

2 The presence of a high- K_m hexokinase activity in dog,
3 but not in boar, sperm4 Josep M. Fernández-Novell^a, Joan Ballester^b, Antonio Medrano^b, Pedro J. Otaegui^c,
5 Teresa Rigau^b, Joan J. Guinovart^a, Joan E. Rodríguez-Gil^{b,*}6 ^aDepartment of Biochemistry and Molecular Biology and IRBB, Barcelona Science Park, University of Barcelona, E-08028 Barcelona, Spain7 ^bUnit of Animal Reproduction, Department of Animal Medicine and Surgery, School of Veterinary Medicine, Autonomous University of Barcelona,
8 E-08193 Bellaterra, Spain9 ^cDepartment of Biochemistry and Molecular Biology, School of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra, Spain

10 Received 2 March 2004; revised 31 May 2004; accepted 8 June 2004

11 Available online

12 Edited by Judit Ovádi

13 **Abstract** The presence of a high- K_m hexokinase activity was
14 tested in both dog and boar spermatozoa. Hexokinase kinetics
15 from dog extracts showed the presence of a specific activity (dog-
16 sperm glucokinase-like protein, DSGLP), in the range of glucose
17 concentrations of 4–10 mM, whereas boar sperm did not show
18 any DSGLP activity. Furthermore, dog-sperm cells, but not
19 those of boar, showed the presence of a protein which specifically
20 reacted against a rat-liver anti-glucokinase antibody. This
21 protein also had a molecular weight equal to that observed in
22 rat-liver extracts, suggesting a close similarity between both the
23 proteins. This glucokinase-like protein was distributed in the
24 peri- and post-acrosomal zones of the head, and the midpiece and
25 principal piece of tail of dog spermatozoa. These results indicate
26 that dog spermatozoa have functional high- K_m hexokinase
27 activity, which could contribute to a very fine regulation of their
28 hexose metabolism. This strict regulation could ultimately be
29 very important in optimizing dog-sperm function along its life-
30 time.

31 © 2004 Published by Elsevier B.V. on behalf of the Federation of
32 European Biochemical Societies.

33 **Keywords:** High- K_m hexokinase; Dog-sperm;
34 Glucokinase-regulatory protein

36 **1. Introduction**

37 Carbohydrates are, probably, the most important substrates
38 for the maintenance of energy levels in mammalian sperm from
39 fresh ejaculates. Thus, sugars such as glucose, fructose and
40 mannose are utilized as energy sources by sperm cells from
41 species like bull, dog and boar [1]. However, recent findings
42 support the hypothesis that sugars can play another role, at
43 least in some mammalian species, and not only as mere energy
44 substrates. This is especially evident in dog, where the incuba-
45 tion of sperm cells from fresh ejaculates with either glucose
46 or fructose induced hexose-specific changes in functional pa-
47 rameters such as motility [2] or tyrosine phosphorylation

48 patterns [3]. These glucose- or fructose-specific effects were
49 related to specific actions on the majority of the evaluated
50 metabolic parameters, such as intracellular levels of glucose 6-
51 phosphate and glycogen or production of L-lactate and CO₂
52 [3]. Glucose and fructose also showed separate effects on
53 hexokinase activity [3], and they even induced separate effects,
54 not only on glycogen synthase activity [4], but also on the in-
55 tracellular, specific location of this enzyme in dog sperm [5].
56 All of these results indicate that dog sperm would have very
57 sophisticated mechanisms to specifically identify sugars that
58 they are consuming in order to direct them to induce the sugar-
59 linked, functional effects. These mechanisms might be related
60 to the intake of sugars, since the fructose-specific transporter,
61 GLUT5, and the more glucose-specific transporter, GLUT3,
62 are located in separate zones, not only in dog sperm [3], but
63 also in other mammalian species, such as bull, mice and human
64 [6]. However, there are probably other systems that allow
65 sperm to optimize these hexose-differentiating mechanisms, at
66 least in dog.

67 Vertebrate glucokinase (hexokinase type IV) is a member of
68 the hexokinase protein family which shows some remarkable
69 characteristics that clearly differentiate it from the other
70 mammalian hexokinases. In fact, glucokinase does not have a
71 strict specificity for substrate, since it can phosphorylate not
72 only glucose, but also fructose or mannose [7]. Nevertheless,
73 glucokinase's elevated K_m for glucose, together with its specific
74 expression in the liver and pancreas, allows it to be a sensitive
75 and efficient control step for the maintenance of mammalian
76 glucose metabolism [7]. The existence of a similar, high- K_m
77 hexokinase activity in mammalian sperm could be an efficient
78 system to control that described above, i.e., hexose-specific
79 functional changes observed, at least in dog. Taking this all
80 into consideration, the main aim of this work is to test the
81 presence of a high- K_m hexokinase activity in mammalian
82 sperm, which could act similarly to hepatic glucokinase in the
83 control of sperm's hexose metabolism. For this purpose, sperm
84 cells from dog and boar were used, since they are species which
85 show very different functional characteristics, from their motion
86 parameters (dog cells are fast and linear, whereas boar
87 cells are much slower, see [2,8]) to their life-span after ejacu-
88 lation (dog spermatozoa last about one week inside the female
89 genital tract, whereas boar cells last only about 48 h, see [9]). In
90 these cells the total hexokinase activity kinetics was deter-

* Corresponding author. Fax: +34-935812006.

