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Abstract: The paper proposes an algorithm to compute the full set of

many-to-many stable matchings when agents have substitutable prefer-

ences. The algorithm starts by calculating the two optimal stable match-

ings using the deferred-acceptance algorithm. Then, it computes each re-

maining stable matching as the firm-optimal stable matching correspond-

ing to a new preference profile which is obtained after modifying the pref-

erences of a previously identified sequence of firms.
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1 Introduction

The paper proposes an algorithm to compute the full set of many-to-many stable

matchings when agents have substitutable preferences.

Many-to-many matching models have been useful for studying assignment

problems with the distinctive feature that agents can be divided from the very

beginning into two disjoint subsets: the set of firms and the set of workers.1 The

nature of the assignment problem consists of matching each agent (firms and

workers) with a subset of agents from the other side of the market. Thus, each

firm will hire a subset of workers while each worker may work for a number of

different firms.

Agents have preferences on the subsets of potential partners. Stability has

been considered the main property to be satisfied by any sensible matching. A

matching is called stable if all agents are matched to an acceptable subset of

partners and there is no unmatched worker-firm pair who both would prefer to

add the other to their current subset of partners. To give blocking power to only

individual agents and worker-firm pairs seems a very weak requirement in terms

of the durability of the matching.2

Unfortunately the set of stable matchings may be empty. Substitutability is

1We will be using as a reference (and as a source of terminology) labor markets with part-
time jobs and we will generically refer to these two sets as the two sides of the market.

2Sotomayor (1999a) uses the name of pairwise stability to refer to this notion of stability. In
her paper, she proposes the stronger concept of setwise stability and shows that in the many-
to-many model the set of pairwise stable matchings, the core, and the set of setwise stable
matchings do not coincide. As far as we know, the construction of algorithms using these last
two group stability concepts are still open problems.
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the weakest condition that has so far been imposed on agents’ preferences under

which the existence of stable matchings is guaranteed. An agent has substitutable

preferences if he continues to want to be partners with an agent from the other

side of the market even if other agents become unavailable.3

Surprisingly, the set of stable matchings under substitutable preferences is

very-well structured. It contains two distinctive matchings: the firm-optimal sta-

ble matching (denoted by µF ) and the worker-optimal stable matching (denoted

by µW ). The matching µF is unanimously considered by all firms to be the best

among all stable matchings and by all workers to be the worst among all sta-

ble matchings. Symmetrically, the matching µW is unanimously considered by

all workers to be the best among all stable matchings and by all firms to be

the worst among all stable matchings. They can be obtained by the so-called

deferred-acceptance algorithm (originally defined by Gale and Shapley (1962)

for the one-to-one case and later adapted by Roth (1984) to the many-to-many

case). Additionally, Blair (1988) shows that the set of stable matchings has a

lattice structure.4 In particular, Roth (1984) and Blair (1988) show that this

unanimity and opposition of interests of the two sides of the market is even

stronger in the sense that all firms, if they had to choose the best subset from the

3See Definition 3 for a formal statement of this property. Kelso and Crawford (1982) were
the first to use it to show the existence of stable matchings in a many-to-one model with money.
Roth (1984) shows that if all agents have substitutable preferences the set of many-to-many
stable matchings is non-empty.

4Roth (1985), Gusfield and Irving (1989), Sotomayor (1999b), Alkan (2001), Baïou and
Balinski (2000), and Martínez, Massó, Neme, and Oviedo (2001) also study the lattice structure
of the set of stable matchings in different models.
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set of workers made up of the union of the firm-optimal stable matching and any

other stable matching, would choose the firm-optimal stable matching. Also, all

firms, if they had to choose the best subset from the set of workers made up of

the union of the worker-optimal stable matching and any other stable matching,

would choose the other stable matching. And symmetrically, the two properties

also hold interchanging the roles of firms and workers.5

Algorithms have played a central role in the matching literature.6 While there

are algorithms designed to compute the full set of one-to-one stable matchings as

well as the two optimal stable matchings (for the many-to-many model) we are not

aware of any algorithm which can compute the full set of matchings for this more

general many-to-many case. Our paper contributes to this literature by proposing

for the first time an algorithm that computes the full set of stable matchings in

a general model with ordinal preferences. In contrast with the marriage model,

the structure of this set is not yet fully understood (Alkan (2001), Blair (1988),

Martínez, Massó, Neme, and Oviedo (2001), Roth (1985), Sotomayor (1999a),

and Sotomayor (1999b) are, among others, examples of papers contributing to

this understanding). One of the potential uses of our algorithm is to generate

conjectures, counterexamples, and intuitions to make progress in the study of

this more general matching model.

McVitie and Wilson (1971) were the first to obtain an algorithm to compute

5See Remark 1 in Section 2 for a formal statement of these four properties.
6See Gusfield and Irving (1989) for an algorithmic approach to the one-to-one and roommate

models.
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the full set of stable matchings for the one-to-one matching model. Our algorithm

extends theirs to the many-to-many matching model with substitutable prefer-

ences. Irving and Leather (1986) proposed a different algorithm to compute the

set of one-to-one stable matchings based on its lattice structure (see also Roth

and Sotomayor (1990) for an adapted description of this algorithm). In Subsec-

tion 3.3 we briefly describe McVitie and Wilson’s algorithm and explain why our

algorithm reduces to theirs whenever the matching model is one-to-one; we also

briefly explain why this is not the case for the Irving and Leather algorithm.

Roughly, our algorithm works by applying successively the following proce-

dure. First, given as input an original profile of substitutable preferences, it

computes by the deferred-acceptance algorithm the two optimal stable match-

ings µF and µW . Second, it identifies all firm-worker pairs (f, w) where firm f

hires the worker w in µF but not in µW . Successively, for each of these pairs, it

modifies the preference of firm f by declaring all subsets of workers containing

worker w unacceptable but leaving the orderings among all subsets not containing

w unchanged. This is called an (f,w)-truncation of the original preference. By

the deferred-acceptance algorithm it computes (for each pair) the firm-optimal

stable matching corresponding to the preference profile where all agents have the

original preferences except that firm f has the (f, w)-truncated preference. Third,

although this new firm-optimal stable matching might not be stable relative to

the original preference profile it is stable provided that worker w, if he had to

choose the best subset from the set of firms made up of the union of the two
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firm-optimal stable matchings (the original and the new one) he would choose

the new one. If it passes this test (and hence, if it is stable relative to the origi-

nal profile of preferences) we keep it and proceed again from the very beginning

using this modified profile as an input.7 The algorithm stops when there is no

firm-worker pair (f,w) where firm f hires worker w in the firm-optimal stable

matching (relative to the truncated preference profile) but not in µW .

