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Abstract The presence of a high-K,, hexokinase activity was
tested in both dog and boar spermatozoa. Hexokinase kinetics
from dog extracts showed the presence of a specific activity (dog-
sperm glucokinase-like protein, DSGLP), in the range of glucose
concentrations of 4-10 mM, whereas boar sperm did not show
any DSGLP activity. Furthermore, dog-sperm cells, but not
those of boar, showed the presence of a protein which specifically
reacted against a rat-liver anti-glucokinase antibody. This
protein also had a molecular weight equal to that observed in
rat-liver extracts, suggesting a close similarity between both the
proteins. This glucokinase-like protein was distributed in the
peri- and post-acrosomal zones of the head, and the midpiece and
principal piece of tail of dog spermatozoa. These results indicate
that dog spermatozoa have functional high-K, hexokinase
activity, which could contribute to a very fine regulation of their
hexose metabolism. This strict regulation could ultimately be
very important in optimizing dog-sperm function along its life-
time.

© 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.

Keywords: High-K;, hexokinase; Dog-sperm;
Glucokinase-regulatory protein

1. Introduction

Carbohydrates are, probably, the most important substrates
for the maintenance of energy levels in mammalian sperm from
fresh ejaculates. Thus, sugars such as glucose, fructose and
mannose are utilized as energy sources by sperm cells from
species like bull, dog and boar [1]. However, recent findings
support the hypothesis that sugars can play another role, at
least in some mammalian species, and not only as mere energy
substrates. This is especially evident in dog, where the incu-
bation of sperm cells from fresh ejaculates with either glucose
or fructose induced hexose-specific changes in functional pa-
rameters such as motility [2] or tyrosine phosphorylation

* Corresponding author. Fax: +34-935812006.
E-mail address: juanenrique.rodriguez@uab.es (J.E. Rodriguez-Gil).

Abbreviations: DSGLP, dog-sperm glucokinase-like protein; PBS,
phosphate-buffered saline; SDS, sodium dodecyl sulfate; TRITC,
tetramethylrhodamine isothiocyanate

patterns [3]. These glucose- or fructose-specific effects were
related to specific actions on the majority of the evaluated
metabolic parameters, such as intracellular levels of glucose 6-
phosphate and glycogen or production of L-lactate and CO,
[3]. Glucose and fructose also showed separate effects on
hexokinase activity [3], and they even induced separate effects,
not only on glycogen synthase activity [4], but also on the in-
tracellular, specific location of this enzyme in dog sperm [5].
All of these results indicate that dog sperm would have very
sophisticated mechanisms to specifically identify sugars that
they are consuming in order to direct them to induce the sugar-
linked, functional effects. These mechanisms might be related
to the intake of sugars, since the fructose-specific transporter,
GLUTS, and the more glucose-specific transporter, GLUT3,
are located in separate zones, not only in dog sperm [3], but
also in other mammalian species, such as bull, mice and human
[6]. However, there are probably other systems that allow
sperm to optimize these hexose-differentiating mechanisms, at
least in dog.

Vertebrate glucokinase (hexokinase type IV) is a member of
the hexokinase protein family which shows some remarkable
characteristics that clearly differentiate it from the other
mammalian hexokinases. In fact, glucokinase does not have a
strict specificity for substrate, since it can phosphorylate not
only glucose, but also fructose or mannose [7]. Nevertheless,
glucokinase’s elevated Ky, for glucose, together with its specific
expression in the liver and pancreas, allows it to be a sensitive
and efficient control step for the maintenance of mammalian
glucose metabolism [7]. The existence of a similar, high-K,
hexokinase activity in mammalian sperm could be an efficient
system to control that described above, i.e., hexose-specific
functional changes observed, at least in dog. Taking this all
into consideration, the main aim of this work is to test the
presence of a high-K,, hexokinase activity in mammalian
sperm, which could act similarly to hepatic glucokinase in the
control of sperm’s hexose metabolism. For this purpose, sperm
cells from dog and boar were used, since they are species which
show very different functional characteristics, from their mo-
tion parameters (dog cells are fast and linear, whereas boar
cells are much slower, see [2,8]) to their life-span after ejacu-
lation (dog spermatozoa last about one week inside the female
genital tract, whereas boar cells last only about 48 h, see [9]). In
these cells the total hexokinase activity kinetics was deter-
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mined, and then the presence of proteins with immunological
properties like rat-liver glucokinase and glucokinase regula-
tory protein was tested, in order to find some glucokinase-like,
or at least some high-K;, hexokinase, activity in the cells. Our
results indicate that dog spermatozoa, but not those of boar,
showed a clear high-K;,, hexokinase activity, as well as a pro-
tein which specifically reacts to an anti-rat-liver glucokinase
antibody. This high-K;,, hexokinase activity could be related to
the dog-sperm’s ability to specificially react in front of glucose
or fructose.