E-mail address: juanenrique.rodriguez@uab.es (J.E. Rodríguez-Gil).

Abbreviations: DSGLP, dog-sperm glucokinase-like protein; PBS, phosphate-buffered saline; SDS, sodium dodecyl sulfate; TRITC, tetramethylrhodamine isothiocyanate

91 mined, and then the presence of proteins with immunological
92 properties like rat-liver glucokinase and glucokinase regula-
93 tory protein was tested, in order to find some glucokinase-like,
94 or at least some high- K_m hexokinase, activity in the cells. Our
95 results indicate that dog spermatozoa, but not those of boar,
96 showed a clear high- K_m hexokinase activity, as well as a pro-
97 tein which specifically reacts to an anti-rat-liver glucokinase
98 antibody. This high- K_m hexokinase activity could be related to
99 the dog-sperm's ability to specifically react in front of glucose
100 or fructose.

101 2. Materials and methods

103 2.1. Animals and sample collection

104 Canine semen was obtained from 11 purebred Beagle dogs ranging
105 from 2 to 7 years of age. The care of the dogs followed the guidelines
106 indicated in the Catalan Animal Welfare Law (Generalitat de Ca-
107 talunya, Spain). Semen was collected once or twice weekly by manual
108 stimulation. Only the sperm-rich fraction of the ejaculates was used.

109 Porcine semen was obtained from 10 healthy boars ranging from 2 to
110 5 years of age that belonged to a commercial herd (Servicios Genéticos
111 Porcinos, S.L.; Roda de Ter, Spain). Ejaculates were manually col-
112 lected and only the rich-sperm fractions were used.

113 2.2. Total hexokinase activity kinetics

114 The kinetics of the total hexokinase activity in dog and boar sper-
115 matozoa was determined as in [3]. For this, both boar and dog samples
116 were centrifuged at 600 \times g for 10 min and were then resuspended in 50
117 mL of a Krebs–Ringer–Henseleit solution without sugars at 15 °C
118 (KRH– medium; pH 7.4). Sperm were again centrifuged at 600 \times g for
119 10 min and sedimented cells were then resuspended in an additional 50
120 mL of the KRH– medium. The centrifugation–resuspension step was
121 repeated once more, in order to completely eliminate all substances
122 included in seminal plasma that could affect kinetic and immunological
123 properties of sperm hexokinases. The final, 50-mL-sperm suspension
124 was again centrifuged at 600 \times g for 10 min. After this, the supernatant
125 was discarded and the resultant pellets were immediately homogenized
126 by sonication in 250 μ L of an ice-cold buffer (pH 7.4) containing 500
127 mM glycylglycine, 2 M KCl, 100 mM dithiothreitol, 300 IU/mL
128 aprotinin and 100 mM phenylmethylsulfonyl fluoride (hexokinase
129 buffer). Homogenized samples were centrifuged at 10 000 \times g for 15
130 min at 4 °C and hexokinase activity was measured both in the resultant
131 supernatants and in the pellets. For this purpose, the pellets were
132 washed once in 500 μ L of hexokinase buffer and were further resus-
133 pended in 250 μ L of hexokinase buffer. Hexokinase activity was
134 measured as in [10] with the addition of increasing concentrations of
135 glucose in the reaction buffer after adaptation of the technique to a
136 Cobas Bio autoanalyzer (Roche Biomedical, Basel, Switzerland).

137 2.3. Immunological techniques

138 For this experiment, semen samples were pooled both from two
139 (boar semen) or four ejaculates (dog semen). Samples were initially
140 treated through the three times centrifugation/KRH– resuspension
141 washing step described above. After this, both dog and boar sperm
142 cells were suspended in a final 5-mL KRH– medium at 37 °C. Aliquots
143 of the suspension were placed in open vials and incubated with con-
144 tinuous shaking at 37 °C, with the addition to the medium of either
145 glucose or fructose at a final concentration of 10 mM in both cases.
146 Concentrations of sperm cells in the final suspension were of 3.5–
147 4 \times 10⁵ spermatozoa/mL in dog samples and 3–6 \times 10⁶ spermatozoa/
148 mL in those of boar. Finally, aliquots were taken at the indicated times
149 and processed for immunological detection.