The paper is organized as follows. In Section 2 we present the preliminary

notation, definitions, and results. Section 3 contains the definition of the algo-

rithm, the Theorem stating that the outcome of the algorithm is equal to the set

of stable matchings, and an example illustrating how the algorithm works. In

Section 4 we prove the Theorem. Section 5 contains two concluding remarks. Fi-

nally, an Appendix at the end of the paper illustrates by means of an example the

deferred-acceptance algorithm of Gale and Shapley adapted to the many-to-many

case.

2 Preliminaries

There are two disjoint sets of agents, the set of n firms F = {f1, ..., fn} and

the set of m workers W = {w1, ..., wm}. Generic elements of both sets will be

denoted, respectively, by f , fi, fik , f̄ , and f̃ , and by w, wj, wjk , w̄, and w̃. A

generic agent will be denoted by a, and we will refer to a set of partners of a

7In the formal definition of the algorithm the reader will find an additional (but dispensable)
step only used to speed up the algorithm.
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as a subset of agents of the set not containing a. Associated with each agent

a ∈ F ∪ W is a strict linear ordering P (a), called a preference relation, over

the set of all subsets of partners (over 2F if a is a worker and over 2W if a is a

firm). Preference profiles are (n+m)-tuples of preference relations, and they are

represented by P = (P (f1) , ..., P (fn) ;P (w1) , ..., P (wm)). Given a preference

relation of an agent P (a) the sets of partners preferred to the empty set by a

are called acceptable; therefore, we are allowing for the possibility that firm f

may prefer not hiring any worker rather than hiring unacceptable sets of workers

and that worker w may prefer to remain unemployed rather than working for an

unacceptable set of firms.

To express preference relations in a concise manner, and since only acceptable

sets of partners will matter, we will represent preference relations as lists of

acceptable partners. For instance,

P (fi) = w1w3, w2, w1, w3

P (wj) = f1f3, f1, f3

indicate that {w1, w3}P (fi) {w2}P (fi) {w1}P (fi) {w3}P (fi) ∅ and

{f1, f3}P (wj) {f1}P (wj) {f3}P (wj) ∅.

The assignment problem consists of matching workers with firms keeping the

bilateral nature of their relationship and allowing for the possibility that both,

firms and workers, may remain unmatched. Formally,
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Definition 1 A matching µ is a mapping from the set F ∪W into the set of

all subsets of F ∪W such that for all w ∈W and f ∈ F :

1. µ (w) ∈ 2F .

2. µ (f) ∈ 2W .

3. f ∈ µ (w) if and only if w ∈ µ (f) .

We say that an agent a is single if µ (a) = ∅, otherwise he is matched. A

matching µ is said to be one-to-one if firms can hire at most one worker and

workers can work for at most one firm. The model in which all matchings are

one-to-one is also known in the literature as the marriage model. A matching

µ is said to be many-to-one if workers can work for at most one firm but firms

may hire many workers. The model in which all matchings are many-to-one, and

firms have responsive preferences,8 is also known in the literature as the college

admissions model.

Let P be a preference profile. Given a set of partners S, let Ch (S, P (a))

denote agent a’s most-preferred subset of S according to a’s preference ordering

P (a). A matching µ is blocked by agent a if µ (a) 6= Ch (µ (a) , P (a)). We say

that a matching is individually rational if it is not blocked by any agent. We will

denote by IR (P ) the set of all individually rational matchings. A matching µ is

8Namely, for any two subsets of workers that differ in only one worker a firm prefers the
subset containing the most-preferred worker. See Roth and Sotomayor (1990) for a precise and
formal definition of responsive preferences as well as for a masterful and illuminating analysis
of these models and an exhaustive bibliography.
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blocked by a worker-firm pair (w, f) if w /∈ µ (f), w ∈ Ch (µ (f) ∪ {w} , P (f)),

and f ∈ Ch (µ (w) ∪ {f} , P (w)).

Definition 2 A matching µ is stable if it is blocked neither by an individual

agent nor by a worker-firm pair.

Given a preference profile P , denote the set of stable matchings by S (P ). It

is easy to construct examples of preference profiles with the property that the

set of stable matchings is empty (see, for instance, Example 2.7 in Roth and

Sotomayor (1990)). Those examples share the feature that at least one agent

regards two partners as being complements, in the sense that the desirability of

a partner might depend on the presence of the other one. This is the reason

why the literature has focused on the restriction where partners are regarded as

substitutes. Here the assumption that preference profiles are substitutable will

be essential.

Definition 3 An agent a’s preference ordering P (a) satisfies substitutability

if for any set S of partners containing agents b and c (b 6= c), if b ∈ Ch (S, P (a))

then b ∈ Ch (S\ {c} , P (a)).

A preference profile P is substitutable if for each agent a, the preference order-

ing P (a) satisfies substitutability. Observe that this many-to-many model with

substitutable preferences includes, as particular cases, the marriage model and

the college admissions model.
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Roth (1984) shows that if all agents have substitutable preferences then: (1)

the set of stable matchings is non-empty, (2) firms (workers) unanimously agree

that a stable matching µF (µW ) is the best stable matching, and (3) the optimal

stable matching for one side is the worst stable matching for the other side. The

matchings µF and µW are called, respectively, the firm-optimal stable matching

and the worker-optimal stable matching. We are following the convention of

extending preferences from the original sets (2W and 2F ) to the set of matchings.

However, we now have to consider weak orderings since the matchings µ and

µ0 may associate the same set of partners to an agent. These orderings will be

denoted by R (f) and R (w). For instance, to say that all firms prefer µF to any

stable µ means that for every f ∈ F we have that µFR (f)µ for all stable µ (that

is, either µF (f) = µ (f) or else µF (f)P (f)µ (f)).