2. Materials and methods

2.1. Animals and sample collection

Canine semen was obtained from 11 purebred Beagle dogs ranging
from 2 to 7 years of age. The care of the dogs followed the guidelines
indicated in the Catalan Animal Welfare Law (Generalitat de Ca-
talunya, Spain). Semen was collected once or twice weekly by manual
stimulation. Only the sperm-rich fraction of the ejaculates was used.

Porcine semen was obtained from 10 healthy boars ranging from 2 to
5 years of age that belonged to a commercial herd (Servicios Genéticos
Porcinos, S.L.; Roda de Ter, Spain). Ejaculates were manually col-
lected and only the rich-sperm fractions were used.

2.2. Total hexokinase activity kinetics

The kinetics of the total hexokinase activity in dog and boar sper-
matozoa was determined as in [3]. For this, both boar and dog samples
were centrifuged at 600 x g for 10 min and were then resuspended in 50
mL of a Krebs—Ringer—Henseleit solution without sugars at 15 °C
(KRH- medium; pH 7.4). Sperm were again centrifuged at 600 x g for
10 min and sedimented cells were then resuspended in an additional 50
mL of the KRH- medium. The centrifugation—resuspension step was
repeated once more, in order to completely eliminate all substances
included in seminal plasma that could affect kinetic and immunological
properties of sperm hexokinases. The final, 50-mL-sperm suspension
was again centrifuged at 600 x g for 10 min. After this, the supernatant
was discarded and the resultant pellets were immediately homogenized
by sonication in 250 pL of an ice-cold buffer (pH 7.4) containing 500
mM glycilglycine, 2 M KCl, 100 mM dithiothreitol, 300 IU/mL
aprotinin and 100 mM phenylmethylsulfonyl fluoride (hexokinase
buffer). Homogenized samples were centrifuged at 10000 x g for 15
min at 4 °C and hexokinase activity was measured both in the resultant
supernatants and in the pellets. For this purpose, the pellets were
washed once in 500 pL of hexokinase buffer and were further resus-
pended in 250 pL of hexokinase buffer. Hexokinase activity was
measured as in [10] with the addition of increasing concentrations of
glucose in the reaction buffer after adaptation of the technique to a
Cobas Bio autoanalyzer (Roche Biomedical, Basel, Switzerland).

2.3. Immunological techniques

For this experiment, semen samples were pooled both from two
(boar semen) or four ejaculates (dog semen). Samples were initially
treated through the three times centrifugation/KRH- resuspension
washing step described above. After this, both dog and boar sperm
cells were suspended in a final 5-mL KRH— medium at 37 °C. Aliquots
of the suspension were placed in open vials and incubated with con-
tinuous shaking at 37 °C, with the addition to the medium of either
glucose or fructose at a final concentration of 10 mM in both cases.
Concentrations of sperm cells in the final suspension were of 3.5-
4 x 10° spermatozoa/mL in dog samples and 3-6 x 10° spermatozoa/
mL in those of boar. Finally, aliquots were taken at the indicated times
and processed for immunological detection.

Western blot analyses were performed in samples homogenized by
sonication in ice-cold 10-mM Tris—HCI buffer (pH 7.4) containing 1%
(w/v) sodium dodecyl sulfate (SDS) and 1 mM Na, VO, (homogeniza-
tion buffer, proportion 1:5, v/v). The samples were briefly boiled and
were then centrifuged at 10 000 x g for 14 min at4 °C. Mammalian sperm
has very low amounts of cytoplasm and a very compartmentalized
structure [11]. These particularities led us to consider the presence of the
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tested proteins in either the supernatant or the pellet obtained after
homogenization, centrifugation and the boiling of the samples, since
proteins could be in a free form or they could be linked to the internal
sperm structures. For this purpose, the obtained pellets were resus-
pended in 20-30 pL of the homogenization buffer, and Western blot
analyses were performed in both supernatants and resuspended pellets
obtained in all of this process.