150 Western blot analyses were performed in samples homogenized by
151 sonication in ice-cold 10-mM Tris–HCl buffer (pH 7.4) containing 1%
152 (w/v) sodium dodecyl sulfate (SDS) and 1 mM Na₂VO₄ (homogenization
153 buffer, proportion 1:5, v/v). The samples were briefly boiled and
154 were then centrifuged at 10 000 \times g for 14 min at 4 °C. Mammalian sperm
155 has very low amounts of cytoplasm and a very compartmentalized
156 structure [11]. These particularities led us to consider the presence of the

157 tested proteins in either the supernatant or the pellet obtained after
158 homogenization, centrifugation and the boiling of the samples, since
159 proteins could be in a free form or they could be linked to the internal
160 sperm structures. For this purpose, the obtained pellets were resus-
161 pended in 20–30 μ L of the homogenization buffer, and Western blot
162 analyses were performed in both supernatants and resuspended pellets
163 obtained in all of this process.

164 Western blot was based on SDS gel electrophoresis [12], followed by
165 transfer to nitrocellulose [13]. The transferred samples were tested with
166 the antibodies at a dilution of 1:1000 (v/v). Immunoreactive proteins
167 were tested using peroxidase-conjugated goat, anti-rabbit second anti-
168 body (dilution 1:200, v/v) and the reaction was developed with an
169 ECL-Plus detection system (Amersham, Buckinghamshire, England).

170 Immunocytochemistry was carried out with spermatozoa seeded onto
171 glass coverslips, which were washed with phosphate-buffered saline
172 (PBS; pH 7.4) and were fixed for 30 min in PBS containing 4% (w/v)
173 paraformaldehyde. The fixed samples were incubated with 1 mg/mL
174 NaBH₄ to eliminate autofluorescence, and blocked in 3% (w/v) bovine
175 serum albumin in PBS. Spermatozoa were further incubated with the
176 anti-glucokinase antibody (dilution 1:200, v/v) for 2 h at 15–17 °C, wa-
177 shed with PBS and treated with a tetramethylrhodamine isothiocyanate
178 (TRITC)-conjugated swine anti-rabbit immunoglobulin (Dako, Glost-
179 rup, Denmark). Finally, fluorescent images were obtained by a Leica
180 TCS 4D confocal scanning laser microscope (Leica Lasertechnik, Hei-
181 delberg, Germany), adapted to an inverted Leitz DMRBE microscope
182 and a 63 \times (NA 1.4 oil) Leitz Plan-Apo Lens (Leitz, Stuttgart, Germany).
183 The light source was an argon/krypton laser (75 mW).

184 2.4. Suppliers

185 Anti-rat-liver glucokinase and anti-rat-liver glucokinase regulatory
186 protein were produced and tested in the laboratory of Dr. Guinovart
187 (IRBB, Barcelona Science Park, University of Barcelona; see [14]). All
188 of the reactives used were of analytical grade.

189 3. Results

190 3.1. Kinetics of dog and boar total hexokinase activity

191 Supernatants obtained from homogenates of dog sperm
192 showed an increase in total hexokinase activity when it was
193 determined in the presence of glucose in a range from 0.05 mM
194 (1.4 \pm 0.1 IU/mg protein) to 2 mM (3.7 \pm 0.4 IU/mg protein,
195 see Fig. 1A). A further, and noticeable increase of total
196 hexokinase activity was then determined in a range of glucose
197 concentration from 4 mM (4.2 \pm 0.4 IU/mg protein) to 10 mM
198 (8.4 \pm 0.8 IU/mg protein, see Fig. 1A). No further increase in
199 total hexokinase activity was detected at glucose concentra-
200 tions above 10 mM. On the other hand, total hexokinase ac-
201 tivity from pellets obtained after homogenization of dog sperm
202 from fresh ejaculates also showed an increase in total hexo-
203 kinase activity in the glucose concentration range from 0.05
204 mM (0.60.1 IU/mg protein) to 4 mM (4.0 \pm 0.2 IU/mg pro-
205 tein). Again, a further and noticeable increase of total hexo-
206 kinase activity was observed between 4 mM glucose (4.0 \pm 0.2
207 IU/mg protein) and 10 mM glucose (6.2 \pm 0.3 IU/mg protein,
208 see Fig. 1B). These results were reflected in the Lineweaver–
209 Burke representation. Thus, as shown in Fig. 1C, hexokinase
210 kinetics of supernatants from dog-sperm extracts described a
211 biphasic diagram, with two separate lines, the first in the glu-
212 cose range from 0.05 to 6 mM, and the second in the glucose
213 range from 6 to 50 mM. A theoretical, approximate calculus of
214 the K_m of both lines resulted in values of 8.5 and 0.08 mM,
215 assuming that these values are only approximate. These results
216 were compatible with the presence of a glucokinase-like ac-
217 tivity in dog-sperm supernatants. On the other hand, the Li-
218 neweaver–Burke representation of pellets from dog-sperm
219 homogenates also showed the presence of two separate lines