The deferred-acceptance algorithm, originally defined by Gale and Shapley

(1962) for the one-to-one case, produces either µF or µW depending on who

makes the offers. At any step of the algorithm in which firms make offers, a firm

proposes itself to the most-preferred subset of the set of workers that have not

already rejected it during the previous steps, while a worker accepts the choice set

of the union of the set consisting of the firms provisionally matched to him in the

previous step (if any) and the set of current proposals. The algorithm stops at

the step at which all offers are accepted; the (provisional) matching then becomes

definite and is the stable matching µF . Symmetrically, if workers make offers,

the outcome of the algorithm is the stable matching µW . The Appendix at the
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end of the paper illustrates by means of an example how the deferred-acceptance

algorithm works for the many-to-many case.

Our algorithmwill consist of applying the deferred-acceptance algorithmwhere

firms make offers to preference profiles that are obtained after modifying the pref-

erence of a firm by making all sets containing a particular worker unacceptable.9

Formally,

Definition 4 We say that the preference P (f,w) (f) is the (f, w)−truncation of

P (f) if:

1. All sets containing w are unacceptable to f according to P (f,w) (f); that is,

if w ∈ S then ∅P (f,w) (f)S.

2. The preferences P (f) and P (f,w) (f) coincide on all sets that do not contain

w; that is, if w /∈ S1 ∪ S2 then S1P (f)S2 if and only if S1P (f,w) (f)S2.

3. The preferences P (f) and P (f,w) (f) coincide on all sets that contain w;

that is, if w ∈ S1 ∩ S2 then S1P (f)S2 if and only if S1P (f,w) (f)S2.

4. All sets “artificially” made unacceptable in P (f,w) (f) are preferred to the

original unacceptable sets; that is, if S1 and S2 are such that w ∈ S1 and

S1P (f) ∅P (f)S2 then S1P (f,w) (f)S2.

Notice that conditions 3 and 4, although irrelevant for stability of match-

ings, guarantee that given P (f) and w, the corresponding truncation P (f,w) (f)

9Given the symmetric role of firms and workers it will become clear that the construction
that follows could be equivalently done by interchanging the roles of workers and firms.
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is unique. Given a preference profile P and the (f,w)−truncation of P (f) we de-

note by P (f,w) the preference profile obtained by replacing P (f) in P by P (f,w) (f);

that is, P (a) = P (f,w) (a) for all agents a 6= f and P (f) and P (f,w) (f) differ,

essentially, in that P (f,w) (f) eliminates, as acceptable, all sets of workers that

contain w. We denote by µ(f,w)F and µ(f,w)W the firm and worker-optimal stable

matchings corresponding to the preference profile P (f,w). Moreover, given a pref-

erence profile P and a sequence of pairs (fi1 , wj1) ... (fik , wjk) we will represent by

P (fi1 ,wj1)...(fik ,wjk ) the preference profile obtained from P after successively trun-

cating the corresponding preference(s); we will also denote by µ
(fi1 ,wj1 )...(fik ,wjk )

F

and µ
(fi1 ,wj1 )...(fik ,wjk )

W its corresponding optimal stable matchings. The following

lemma states that the property of substitutability is preserved by truncations,

and therefore µ(f,w)F and µ(f,w)W exist provided that P is substitutable.

Lemma 1 If P (f) is substitutable, then P (f,w)(f) is substitutable.

Proof. Let w̄, w0 ∈ S be arbitrary and assume that w̄ ∈ Ch(S, P (f,w)(f)). If

w /∈ S, then w̄ ∈ Ch(S\{w0}, P (f,w)(f)) because Ch(S, P (f,w)(f)) = Ch(S, P (f)),

Ch(S\{w0}, P (f,w)(f)) = Ch(S\{w0}, P (f)), and because of the substitutability

of P (f). Ifw ∈ S, then we have thatCh(S, P (f,w) (f)) = Ch(S\{w}, P (f)); there-

fore, by assumption w̄ ∈ Ch(S\{w}, P (f)). By the substitutability of P (f) we

have that w̄ ∈ Ch([S\{w}]\{w0}, P (f)) but the equalityCh([S\{w}]\{w0}, P (f)) =

Ch(S\{w0}, P (f,w)(f)) implies that worker w̄ ∈ Ch(S\{w0}, P (f,w)(f)).

Before finishing this section we present, as a Remark below, four properties
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of stable matchings.

Remark 1 Assume P is substitutable, and let µ ∈ S (P ) . Then, for all f and

w:

1. Ch (µF (f) ∪ µ (f) , P (f)) = µF (f).

2. Ch (µW (w) ∪ µ (w) , P (w)) = µW (w).

3. Ch (µW (f) ∪ µ (f) , P (f)) = µ (f).

4. Ch (µF (w) ∪ µ (w) , P (w)) = µ (w).

Properties 1 and 2 are due to Roth (1984) while properties 3 and 4 follow from

1, 2, and Theorem 4.5 in Blair (1988). They can be interpreted as a strengthening

of the optimality of µF and µW . Example 1 below shows that, although necessary,

they are far from being a characterization of stable matchings.

Example 1 Let F = {f1, f2, f3, f4} and W = {w1, w2, w3, w4} be the two sets
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of agents with the preference profile P , where

P (f1) = w1, w2, w3, w4

P (f2) = w2, w4, w1

P (f3) = w3, w1, w2

P (f4) = w4, w2, w3

P (w1) = f2, f3, f1

P (w2) = f3, f1, f4, f2

P (w3) = f4, f1, f3

P (w4) = f1, f2, f4.

The matching

µ =

 f1 f2 f3 f4

w3 w4 w1 w2


is not stable since (w2, f1) blocks it.10 However, it can be verified that

µF =

 f1 f2 f3 f4

w1 w2 w3 w4

 ,

µW =

 f1 f2 f3 f4

w4 w1 w2 w3

 ,
and µ satisfies the four properties of Remark 1.

