / ui
− j u3 with k=2Q2/a3, is [31]

qj , eiskja−vtd. sC1d

Here, v is the eigenfrequency,k the wave vector, and the
boundary conditions for the uniform chain are fixed so that
qN=q0, giving eikNa=1. Hence, ka=2pl /N with
l =0,1, . . . ,N−1. The dispersion relation is obtained by sub-
stituting Eq.(C1) into Eq. (6) with Ki,j /m=k / ui − j u3. If the
interaction is determined by the nearest neighbors, while the
interaction with the other ions is neglected, then the eigen-
frequencies are given by
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Îv2 − n2 = 2ÎkUsin
ka

2
U . sC2d

Note that v depends onka, which takes the values
ka=2pl /N.

We now construct from this solution an ansatz for the
inhomogeneous chain, in the limit of slowly varying spring
constantKj ,j+1 over the wavelength of the propagating per-
turbation. We assume thus the local solution

qj = Aje
iskja−vtd, sC3d

whereka is a constant; i.e., we have assumedkjxj
s0d= jka. The

nonlinear variation of the phase with the site is included in
Aj. The ansatz(C3) assumes that it is possible to write the
solution as the product of a slowly varying amplitude and
phase, represented by the factorAj, and a fast oscillating
part, which is the exponential term in Eq.(C1). The validity
of this assumption is checked later on.

By substituting Eq.(C3) into Eq. (6), keeping only the
nearest-neighbor interaction, we obtain

sv2 − n2dAj = k jsAj − Aj+1e
ikad + k j−1sAj − Aj−1e

−ikad,

sC4d

wherek j =Kj ,j+1/m. We make use of the fact thatk j varies
slowly with position, which allows us to expandAj andk j in
d j , of order unity, according to

Aj±1 < A ± dA, sC5d

k j < k + Dk + dk j/2, sC6d

k j−1 < k + Dk − dk j/2, sC7d

wheredA=s]A/] jdd j with d j = ±1. The spring constant has
been divided into three contributions:k is constant and ful-
fills Eq. (C2), Dk is also constant, anddk j =k8d j , with
k8=]k j /] j , such thatk+Dk@dk j. The chosen variation of
k j reflects the symmetry under reflection of the crystal, such
that the ion at the center is characterized by equal couplings
on both sides(which implies the conditiondk=0). The term
Dk does not depend onj , and it is the correction tok, the
spring constant fulfilling the dispersion relation for the case
of a uniform chain:Dk<k j −k. Substituting Eqs.(C5)–(C7)
into Eq. (C4) yields

4DkA sin2 ka

2
− 2ikdA sinka− 2iAdk sinka= 0,

where we have applied the dispersion relation(C2). Since
there is only one zeroth-order term inj , it is evident that
Dk=0: Thus, there is no zeroth-order correction to the spring
constantk of the uniform chain, and its value in this order is
accounted for by Eq.(C2). The first-order expansion gives

thus a differential equation(valid for sinkaÞ0)

dA

A
= −

dk

2k
, sC8d

which admits the solution

Aj = A0Îk0

k j
. sC9d

The eigenmode has then the form

qj =Îk0

k j
eikja−ivt, sC10d

and the wave vector takes the same values as for a uniform
crystal with half-periodic boundary conditions, taking into
account the symmetry under reflection,

kNa= pl , sC11d

where k=ksvd is given by Eq.(C2) and l =0,1, . . . ,N−1.
Therefore, this ansatz gives simply a variation of the ampli-
tude of the displacement of the ion as a function of the local
spring constant, but no change in the phase, which is the
same as the one of a uniform crystal. The amplitude is
smaller at the center of the chain, where the ions are closer
and the coupling constant is larger. Takingk0=L0 as given
by Eq. (42)—i.e., the maximum value of the spring constant
in the chain—and using Eq.(C2), we obtain the maximal
frequency as given in Eq.(43). A similar argument can be
developed for the transverse frequency.

Figure 7 compares the prediction of the slowly varying
ansatz with the numerical results and the Jacobi polynomials
results given by Eq.(27). Here, it is obvious that the Jacobi
polynomials provide a better approximation for the spectrum
at the lowest eigenfrequencies. The curve evaluated from Eq.
(C2) using Eqs.(C3) and (C11) lies close to the spectrum
evaluated numerically for a larger range of modes, but it
does not reproduce its asymptotic behavior forN→`.

FIG. 7. Long-wavelength part of the axial eigenmodes spectrum
for N=1000 ions. The dot-dashed line gives the spectrum evaluated
using Eqs.(C10) and(C11), the solid line the numerical results, and
the grey line the spectrum evaluated using Eq.(27).
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