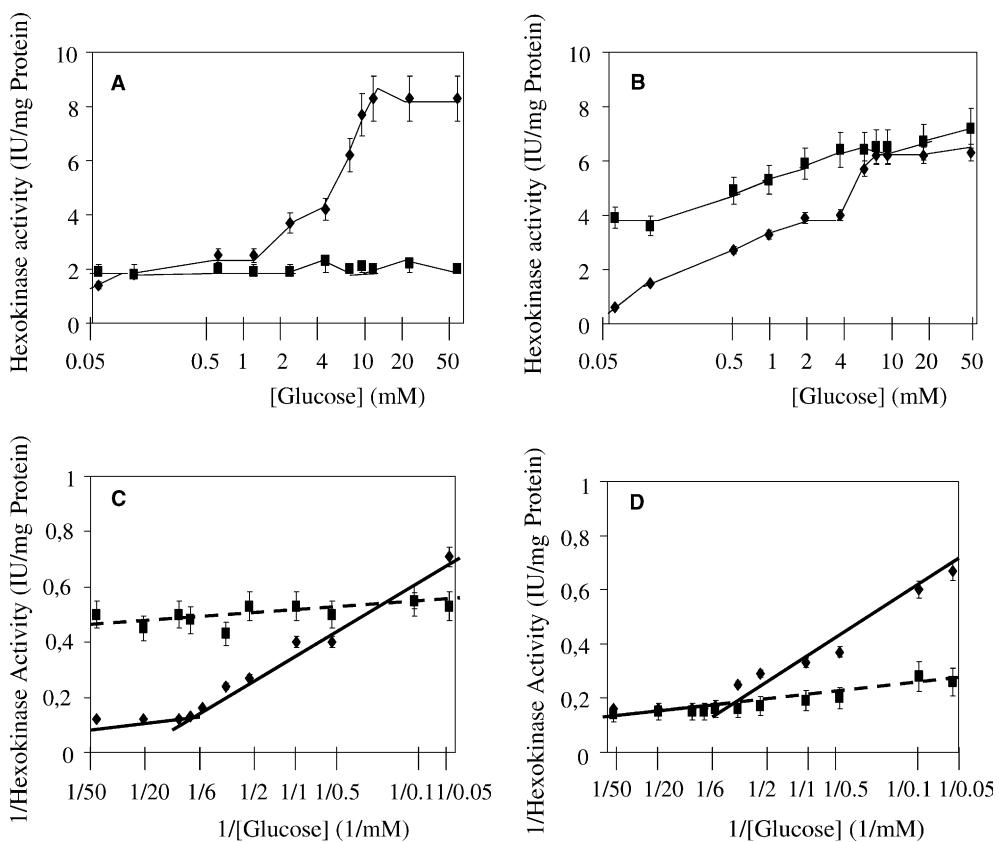


Fig. 1. Kinetics of total hexokinase activity in dog- and boar-sperm extracts. (A and B) Relationship between total hexokinase activity and glucose concentration in supernatants (A) and resuspended pellets (B) from dog (◆) and boar (■) sperm extracts. (C and D) Semi-logarithmic representation between inverse values of hexokinase-specific activity and glucose concentration in supernatants (A) and resuspended pellets (B) from dog (◆) and boar (■) sperm extracts. Lines show the apparent hexokinase activity types from dog (continuous lines) and boar samples (broken lines) revealed by this representation. Results are means \pm S.E.M. for eight separate semen samples.

220 with very different slopes, the first in the glucose range from
221 0.05 to 6 mM, and the second once again from 6 to 50 mM
222 (Fig. 1D). In this case, the approximate, theoretical values of
223 the K_m of both lines were of 6.9 and 0.09 mM.

224 Total hexokinase kinetics of boar sperm showed totally
225 different results. Thus, supernatants from homogenates of
226 these cells did not show an appreciable increase, from 0.05 mM
227 glucose (1.9 ± 0.2 IU/mg protein) to 50 mM glucose (2.0 ± 0.3
228 IU/mg protein, see Fig. 1A), thus indicating the presence of
229 only one hexokinase activity that was very sensitive to the
230 presence of glucose in the medium. Slightly different results
231 were observed in pellets from these homogenates, since in this
232 case there was a progressive increase in hexokinase activity in
233 the glucose range from 0.05 mM (3.9 ± 0.7 IU/mg protein) to
234 0.5 mM (4.9 ± 0.8 mM, see Fig. 1B), and further increases of
235 hexokinase activity were not noticeable (7.2 ± 0.7 IU/mg protein
236 in the presence of 50 mM glucose). These results were
237 reflected in the Lineweaver–Burke representation, where both
238 supernatants and pellets from boar sperm showed only one
239 line from 0.05 mM glucose to 50 mM glucose (Figs. 1C and D).
240 The calculated, approximate K_m value of this line was of 0.03
241 mM in supernatants and 0.06 mM in resuspended pellets.