10To represent matchings concisely we follow the widespread notation where for instance here,
in matching µ, f1 is matched to w3, f2 is matched to w4, and so on.
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The fact that whether or not Property 4 in Remark 1 holds only for a partic-

ular worker w will play a crucial role in the construction of our algorithm, we will

sometimes refer to it as the Choice Property for w relative to P . More precisely,

given P and its corresponding µF , we say that a matching µ satisfies the Choice

Property for w relative to P if

Ch (µF (w) ∪ µ (w) , P (w)) = µ (w) .

3 An Algorithm to compute the set of stable

matchings

3.1 The Algorithm and the Theorem

Given a preference profile P , we define an algorithm to compute the set of stable

matchings S (P ).

begin Set T 0(P ) := P , S0(P ) := {µF}, and k := 0.

repeat

Step 1: Define

eT ¡T k (P )¢ =

P (fi1 ,wj1)...(fik ,wjk)(f,w) | w ∈ µ(fi1 ,wj1)...(fik ,wjk)F (f) \µW (f) ,

P (fi1 ,wj1)...(fik ,wjk) ∈ T k (P ) , and f ∈ F

 .
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Step 2: if eT ¡T k (P )¢ = ∅ set T k+1 (P ) = ∅, Sk+1 (P ) = Sk (P ),
else, for each truncation P (fi1 ,wj1)...(fik ,wjk)(f,w) ∈ eT ¡T k (P )¢ ob-

tain µ
(fi1 ,wj1)...(fik ,wjk)(f,w)
F , which exists by Lemma 1.

Step 3: Define

T ∗
¡
T k (P )

¢
=



P (fi1 ,wj1)...(fik ,wjk)(f,w) ∈ eT ¡T k (P )¢ |
Ch

µ
µ
(fi1 ,wj1)...(fik ,wjk)(f,w)
F (w) ∪ µ(fi1 ,wj1)...(fik ,wjk)F (w) , P (w)

¶
=

= µ
(fi1 ,wj1)...(fik ,wjk)(f,w)
F (w)


.

Order the set T ∗
¡
T k (P )

¢
in an arbitrary way and let ≺k+1 denote this ordering.

Step 4: Define

bT ¡T k (P )¢ =



P (fi1 ,wj1)...(fik ,wjk)(f,w) ∈ T ∗ ¡T k (P )¢ |
∀P (fi1 ,wj1)...(fik ,wjk)(f 0,w0) ∈ T ∗ ¡T k (P )¢ such that
P (fi1 ,wj1)...(fik ,wjk)(f,w) ≺k+1 P (fi1 ,wj1)...(fik ,wjk)(f 0,w0),

w0 ∈ µ(fi1 ,wj1)...(fik ,wjk)(f,w)F (f 0)


.

Set

T k+1 (P ) := bT ¡T k (P )¢ ,
Sk+1 (P ) := Sk (P )∪

½
µ
(fi1 ,wj1)...(fik ,wjk)(f,w)
F | P (fi1 ,wj1)...(fik ,wjk)(f,w) ∈ T k+1 (P )

¾
,
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and

k := k + 1.

until T k (P ) is empty.

end.

Let K be the stage where the algorithm stops; i.e., TK (P ) = ∅. We can now

state our main result.

Theorem 1 Assume P is substitutable. Then SK (P ) = S (P ).

3.2 An Example

We illustrate how the algorithm works with the following example.

Example 2 Let F = {f1, f2, f3, f4} and W = {w1, w2, w3, w4} be the two sets of

agents with the substitutable profile of preferences P , where

P (f1) = w1w2, w1w3, w2w4, w3w4, w1w4, w2w3, w1, w2, w3, w4

P (f2) = w1w2, w2w3, w1w4, w3w4, w1w3, w2w4, w1, w2, w3, w4

P (f3) = w3w4, w2w3, w1w4, w1w2, w2w4, w1w3, w1, w2, w3, w4

P (f4) = w3w4, w2w4, w1w3, w1w2, w2w3, w1w4, w1, w2, w3, w4

P (w1) = f3f4, f2f3, f2f4, f1f4, f1f3, f1f2, f1, f2, f3, f4

P (w2) = f3f4, f2f3, f1f4, f2f4, f1f3, f1f2, f1, f2, f3, f4

P (w3) = f1f2, f2f3, f1f3, f2f4, f1f4, f3f4, f1, f2, f3, f4

P (w4) = f1f2, f1f3, f1f4, f2f3, f2f4, f3f4, f1, f2, f3, f4.
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By the deferred-acceptance algorithm we obtain the two optimal stable matchings

µF =

 f1 f2 f3 f4

w1w2 w1w2 w3w4 w3w4



µW =

 f1 f2 f3 f4

w3w4 w3w4 w1w2 w1w2

 .

Set T 0 (P ) = P , S0 (P ) = {µF}, and k = 0.

Stage 1: The set eT (T 0 (P )) of Step 1 consists of the following truncations of P :
eT ¡T 0 (P )¢ = ©P (f1,w1), P (f1,w2), P (f2,w1), P (f2,w2), P (f3,w3), P (f3,w4), P (f4,w3), P (f4,w4)ª

where in all profiles firms and workers have the same preference as in P, except

P (f1,w1)(f1) = w2w4, w3w4, w2w3, w2, w3, w4

P (f1,w2)(f1) = w1w3, w3w4, w1w4, w1, w3, w4

P (f2,w1)(f2) = w2w3, w3w4, w2w4, w2, w3, w4

P (f2,w2)(f2) = w1w4, w3w4, w1w3, w1, w3, w4

P (f3,w3)(f3) = w1w4, w1w2, w2w4, w1, w2, w4

P (f3,w4)(f3) = w2w3, w1w2, w1w3, w1, w2, w3

P (f4,w3)(f4) = w2w4, w1w2, w1w4, w1, w2, w4
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P (f4,w4)(f4) = w1w3, w1w2, w2w3, w1, w2, w3.