Western blot was based on SDS gel electrophoresis [12], followed by
transfer to nitrocellulose [13]. The transferred samples were tested with
the antibodies at a dilution of 1:1000 (v/v). Immunoreactive proteins
were tested using peroxidase-conjugated goat, anti-rabbit second an-
tibody (dilution 1:200, v/v) and the reaction was developed with an
ECL-Plus detection system (Amersham, Buckinghamshire, England).

Immunocytochemistry was carried out with spermatozoa seeded onto
glass coverslips, which were washed with phosphate-buffered saline
(PBS; pH 7.4) and were fixed for 30 min in PBS containing 4% (w/v)
paraformaldehyde. The fixed samples were incubated with 1 mg/mL
NaBHy to eliminate autofluorescence, and blocked in 3% (w/v) bovine
serum albumin in PBS. Spermatozoa were further incubated with the
anti-glucokinase antibody (dilution 1:200, v/v) for 2 h at 15-17 °C, wa-
shed with PBS and treated with a tetramethylrhodamine isothiocyanate
(TRITC)-conjugated swine anti-rabbit immunoglobulin (Dako, Glost-
rup, Denmark). Finally, fluorescent images were obtained by a Leica
TCS 4D confocal scanning laser microscope (Leica Lasertechnik, Hei-
delberg, Germany), adapted to an inverted Leitz DMIRBE microscope
and a 63x (NA 1.4 oil) Leitz Plan-Apo Lens (Leitz, Stuttgart, Germany).
The light source was an argon/krypton laser (75 mW).

2.4. Suppliers

Anti-rat-liver glucokinase and anti-rat-liver glucokinase regulatory
protein were produced and tested in the laboratory of Dr. Guinovart
(IRBB, Barcelona Science Park, University of Barcelona; see [14]). All
of the reactives used were of analytical grade.

3. Results

3.1. Kinetics of dog and boar total hexokinase activity
Supernatants obtained from homogenates of dog sperm
showed an increase in total hexokinase activity when it was
determined in the presence of glucose in a range from 0.05 mM
(1.4+£0.1 TU/mg protein) to 2 mM (3.7 £ 0.4 IU/mg protein,
see Fig. 1A). A further, and noticeable increase of total
hexokinase activity was then determined in a range of glucose
concentration from 4 mM (4.2 + 0.4 TU/mg protein) to 10 mM
(8.4 £0.8 IU/mg protein, see Fig. 1A). No further increase in
total hexokinase activity was detected at glucose concentra-
tions above 10 mM. On the other hand, total hexokinase ac-
tivity from pellets obtained after homogenization of dog sperm
from fresh ejaculates also showed an increase in total hexo-
kinase activity in the glucose concentration range from 0.05
mM (0.60.1 TU/mg protein) to 4 mM (4.0 £0.2 TU/mg pro-
tein). Again, a further and noticeable increase of total hexo-
kinase activity was observed between 4 mM glucose (4.0 +0.2
IU/mg protein) and 10 mM glucose (6.2 + 0.3 IU/mg protein,
see Fig. 1B). These results were reflected in the Lineweaver—
Burke representation. Thus, as shown in Fig. 1C, hexokinase
kinetics of supernatants from dog-sperm extracts described a
biphasic diagram, with two separate lines, the first in the glu-
cose range from 0.05 to 6 mM, and the second in the glucose
range from 6 to 50 mM. A theoretical, approximate calculus of
the K, of both lines resulted in values of 8.5 and 0.08 mM,
assuming that these values are only approximate. These results
were compatible with the presence of a glucokinase-like ac-
tivity in dog-sperm supernatants. On the other hand, the Li-
neweaver—Burke representation of pellets from dog-sperm
homogenates also showed the presence of two separate lines
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Fig. 1. Kinetics of total hexokinase activity in dog- and boar-sperm extracts. (A and B) Relationship between total hexokinase activity and glucose
concentration in supernatants (A) and resuspended pellets (B) from dog (®) and boar () sperm extracts. (C and D) Semi-logarithmic representation
between inverse values of hexokinase-specific activity and glucose concentration in supernatants (A) and resuspended pellets (B) from dog (¢) and
boar (M) sperm extracts. Lines show the apparent hexokinase activity types from dog (continuous lines) and boar samples (broken lines) revealed by
this representation. Results are means + S.E.M. for eight separate semen samples.