242 3.2. Presence of an immunoreactive protein against 243 anti-glucokinase antibody

244 The Western blot using an anti-rat-liver glucokinase anti-
245 body revealed the presence of a protein which specifically re-

246 acted against this antibody in dog sperm (Fig. 2). This protein
247 was clear in the pellets, with a molecular weight of about 50
248 kDa (Fig. 2A). On the other hand, the Western blot from
249 supernatants showed two fainter bands of a molecular weight
250 of about 45–50 kDa (Fig. 2B). The intensity and the molecular
251 weight of these bands were not modified after incubation in the

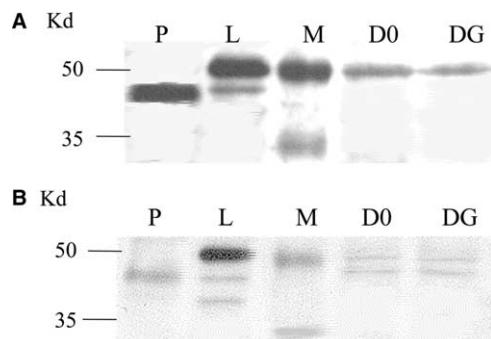


Fig. 2. Western blot against sperm glucokinase. The figure shows two representative Western blots obtained from supernatants (A) and resuspended pellets (B) from dog and boar (P) sperm homogenates. Dog sperm was analyzed from fresh ejaculates (D0) or subjected to incubation with 10 mM glucose for 10 min (DG) before being subjected to Western blot analysis. M: Molecular weight markers. L: Rat-liver extracts. The total number of independent replicates for these Western blots was 5.

252 presence of 10 mM glucose after up to 30 min (Fig. 2, and data
253 not shown). It is noteworthy that liver extracts used as positive
254 controls showed a positive band for glucokinase of about 50
255 kDa, which match to those observed in both supernatants and
256 pellets from dog-sperm homogenates (Fig. 2). Finally, boar
257 homogenates did not show any 50-kDa band which could
258 correspond to the result observed in dog extracts, although
259 they revealed a positive signal of about 45 kDa, similar to
260 another non-specific reactivity band detected in liver extracts
261 (Fig. 2).

262 Confocal images showed the presence of a specific, reactive
263 protein against the anti-rat-liver glucokinase antibody in both
264 the head and the tail of dog spermatozoa from fresh ejaculates
265 (Fig. 3). Tail marking was located at both the midpiece and the
266 main piece, whereas head location was established in both the
267 peri-acrosomal and the post-acrosomal zones. These locations
268 were not significantly modified after incubation in the presence
269 of 10 mM glucose after up to 30 min (Fig. 3C, and data not
270 shown). No positive reaction in front of the anti-rat-liver
271 glucokinase antibody was observed in boar spermatozoa (data
272 not shown).

3.3. Detection of sperm glucokinase regulatory protein

273 Western blot from dog-sperm extracts did not demonstrate
274 the presence of a specific reactivity against an anti-rat-liver
275 glucokinase regulatory protein antibody, neither in superna-
276 tants nor in resuspended pellets obtained after homogenization
277 of samples (Fig. 4, and data not shown). On the other hand,
278 supernatants, but not resuspended pellets, obtained after ho-
279 mogenization of boar spermatozoa showed a clear, specific 70-
280 kDa protein, which was equal to that obtained in rat-liver
281 extracts (Fig. 4A, and data not shown). Molecular weight and
282 density of this band in boar sperm were not modified after
283 incubation with 10 mM glucose and 10 mM fructose after up
284 to 30 min (data not shown).

4. Discussion and conclusions

286

287 Our results indicate the presence of a high- K_m hexokinase
288 activity with a similarity to glucokinase in dog sperm, but not
289 in boar cells. This can be sustained by the following facts:

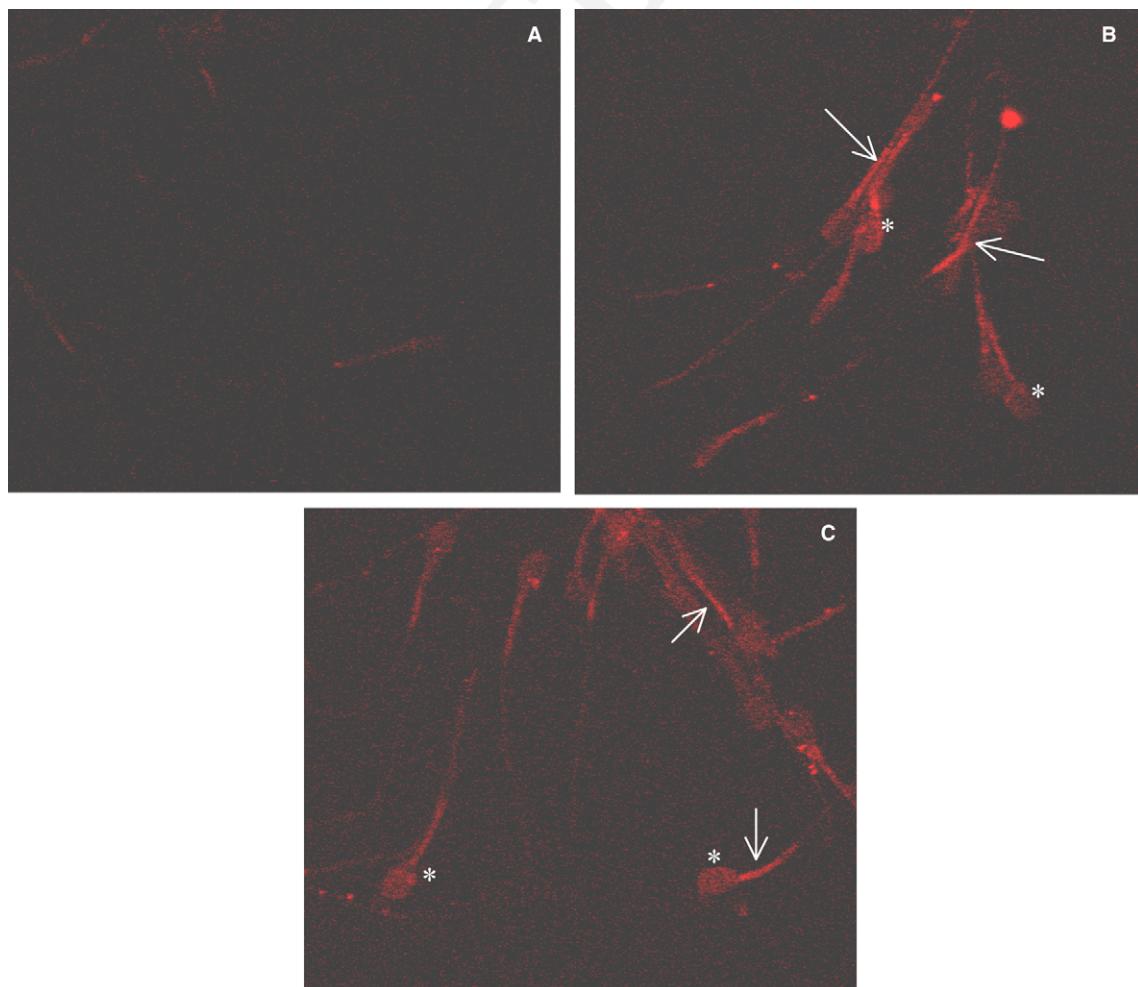


Fig. 3. Immunocytochemistry of dog-sperm glucokinase. The figure shows representative images of dog spermatozoa immunolocalized against glucokinase. A: Negative control. B: Cells from fresh, control samples. C: Cells from samples incubated with 10 mM glucose for 5 min. The total number of independent replicates for these experiments was 5. Images have a multiplication factor of 75. Arrows indicate sperm tails, whereas asterisks indicate sperm heads.

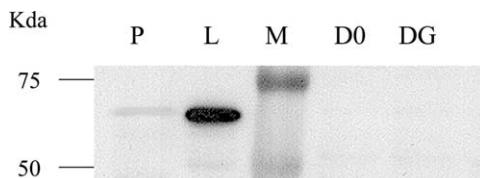


Fig. 4. Western blot against sperm glucokinase regulatory protein. The figure shows a representative Western blot obtained from supernatants obtained after homogenization of either dog or boar (P) sperm homogenates, following the technique described in Section 2. Dog sperm was from fresh ejaculates (D0) or it was subjected to incubation with 10 mM glucose for 10 min (DG) before being subjected to Western blot analysis. M: Molecular weight markers. L: Rat-liver extracts. The total number of independent replicates for these Western blots was 5.

290 (i) The presence, in dog spermatozoa, of a specific hexokinase
291 activity which shows a high K_m for glucose, which was in
292 the range described for mammalian glucokinase (5–10
293 mM, see [7,10]).
294 (ii) The presence of a dog-sperm protein which specifically re-
295 acts against an anti-rat-liver glucokinase antibody and,
296 moreover, shows a molecular weight similar to mammal-
297 lian glucokinase (about 50 kDa, see [7]).

298 Thus, immunological and kinetic data point towards this
299 interpretation. Of course, we cannot affirm that this protein is
300 truly glucokinase. Moreover, other proteins different from
301 glucokinase have been described with high- K_m characteristics,
302 such as *N*-acetylglucosamine kinase [15] or the high- K_m
303 hexokinase present in the mhAT3F hepatoma cell line
304 (mhAT3F-HK, see [16]). However, kinetic and immunological
305 characteristics indicate that the dog-sperm, high- K_m hexoki-
306 nase (DSGLP) is more similar to glucokinase than these pro-
307 teins. Thus, *N*-acetylglucosamine kinase shows a K_m for
308 glucose (370 mM, see [15]) far higher than that of DSGLP (7–9
309 mM, see Section 3). Furthermore, the comparison of the
310 structural sequences between glucokinase (reference number
311 NP-034422.2, see [17]) and *N*-acetylglucosamine kinase (ref-
312 erence number Q9QZ08, see [17]) revealed a percentage of
313 overall structural affinity of 11.6%. On the other hand, the
314 structural comparison between the epitope utilized to develop
315 the anti-glucokinase antibody [14] and the whole sequence of
316 the *N*-acetylglucosamine kinase rendered the following result:
317

Epytope of liver glucokinase:

318 414-KLHPSFKERFASVR-428

319 Sequence of *N*-acetylglucosamine kinase which rendered the
320 higher homology:

321 274-KSWELLKEGFLLLALT-288

322 As shown in this comparison, in the best case only four aminoacids, which were not linear (highlighted letters), are the same
323 in both sequences. These data seem to indicate that our antibody
324 has a low degree of affinity for *N*-acetylglucosamine kinase.
325 Furthermore, the theoretical molecular weight of *N*-acetylglu-
326 cosamine kinase, calculated from its aminoacidic composition
327 [17], is about 37–38 kDa. Our Western blot analysis did not
328 detect any band with could be included in the 35–40 kDa mo-
329 lecular-weight range. Summing up all of these data, we can
330 conclude that *N*-acetylglucosamine kinase does not seem to be
331 DSGLP. On the other hand, mhAT3F-HK also shows a K_m for
332 glucose (40 mM, see [16]) higher than DSGLP. Moreover, al-
333 though this protein recognized an anti-glucokinase antibody, its
334 molecular weight was about 30 kDa [16]. Our results did not

335 reveal the presence of any protein with this molecular weight.
336 The sum of all of these results, of course, does not preclude the
337 presence of *N*-acetylglucosamine kinase and mhAT3F-HK in
338 dog sperm. However, our results also indicate that DSGLP with
339 immunological properties similar to rat-liver glucokinase, re-
340 gardless of the existence of other high- K_m hexokinases.

341 Nevertheless, some differences between glucokinase and
342 DSGLP exist. Thus, glucokinase activity is mainly regulated in
343 two ways, first through controlling its expression [7]. However,
344 mammalian sperm does not have the ability to express its
345 DNA to synthesize proteins [11], so, in this manner, dog sperm
346 cannot control DSGLP activity through this way. The second
347 way is through changes in its spatial position inside the cell
348 [14]. This latter control is achieved through a glucose-modu-
349 lated linking between glucokinase and the glucokinase-regu-
350 latory protein, which displaces glucokinase in the hepatocyte
351 to areas with or without glucose, thus controlling its ability to
352 phosphorylate the monosaccharide [14]. On the other hand,
353 displacements of glucokinase-regulatory protein through the
354 hepatocyte to achieve its control of glucokinase activity are
355 possible due to the hepatocyte being a cell with an active and
356 more-or-less relaxed nuclear structure as well as with a great
357 amount of cytoplasm. Spermatozoa have neither requirement,
358 since their amount of cytoplasm is very scarce and their nu-
359 clear structure is condensed and very inactive, totally different
360 from that observed in hepatocytes [18]. Moreover, the presence
361 of a clear immunoreactivity of glucokinase-regulatory protein
362 in boar sperm, which did not show DSGLP activity, suggests
363 the lack of a clear regulatory role for the glucokinase-regula-
364 tory protein in dog sperm. Thus, DSGLP activity regulation
365 would have probably been achieved by other ways, like
366 phospho-dephosphorylation mechanisms that are also opera-
367 tive on glucokinase [19].

368 The functional role of DSGLP could be explained as a regu-
369 latory mechanism of dog-sperm hexose metabolism. Previous
370 reports have shown that dog-sperm cells have a very complex
371 hexose metabolism, which includes the presence of anabolic
372 paths like glycogen metabolism, and differentiated, functional
373 roles for separate hexoses [2,4,5]. The elevated K_m for glucose
374 shown by DSGLP could be an efficient system to control glu-
375 cose-specific mechanisms of regulation of dog-sperm function-
376 ality, in a similar way that glucokinase controls glucose-induced
377 changes in hepatocytes and pancreatic β -cells [7,10].

378 It is noteworthy that DSGLP is present in dog spermatozoa,
379 but not in boar cells. This would mark great differences in
380 hexose metabolism and, hence, in the energy status manage-
381 ment of both species. In fact, hexose metabolism of sper-
382 matzoa from several mammals like boar or bull are basically
383 glycolytic, with elevated L-lactate formation rates, low glucose
384 6-phosphate levels, low activity in anabolic pathways like
385 glycogen synthesis and small differences, if any, in the selective
386 utilization of hexoses such as glucose or fructose as energy
387 substrates [20,21]. In these spermatozoa, the presence of
388 DSGLP makes no sense, since they utilize different monosac-
389 charides in the same way for the same ultimate necessity, the
390 attainment of energy. Nevertheless, as commented above, en-
391 ergy management of dog spermatozoa is very different, and the
392 selective, functional utilization that these cells have of glucose
393 and fructose can easily explain the necessity of DSGLP. Thus,
394 our results indicate that there is not a single, simple mechanism
395 that explains the regulation of mammalian sperm function

396

under the energetic point of view. This has to be taken into consideration when trying to apply new strategies in the conservation of sperm, since it would vary depending on the specific metabolic and hexose-related functional profiles of each species.

402 5. Conclusions

403 The presence of DSGLP in dog spermatozoa would play an
404 important role in the control of both the energy management
405 pathways and the hexose-related functional mechanisms that
406 dog spermatozoa show from fresh ejaculates. Notwithstanding,
407 at this moment we have no real knowledge of the exact
408 physiological role and control mechanisms of DSGLP, and
409 experiments regarding substrate specificity, besides purification,
410 sequencing and cloning of DSGLP, will be needed to
411 clarify these important points.