In Step 2, and since the set eT (T 0 (P )) is non-empty, we obtain for each of its
truncations the corresponding firm-optimal stable matching

µ
(f1,w1)
F =

 f1 f2 f3 f4

w2w4 w1w2 w3w4 w1w3



µ
(f1,w2)
F =

 f1 f2 f3 f4

w1w3 w1w2 w3w4 w2w4



µ
(f2,w1)
F =

 f1 f2 f3 f4

w1w2 w3w4 w3w4 w1w2



µ
(f2,w2)
F =

 f1 f2 f3 f4

w2w4 w1w4 w2w3 w1w3



µ
(f3,w3)
F =

 f1 f2 f3 f4

w2w4 w2w3 w1w4 w1w3



µ
(f3,w4)
F =

 f1 f2 f3 f4

w1w3 w1w4 w2w3 w2w4



µ
(f4,w3)
F =

 f1 f2 f3 f4

w3w4 w1w4 w2w3 w1w2



µ
(f4,w4)
F =

 f1 f2 f3 f4

w2w4 w1w2 w3w4 w1w3

 .
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Notice that µ(f1,w1)F = µ
(f4,w4)
F . In Step 3 we obtain the set T ∗ (T 0 (P )) =©

P (f1,w1), P (f4,w3), P (f4,w4)
ª
. For instance, the truncation P (f1,w2) does not belong

to this set because

Ch
³
µF (w2) ∪ µ(f1,w2)F (w2) , P (w2)

´
= Ch ({f1, f2} ∪ {f2, f4} , P (w2))

= Ch ({f1, f2, f4} , P (w2))

= {f1, f4}

6= {f2, f4}

= µ
(f1,w2)
F (w2),

but this is not a problem since µ(f1,w2)F is not stable because the pair (w2, f1)

blocks it. Considering the ordering P (f1,w1) ≺1 P (f4,w3) ≺1 P (f4,w4) we have

that bT (T 0 (P )) = ©
P (f4,w4)

ª
since P (f1,w1) does not belong to it because w4 /∈

µ
(f1,w1)
F (f4) and P (f1,w1) ≺1 P (f4,w4) and P (f4,w3) does not belong to it either be-

cause w4 /∈ µ(f4,w3)F (f4) and P (f4,w3) ≺1 P (f4,w4). Set T 1 (P ) =
©
P (f4,w4)

ª
and

S1(P ) = {µF , µ1} where µ1 = µ(f1,w1)F = µ
(f4,w4)
F . This finishes Stage 1.

Stage 2: In Step 1, we obtain for the truncation P (f4,w4) (the unique one be-

longing to the set T 1 (P )) the corresponding set of truncations using µ(f4,w4)F and

µW :

eT ¡T 1 (P )¢ =

P (f4,w4)(f1,w2), P (f4,w4)(f2,w1), P (f4,w4)(f2,w2),

P (f4,w4)(f3,w3), P (f4,w4)(f3,w4), P (f4,w4)(f4,w3)

 .
Now, in Step 2 and since eT (T 1 (P )) 6= ∅, for each truncation in eT (T 1 (P )) we
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compute its corresponding firm—optimal stable matching

µ
(f4,w4)(f1,w2)
F =

 f1 f2 f3 f4

w3w4 w1w2 w3w4 w1w2



µ
(f4,w4)(f2,w1)
F =

 f1 f2 f3 f4

w1w2 w3w4 w3w4 w1w2



µ
(f4,w4)(f2,w2)
F =

 f1 f2 f3 f4

w2w4 w1w4 w2w3 w1w3



µ
(f4,w4)(f3,w3)
F =

 f1 f2 f3 f4

w2w4 w2w3 w1w4 w1w3



µ
(f4,w4)(f3,w4)
F =

 f1 f2 f3 f4

w3w4 w1w4 w2w3 w1w2



µ
(f4,w4)(f4,w3)
F =

 f1 f2 f3 f4

w3w4 w1w4 w2w3 w1w2

 .

In Step 3 we obtain the set

T ∗
¡
T 1 (P )

¢
=
©
P (f4,w4)(f3,w4), P (f4,w4)(f4,w3)

ª

and consider the ordering P (f4,w4)(f3,w4) ≺2 P (f4,w4)(f4,w3). In Step 4 the set

bT (T 1 (P )) is the singleton set ©P (f4,w4)(f4,w3)ª since w3 /∈ µ(f4,w4)(f3,w4)F (f4). Set

T 2(P ) =
©
P (f4,w4)(f4,w3)

ª
and S2(P ) = {µF , µ1, µ2} where µ2 = µ(f4,w4)(f4,w3)F .
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Stage 3: In Step 1, we obtain for the truncation P (f4,w4)(f4,w3) its corresponding

truncations using µ(f4,w4)(f4,w3)F and µW :

eT ¡T 2 (P )¢ = ©P (f4,w4)(f4,w3)(f2,w1), P (f4,w4)(f4,w3)(f3,w3)ª .
Since it is non-empty we compute, in Step 2, the corresponding firm-optimal

stable matchings

µ
(f4,w4)(f4,w3)(f2,w1)
F =

 f1 f2 f3 f4

w1w2 w3w4 w3w4 w1w2



µ
(f4,w4)(f4,w3)(f3,w3)
F =

 f1 f2 f3 f4

w3w4 w3w4 w1w2 w1w2

 .

In Step 3 we obtain the set

T ∗
¡
T 2 (P )

¢
=
©
P (f4,w4)(f4,w3)(f3,w3)

ª
.

Notice that P (f4,w4)(f4,w3)(f2,w1) does not belong to it because

Ch
³
µ
(f4,w4)(f4,w3)(f2,w1)
F (w1) ∪ µ(f4,w4)(f4,w3)F (w1) , P (w1)

´
= Ch({f1, f4} ∪ {f2, f4}, P (w1))

= {f2, f4}

6= {f1, f4}

= µ
(f4,w4)(f4,w3)(f2,w1)
F (w1).
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Since T ∗ (T 2 (P )) is a singleton set, we set T 3 (P ) = bT (T 2 (P )) = ©P (f4,w4)(f4,w3)(f3,w3)ª
and S3 (P ) = {µF , µ1, µ2, µW} because µ(f4,w4)(f4,w3)(f3,w3)F = µW .

Stage 4: Finally, the algorithm stops (that is, K = 4) because eT (T 3(P )) = ∅.
Therefore S(P ) = {µF , µ1, µ2, µW}, where

µF =

 f1 f2 f3 f4

w1w2 w1w2 w3w4 w3w4



µ1 =

 f1 f2 f3 f4

w2w4 w1w2 w3w4 w1w3



µ2 =

 f1 f2 f3 f4

w3w4 w1w4 w2w3 w1w2



µW =

 f1 f2 f3 f4

w3w4 w3w4 w1w2 w1w2

 .