with very different slopes, the first in the glucose range from
0.05 to 6 mM, and the second once again from 6 to 50 mM
(Fig. 1D). In this case, the approximate, theoretical values of
the K, of both lines were of 6.9 and 0.09 mM.

Total hexokinase kinetics of boar sperm showed totally
different results. Thus, supernatants from homogenates of
these cells did not show an appreciable increase, from 0.05 mM
glucose (1.9 +£0.2 IU/mg protein) to 50 mM glucose (2.0 +0.3
IU/mg protein, see Fig. 1A), thus indicating the presence of
only one hexokinase activity that was very sensitive to the
presence of glucose in the medium. Slightly different results
were observed in pellets from these homogenates, since in this
case there was a progressive increase in hexokinase activity in
the glucose range from 0.05 mM (3.9 £ 0.7 IU/mg protein) to
0.5 mM (4.94+0.8 mM, see Fig. 1B), and further increases of
hexokinase activity were not noticeable (7.2 + 0.7 IU/mg pro-
tein in the presence of 50 mM glucose). These results were
reflected in the Lineweaver—Burke representation, where both
supernatants and pellets from boar sperm showed only one
line from 0.05 mM glucose to 50 mM glucose (Figs. 1C and D).
The calculated, approximate Ky, value of this line was of 0.03
mM in supernatants and 0.06 mM in resuspended pellets.

3.2. Presence of an immunoreactive protein against

243 anti-glucokinase antibody

The Western blot using an anti-rat-liver glucokinase anti-
body revealed the presence of a protein which specifically re-

acted against this antibody in dog sperm (Fig. 2). This protein
was clear in the pellets, with a molecular weight of about 50
kDa (Fig. 2A). On the other hand, the Western blot from
supernatants showed two fainter bands of a molecular weight
of about 45-50 kDa (Fig. 2B) The intensity and the molecular
weight of these bands were not modified after incubation in the

A K P L M DO DG
50 — - ee
-_
35—
B Kd
P L M DO DG
50 — -
35—

Fig. 2. Western blot against sperm glucokinase. The figure shows two
representative Western blots obtained from supernatants (A) and re-
suspended pellets (B) from dog and boar (P) sperm homogenates. Dog
sperm was analyzed from fresh ejaculates (D0) or subjected to incu-
bation with 10 mM glucose for 10 min (DG) before being subjected to
Western blot analysis. M: Molecular weight markers. L: Rat-liver
extracts. The total number of independent replicates for these Western
blots was 5.
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presence of 10 mM glucose after up to 30 min (Fig. 2, and data
not shown). It is noteworthy that liver extracts used as positive
controls showed a positive band for glucokinase of about 50
kDa, which match to those observed in both supernatants and
pellets from dog-sperm homogenates (Fig. 2). Finally, boar
homogenates did not show any 50-kDa band which could
correspond to the result observed in dog extracts, although
they revealed a positive signal of about 45 kDa, similar to
another non-specific reactivity band detected in liver extracts
(Fig. 2).