412 *Acknowledgements:* We thank Mr. Chuck Simmons for his valuable
413 assistance in preparing the English version of the manuscript, Mrs.
414 Raquel García-Olivas (Serveis Científico-Técnicos, Barcelona Science
415 Park, University of Barcelona) for her assistance in obtaining confocal
416 images and Mr. Daniel Cifuentes (Barcelona Science Park, University
417 of Barcelona) for his kind collaboration in the comparison of protein
418 sequences. J.B. was a recipient of a fellowship from the “Generalitat de
419 Catalunya” (Spain). The manuscript has been partially financed by
420 Grant AGL2001-2568 from the “Ministerio de Ciencia y Tecnología”
421 (Spain).

422 References

423 [1] Mann, A. (1975) in: *Handbook of Physiology* (Greep, R.O. and
 424 Astwood, E.B., Eds.), pp. 321–347, American Physiology Society,
 425 Washington, DC.

426 [2] Rigau, T., Farré, M., Ballester, J., Peña, A. and Rodríguez-Gil,
 427 J.E. (2001) *Theriogenology* 56, 801–815.

428 [3] Rigau, T., Rivera, M., Palomo, M.J., Mogas, T., Ballester, J.,
 429 Peña, A., Otaegui, P.J., Guinovart, J.J. and Rodríguez-Gil, J.E.R.
 430 (2002) *Reproduction* 123, 579–591.

[4] Ballester, J., Fernández-Novell, J.M., Rutllant, J., García-Rocha, M., Palomo, M.J., Mogas, T., Peña, A., Rigau, T., Guinovart, J.J. and Rodríguez-Gil, J.E. (2000) Mol. Reprod. Dev. 56, 207–219.

[5] Palomo, M.J., Fernández-Novell, J.M., Peña, A., Guinovart, J.J., Rigau, T. and Rodríguez-Gil, J.E. (2003) Mol. Reprod. Dev. 64, 349–359.

[6] Angulo, C., Rauch, M.C., Doppelmann, A., Reyes, A.M., Slebe, J.C., Delgado-López, F., Guaiquil, V.H., Vera, J.C. and Concha, I.L. (1998) J. Cell. Biochem. 71, 189–203.

[7] Cárdenas, M.L., Cornish-Bowden, A. and Ureta, T. (1998) Biochim. Biophys. Acta.

[8] Quintero-Moreno, A., Rigau, T. and Rodríguez-Gil, J.E. (2003) Theriogenology, in press.

[9] Feldman, E.C. and Nelson, R.W. (1987) in: Canine and Feline Endocrinology and Reproduction (Pedersen, E., Ed.), pp. 420–421, WB Saunders, Philadelphia.

[10] Otaegui, P.J., Ferré, T., Pujol, A., Riu, E., Jiménez, R. and Bosch, F. (2000) Hum. Gene Therapy 11, 15443–15552.

[11] Bedford, J.M. and Hoskins, D.D. (1990) in: Marshall's Physiology of Reproduction (Lamming, G.E., Ed.), pp. 379–568, Churchill Livingstone, Edinburgh.

[12] Laemmli, U.K. (1970) Nature 227, 680–685.

[13] Burnet, W.N. (1981) J. Anal. Biochem. 112, 195–203.

[14] De la Iglesia, N., Veiga-da-Cunha, M., Van Schaftingen, E., Guinovart, J.J. and Ferrer, J.C. (1999) FEBS Lett. 456, 332–338.

[15] Davagnino, J. and Ureta, T. (1980) J. Biol. Chem. 255, 2633–2636.

[16] Rencurel, F., Muñoz-Alonso, M.J., Girard, J. and Leturque, A. (1998) J. Biol. Chem. 273, 26187–26193.

[17] National Center for Biotechnology Information Database. Bethesda, MD, 2004.

[18] Eddy, E.M. (1988) in: The Physiology of Reproduction (Knobil, E. and Neil, J.D., Eds.), pp. 27–68, Raven Press, New York.

[19] Grimsby, J., Sarabu, R., Corbett, W.L., Haynes, N.-E., Bizarro, F.T., Coffer, J.W., Guertin, K.R., Hiliard, D.W., Kester, R.F., Mahaney, P.E., Marcus, L., Qi, L., Spence, C.L., Tnagi, J., Magnuson, M.A., Chu, C.A., Dvorozniak, M.T., Natschinsky, F.M. and Grippo, J.F. (2003) Science 301, 370–373.

[20] Hammersted, R.H. and Lardy, H.A. (1983) J. Biol. Chem. 258, 8759–8768.

[21] Marín, S., Chiang, K., Bassilian, S., Lee, W.N.P., Boros, L.G., Fernández-Novell, J.M., Centelles, J.J., Medrano, A., Rodríguez-Gil, J.E. and Cascante, M. (2003) FEBS Lett. 554, 342–346.