3.3 Comments

Before moving to the next section to prove Theorem 1, a few comments about

the algorithm are in order.

First, for all truncations the worker-optimal stable matching coincides with

the worker-optimal stable matching of the original preference profile P ; that is,

µW = µ
(f11,wj1)...(fik ,wjk)
W for all P (f11,wj1)...(fik ,wjk). To see this, consider the fol-

lowing modification of the deferred-acceptance algorithm in which workers make

offers. At any step of the algorithm, and after firm f rejects the offer of worker
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w, the preference of worker w is changed by declaring all sets of firms contain-

ing f as unacceptable. Now, the output of this modified algorithm is the same

matching µW and a new preference profile bP (which has the property that for

all w ∈ W , Ch(F, bP (w)) = µW (w)). Denote by bµW the output of the original

deferred-acceptance algorithm applied to the preference profile bP . Obviously,
µW = bµW (1)

and therefore,

µ
(f,w)
W = bµ(f,w)W (2)

for any (f,w)−truncation. Moreover,

bµ(f,w)W = bµW (3)

since w ∈ µF (f) \µW (f) implies that in both cases each worker w proposes

himself to the set µW (w), all offers are accepted, and the algorithm terminates

just after step 1. Hence, by (1), (2), and (3),

µW = µ
(f,w)
W .

This fact is used in Step 1, and it guarantees that as the iteration process proceeds,

“the end point” stays the same and the iteration process will terminate once µW
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is reached.

Second, to make sure that the firm-optimal stable matching corresponding to

an (f, w)−truncation is indeed stable it is sufficient to check only that Property

4 of Remark 1 holds for worker w; that is, worker w would choose it if confronted

with the union of itself and the firm-optimal stable matching of the original

profile. This is what Step 3 does in each stage. In the light of Example 1 this is

surprising, although Lemma 2 in Section 4 states that this is the case. However,

the fact that a truncation only changes one firm’s preference guarantees that the

other properties of Remark 1 also hold.

Third, the algorithm would also work without Step 4. However, it helps very

much to speed up the algorithm (see Corollary 1 in Section 4) because, by adding

it, we avoid carrying to subsequent stages all truncations (and all others obtained

from them) whose corresponding firm-optimal stable matching will be identified

later on.

Fourth, the particular ordering on the set T ∗
¡
T k (P )

¢
is irrelevant but neces-

sary. Namely, it is necessary because we cannot ask for individual rationality of

each truncation against all other truncations. To see this consider in Stage 1 of

Example 2, the set T ∗ (T 0 (P )) =
©
P (f1,w1), P (f4,w3), P (f4,w4)

ª
. If we had defined

it without the restriction of the ordering, i.e.

bT⊀ ¡T 0 (P )¢ = nP (f,w) ∈ T ∗ ¡T 0 (P )¢ | ∀P (f 0,w0) ∈ T ∗ ¡T 0 (P )¢ , w0 ∈ µ(f,w)F (f 0)
o
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this set would have been empty since P (f1,w1) /∈ bT⊀ (T 0 (P )) because w4 /∈

µ
(f1,w1)
F (f4), P (f4,w3) /∈ bT⊀ (T 0 (P )) because w4 /∈ µ(f4,w3)F (f4), and (in contrast

with the correct definition of bT (T 0 (P ))) P (f4,w4) /∈ bT⊀ (T 0 (P )) because w1 /∈
µ
(f4,w4)
F (f1). Moreover, this ordering is irrelevant because the outcome of the

algorithm does not depend on the specific ordering on the set T ∗(T k(P )). For

instance, in Stage 1 of Example 2 we could have used (instead of ≺1) the or-

dering P (f4,w4) ≺10 P (f4,w3) ≺10 P (f1,w1) without altering the final outcome of the

algorithm.

Fifth, unfortunately we do not know how to use, in the design of the algorithm,

the lattice structure of the set of stable matchings. The problem is that, in

contrast with the marriage model, the lattice structure of the set of many-to-

many stable matchings identified by Blair (1988) is built upon a very complex

least upper bound. The proof of Theorem 4.11 in Blair (1988) shows that this

least upper bound has to be obtained as the limit of a sequence of matchings

constructed in a very indirect way.

Sixth, McVitie and Wilson’s (1971) algorithm computes the full set of one-

to-one stable matchings roughly as follows: (1) Compute µF by a version of the

deferred acceptance algorithm in which firms make offers sequentially. (2) Break

the marriage of any matched pair (f, w) at µF forcing f to take a poorer worker

in his preference ordering along the new application of the deferred acceptance

algorithm (whose outcome is µ(f,w)F ). (3) Check the stability of µ(f,w)F by checking

that µ(f,w)F (w)P (w)µF (w). (4) Avoid multiple identifications of the same stable
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matching by restricting the pairs whose marriage is broken (according to point

(2) above); this restriction is based on the arbitrary order of firms used in the

sequential version of the deferred acceptance algorithm. In contrast, our extension

applied to the one-to-one matching model requires the following: (1) Compute

µW , as well as µF . (2) Break only the marriage of matched pairs (f, w) at µF such

that w ∈ µF (f) \µW (f). (3) To check the stability of µ(f,w)F it is not enough, in

our many-to-many setting, to check that µ(f,w)F (w)P (w)µF (w) holds; instead,

we have to insure that the stronger condition Ch
³
µ
(f,w)
F (w) ∪ µF (w) , P (w)

´
=

µ
(f,w)
F (w) is satisfied (observe that both conditions coincide in the one-to-one

case). (4) Avoid multiple identifications of the same stable matching (Step 4

of the algorithm) by using an arbitrary order on the set of profiles that have

successfully passed the choice property test (Step 3 of the algorithm). Finally,

in contrast to McVitie and Wilson’s (1971) algorithm, the one of Irving and

Leather (1986) does not obtain all stable matchings by successive application of

the deferred acceptance algorithm (to truncated preferences); instead, a stable

matching is obtained after breaking a marriage and satisfying a subset of identified

agents that form a cycle. The difficulty of extending their algorithm from the

one-to-one case to the many-to-many one is that there is no an unambiguous (and

useful) extension of the cycle generated by breaking a particular marriage.
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4 The Proof of the Theorem

Let P be a substitutable preference profile and let µF and µW be its corre-

sponding optimal stable matchings. Given an (f, w)−truncation of P where

w ∈ µF (f) \µW (f), denote by S(f,w) (P ) the set of stable matchings (with re-

spect to the truncated profile P (f,w)) that satisfy the Choice Property for w

relative to P ; namely,

S(f,w) (P ) =
©
µ ∈ S ¡P (f,w)¢ | Ch (µF (w) ∪ µ(w), P (w)) = µ(w)ª . (4)

Lemma 2 below says that S(f,w) (P ) is a subset of S (P ) . Hence, the Choice

Property for w relative to P is sufficient to guarantee stability of a matching

which is stable with respect to a truncation.