Confocal images showed the presence of a specific, reactive
protein against the anti-rat-liver glucokinase antibody in both
the head and the tail of dog spermatozoa from fresh ejaculates
(Fig. 3). Tail marking was located at both the midpiece and the
main piece, whereas head location was established in both the
peri-acrosomal and the post-acrosomal zones. These locations
were not significantly modified after incubation in the presence
of 10 mM glucose after up to 30 min (Fig. 3C, and data not
shown). No positive reaction in front of the anti-rat-liver
glucokinase antibody was observed in boar spermatozoa (data
not shown).
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3.3. Detection of sperm glucokinase regulatory protein

Western blot from dog-sperm extracts did not demonstrate
the presence of a specific reactivity against an anti-rat-liver
glucokinase regulatory protein antibody, neither in superna-
tants nor in resuspended pellets obtained after homogenization
of samples (Fig. 4, and data not shown). On the other hand,
supernatants, but not resuspended pellets, obtained after ho-
mogenization of boar spermatozoa showed a clear, specific 70-
kDa protein, which was equal to that obtained in rat-liver
extracts (Fig. 4A, and data not shown). Molecular weight and
density of this band in boar sperm were not modified after
incubation with 10 mM glucose and 10 mM fructose after up
to 30 min (data not shown).

4. Discussion and conclusions
Our results indicate the presence of a high-K,, hexokinase

activity with a similarity to glucokinase in dog sperm, but not
in boar cells. This can be sustained by the following facts:

Fig. 3. Immunocytochemistry of dog-sperm glucokinase. The figure shows representative images of dog spermatozoa immunolocalized against
glucokinase. A: Negative control. B: Cells from fresh, control samples. C: Cells from samples incubated with 10 mM glucose for 5 min. The total
number of independent replicates for these experiments was 5. Images have a multiplication factor of 75. Arrows indicate sperm tails, whereas

asterisks indicate sperm heads.
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Fig. 4. Western blot against sperm glucokinase regulatory protein. The
figure shows a representative Western blot obtained from supernatants
obtained after homogenization of either dog or boar (P) sperm ho-
mogenates, following the technique described in Section 2. Dog sperm
was from fresh ejaculates (DO0) or it was subjected to incubation with
10 mM glucose for 10 min (DG) before being subjected to Western blot
analysis. M: Molecular weight markers. L: Rat-liver extracts. The total
number of independent replicates for these Western blots was 5.

(i) The presence, in dog spermatozoa, of a specific hexokinase
activity which shows a high K, for glucose, which was in
the range described for mammalian glucokinase (5-10
mM, see [7,10]).

(i1) The presence of a dog-sperm protein which specifically re-
acts against an anti-rat-liver glucokinase antibody and,
moreover, shows a molecular weight similar to mamma-
lian glucokinase (about 50 kDa, see [7]).

Thus, immunological and kinetic data point towards this
interpretation. Of course, we cannot affirm that this protein is
truly glucokinase. Moreover, other proteins different from
glucokinase have been described with high-K;, characteristics,
such as N-acetylglucosamine kinase [15] or the high-Ky,
hexokinase present in the mhAT3F hepatoma cell line
(mhAT3F-HK, see [16]). However, kinetic and immunological
characteristics indicate that the dog-sperm, high-K;,, hexoki-
nase (DSGLP) is more similar to glucokinase than these pro-
teins. Thus, N-acetylglucosamine kinase shows a Kj, for
glucose (370 mM, see [15]) far higher than that of DSGLP (7-9
mM, see Section 3). Furthermore, the comparison of the
structural sequences between glucokinase (reference number
NP-034422.2, see [17]) and N-acetylglucosamine kinase (ref-
erence number Q9QZ08, see [17]) revealed a percentage of
overall structural affinity of 11.6%. On the other hand, the
structural comparison between the epitope utilized to develop
the anti-glucokinase antibody [14] and the whole sequence of
the N-acetylglucosamine kinase rendered the following result:

Epytope of liver glucokinase:

414-KLHPSFKERFASVR-428

Sequence of N-acetylglucosamine kinase which rendered the
higher homology:

274-KSWELLKEGFLLALT-288

As shown in this comparison, in the best case only four am-
inoacids, which were not linear (highlighted letters), are the same
in both sequences. These data seem to indicate that our antibody
has a low degree of affinity for N-acetylglucosamine kinase.
Furthermore, the theoretical molecular weight of N-acetylglu-
cosamine kinase, calculated from its aminoacidic composition
[17], is about 37-38 kDa. Our Western blot analysis did not
detect any band with could be included in the 35-40 kDa mo-
lecular-weight range. Summing up all of these data, we can
conclude that N-acetylglucosamine kinase does not seem to be
DSGLP. On the other hand, mhAT3F-HK also shows a K, for
glucose (40 mM, see [16]) higher than DSGLP. Moreover, al-
though this protein recognized an anti-glucokinase antibody, its
molecular weight was about 30 kDa [16]. Our results did not

reveal the presence of any protein with this molecular weight.
The sum of all of these results, of course, does not preclude the
presence of N-acetylglucosamine kinase and mhAT3F-HK in
dog sperm. However, our results also indicate that DSGLP with
immunological properties similar to rat-liver glucokinase, re-
gardless of the existence of other high-K;,, hexokinases.