Lemma 2 For w ∈ µF (f) \µW (f), let µ be a matching such that µ ∈ S(f,w)(P ).

Then µ ∈ S(P ).

Proof. By µ ∈ S(f,w)(P ) we have w /∈ µ (f). Thus, µ is individually rational for

P . Suppose (ew, ef) blocks µ under P ; namely,
ef /∈ µ (ew) , (5)

ew ∈ Ch(µ( ef) ∪ {ew}, P ( ef)), and (6)

ef ∈ Ch(µ( ew) ∪ { ef}, P ( ew)). (7)
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If ef 6= f then the pair (ew, ef) also blocks µ under P (f,w), a contradiction. Thus,
ef = f. Then by conditions (6) and (7)

ew ∈ Ch(µ(f) ∪ {ew}, P (f)) and (8)

f ∈ Ch(µ( ew) ∪ {f}, P ( ew)). (9)

Since µ ∈ S(f,w) (P ), then µ ∈ S ¡P (f,w)¢; hence,
ew /∈ Ch(µ(f) ∪ {ew}, P (f,w)(f)), (10)

otherwise (ew, f) is a blocking pair for µ under P (f,w). The definition of P (f,w)(f)
and conditions (8) and (10) imply

w ∈ µ(f) ∪ {ew}.
But, by the definition of P (f,w)(f), w /∈ µ(f). Thus, ew = w. Now, we can rewrite
conditions (8) and (9) as

w ∈ Ch(µ(f) ∪ {w}, P (f)) and

f ∈ Ch(µ(w) ∪ {f}, P (w)). (11)
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Since µ ∈ S(f,w) (P ), it follows by definition that

Ch (µF (w) ∪ µ (w) , P (w)) = µ (w) . (12)

By condition (5), and the fact that ef = f and ew = w, f /∈ µ(w) which, together
with condition (11) and (12) imply that

Ch (µ (w) ∪ {f} , P (w))P (w)µ (w) = Ch (µF (w) ∪ µ (w) , P (w)) . (13)

Therefore, since f ∈ µF (w), {f} ∪ µ (w) ⊆ µF (w) ∪ µ (w) . Hence,

Ch (µF (w) ∪ µ (w) , P (w))R (w)Ch (µ (w) ∪ {f} , P (w)) .

But this contradicts condition (13).

The next Lemma establishes two useful properties of the choice set.

Lemma 3 For all subsets of partners A,B, and C of agent a ∈ F ∪W :

(a) Ch (A ∪B,P (a)) = Ch (Ch (A,P (a)) ∪B,P (a)).

(b) Ch (A ∪B,P (a)) = A and Ch (B ∪ C,P (a)) = B imply Ch (A ∪ C,P (a)) =

A.
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Proof. Property (a) follows from Proposition 2.3 in Blair (1988). To prove (b),

consider the following equalities:

Ch (A ∪ C,P (a)) = Ch (Ch (A ∪B,P (a)) ∪ C,P (a)) by hypothesis

= Ch (A ∪B ∪ C,P (a)) by (a)

= Ch (A ∪ Ch (B ∪ C,P (a)) , P (a)) by (a)

= Ch (A ∪B,P (a)) by hypothesis

= A by hypothesis.

Lemma 4 below can be understood as a strengthening of Lemma 2. It says

that checking the Choice Property (for w relative to P ) for only the firm-optimal

stable matching is sufficient to guarantee that all stable matchings relative to the

truncated profile are indeed stable for the original profile.

Lemma 4 Let P (f,w) be a truncation such that

Ch
³
µF (w) ∪ µ(f,w)F (w), P (w)

´
= µ

(f,w)
F (w)

holds. Then, µ ∈ S(P (f,w)) implies µ ∈ S(P ).
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Proof. Let µ be a matching such that µ ∈ S(P (f,w)). By Lemma 1 and the

Choice Property for w relative to P (f,w),

Ch
³
µ(w) ∪ µ(f,w)F (w), P (f,w) (w)

´
= µ(w).

However, preferences P (f,w) (w) and P (w) coincide. Therefore,

Ch
³
µ(w) ∪ µ(f,w)F (w), P (w)

´
= µ(w) (14)

also holds. By hypothesis,

Ch
³
µF (w) ∪ µ(f,w)F (w), P (w)

´
= µ

(f,w)
F (w). (15)

By Lemma 3 we have that conditions (14) and (15) imply

Ch (µF (w) ∪ µ(w), P (w)) = µ(w).

Hence, by definition, µ ∈ S(f,w) (P ), and by Lemma 2, µ ∈ S(P ).

Lemma 5 says that, for a given stable matching, adding the individual ra-

tionality condition relative to a truncation ensures that the matching is stable

relative to the truncated profile. This will immediately imply Corollary 1 which

will be crucial to the justification of Step 4 in the algorithm.

Lemma 5 Let µ be a matching such that µ ∈ S(P ) ∩ IR ¡P (f,w)¢ . Then µ ∈
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S(P (f,w)).