Nevertheless, some differences between glucokinase and
DSGLP exist. Thus, glucokinase activity is mainly regulated in
two ways, first through controlling its expression [7]. However,
mammalian sperm does not have the ability to express its
DNA to synthesize proteins [11], so, in this manner, dog sperm
cannot control DSGLP activity through this way. The second
way is through changes in its spatial position inside the cell
[14]. This latter control is achieved through a glucose-modu-
lated linking between glucokinase and the glucokinase-regu-
latory protein, which displaces glucokinase in the hepatocyte
to areas with or without glucose, thus controlling its ability to
phosphorylate the monosaccharide [14]. On the other hand,
displacements of glucokinase-regulatory protein through the
hepatocyte to achieve its control of glucokinase activity are
possible due to the hepatocyte being a cell with an active and
more-or-less relaxed nuclear structure as well as with a great
amount of cytoplasm. Spermatozoa have neither requirement,
since their amount of cytoplasm is very scarce and their nu-
clear structure is condensed and very inactive, totally different
from that observed in hepatocytes [18]. Moreover, the presence
of a clear immunoreactivity of glucokinase-regulatory protein
in boar sperm, which did not show DSGLP activity, suggests
the lack of a clear regulatory role for the glucokinase-regula-
tory protein in dog sperm. Thus, DSGLP activity regulation
would have probably been achieved by other ways, like
phospho-dephosphorylation mechanisms that are also opera-
tive on glucokinase [19].

The functional role of DSGLP could be explained as a regu-
latory mechanism of dog-sperm hexose metabolism. Previous
reports have shown that dog-sperm cells have a very complex
hexose metabolism, which includes the presence of anabolic
paths like glycogen metabolism, and differentiated, functional
roles for separate hexoses [2,4,5]. The elevated Ky, for glucose
shown by DSGLP could be an efficient system to control glu-
cose-specific mechanisms of regulation of dog-sperm function-
ality, in a similar way that glucokinase controls glucose-induced
changes in hepatocytes and pancreatic B-cells [7,10].

It is noteworthy that DSGLP is present in dog spermatozoa,
but not in boar cells. This would mark great differences in
hexose metabolism and, hence, in the energy status manage-
ment of both species. In fact, hexose metabolism of sperma-
tozoa from several mammals like boar or bull are basically
glycolytic, with elevated L-lactate formation rates, low glucose
6-phosphate levels, low activity in anabolic pathways like
glycogen synthesis and small differences, if any, in the selective
utilization of hexoses such as glucose or fructose as energy
substrates [20,21]. In these spermatozoa, the presence of
DSGLP makes no sense, since they utilize different monosac-
charides in the same way for the same ultimate necessity, the
attainment of energy. Nevertheless, as commented above, en-
ergy management of dog spermatozoa is very different, and the
selective, functional utilization that these cells have of glucose
and fructose can easily explain the necessity of DSGLP. Thus,
our results indicate that there is not a single, simple mechanism
that explains the regulation of mammalian sperm function
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under the energetic point of view. This has to be taken into
consideration when trying to apply new strategies in the con-
servation of sperm, since it would vary depending on the
specific metabolic and hexose-related functional profiles of
each species.

5. Conclusions

The presence of DSGLP in dog spermatozoa would play an
important role in the control of both the energy management
pathways and the hexose-related functional mechanisms that
dog spermatozoa show from fresh ejaculates. Notwithstand-
ing, at this moment we have no real knowledge of the exact
physiological role and control mechanisms of DSGLP, and
experiments regarding substrate specificity, besides purifica-
tion, sequencing and cloning of DSGLP, will be needed to
clarify these important points.
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