Proof. Assume µ /∈ S(P (f,w)). Since µ ∈ IR ¡P (f,w)¢, there must exist a blocking
pair (ew, ef) of µ; namely, ew /∈ µ³ ef´,

ew ∈ Ch(µ( ef) ∪ {ew}, P (f,w)( ef)), and (16)

ef ∈ Ch(µ(ew) ∪ { ef}, P (f,w)(ew)). (17)

Consider the following two cases:

1. ef 6= f. Since P (f,w)(ew) = P (ew) and P (f,w) ³ ef´ = P ³ ef´ the pair (ew, ef) also
blocks the matching µ in the preference profile P . Hence, µ /∈ S (P ).

2. ef = f. Then by conditions (16) and (17)
ew ∈ Ch(µ(f) ∪ {ew}, P (f,w)(f)), (18)

and hence ew 6= w, and
f ∈ Ch(µ( ew) ∪ {f}, P (ew)).

The hypothesis that µ ∈ IR ¡P (f,w)¢ implies that µ (f) = Ch ¡µ (f) , P (f,w) (f)¢.
Thus, w /∈ µ (f). Consequently, condition (18) can be rewritten as ew ∈
Ch(µ(f) ∪ {ew}, P (f)), implying that the pair (ew, f) blocks µ in the pref-
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erence profile P . Hence µ /∈ S (P ).

As we have just said, Corollary 1 below justifies the insertion of Step 4 at each

stage of the algorithm. If we have two truncations P (f,w) and P (f
0,w0) with the

properties that (1) their corresponding firm-optimal stable matchings µ(f,w)F and

µ
(f 0,w0)
F satisfy the Choice Property for w and w0, respectively (that is, they are

stable relative to the original profile) and (2) the matching µ(f
0,w0)

F is individually

rational relative to P (f,w) (that is, w /∈ µ(f 0,w0)F (f)), then we need not add µ(f
0,w0)

F

at this stage (with the subsequent computational savings) because we will find it

later on (and add it to the provisional set of stable matchings) as a firm-optimal

stable matching of a subsequent truncation of P (f,w).

Corollary 1 Let P (f,w), P (f 0,w0) be two truncations such that µ(f
0,w0)

F ∈ S (P ). If

w /∈ µ(f 0,w0)F (f), then µ(f
0,w0)

F ∈ S ¡P (f,w)¢ .
Proof. The hypothesis µ(f

0,w0)
F ∈ S (P ) implies that µ(f 0,w0)F ∈ IR (P ). Since w /∈

µ
(f 0,w0)
F (f), it follows that µ(f

0,w0)
F ∈ IR ¡P (f,w)¢ . Hence, by Lemma 5, µ(f 0,w0)F ∈

S(P (f,w)).

The next lemma establishes a useful fact about the set of stable matchings:

a worker who is matched to the same firm in the two optimal stable matchings

has also to be matched to the same firm in all stable matchings.

Lemma 6 Assume w ∈ µF (f) ∩ µW (f). Then, w ∈ µ (f) for all µ ∈ S (P ) .
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Proof. Suppose there exist w, f , and µ ∈ S (P ) such that w ∈ µF (f)∩ µW (f)

and w /∈ µ (f). By Remark 1,

Ch (µF (f) ∪ µ (f) , P (f)) = µF (f)

and

Ch (µW (w) ∪ µ (w) , P (w)) = µW (w) .

Since w ∈ µF (f), this implies w ∈ Ch (µF (f) ∪ µ (f) , P (f)); hence, w ∈

Ch ({w} ∪ µ (f) , P (f)) since P is a substitutable preference profile.

Now, w ∈ µW (f) implies f ∈ µW (w). It follows that f ∈ Ch (µW (w) ∪ µ (w) , P (w))

which means that f ∈ Ch ({f} ∪ µ (w) , P (w)). Since w /∈ µ (f), this implies that

(w, f) is a blocking pair for µ which contradicts µ ∈ S (P ). Thus, w ∈ µ (f) .

Lemma 7 and its Corollary 2 guarantee that any non-optimal stable matching

µ will eventually be identified and selected as the firm-optimal stable matching

corresponding to a preference profile which will be obtained after truncating the

preferences of a sequence of firms.

Lemma 7 Let µ ∈ S(P ) be such that µF 6= µ. Then there exists P (f,w) with

w ∈ µF (f)\µW (f) and w /∈ µ (f) such that µ ∈ S(P (f,w)).

Proof. Since µF 6= µ, there exist w and f such that w ∈ µF (f)\µ(f). If this

were not so, then µF (f) ⊆ µ (f) for all f . By Property 1 of Remark 1, and since
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µ ∈ IR (P ), then

µF (f) = Ch (µF (f) ∪ µ (f) , P (f)) = Ch (µ (f) , P (f)) = µ (f) for all f .

Thus, µF = µ which is a contradiction. Since w /∈ µ (f), it follows from Lemma

6 that w /∈ µW (f). Consider the preference profile P (f,w). Because w /∈ µ (f), we

have that µ ∈ IR ¡P (f,w)¢, since µ ∈ S (P ) and P (f,w) (a) = P (a) for all a 6= f .
By Lemma 5, µ ∈ S ¡P (f,w)¢ .
Remark 2 Let P (f,w) be a preference profile such that its corresponding µ(f,w)F

satisfies the Choice Property for w relative to P . By Lemma 4, |S(P )| ≥¯̄
S(P (f,w))

¯̄
.11 Then w ∈ µF (f)\µW (f) implies µF /∈ S(P (f,w)), and |S(P )| >¯̄

S(P (f,w))
¯̄
.

Corollary 2 Let µ ∈ S(P ) be such that µF 6= µ. Then there exists a sequence of

pairs (fi1, wj1) ... (fik , wjk) such that µ = µ
(fi1 ,wj1)...(fik ,wjk)
F ∈ S(P (fi1 ,wj1)...(fik ,wjk)).

Proof. Let µ ∈ S(P ) be such that µF 6= µ. By Lemma 7 there exists P (f,w)

such that µ ∈ S(P (f,w)). If µ = µ
(f,w)
F , the statement follows. Otherwise (in

which case, by Remark 2 we have that |S(P )| > ¯̄
S(P (f,w))

¯̄
), we apply again

Lemma 7 replacing the roles of P and µF by P
(f,w)and µ(f,w)F , respectively. Since

|S(P )| <∞, the statement of Corollary 2 follows.

11The notation |S(P )| means the number of stable matchings under preference profile P .
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Now, we are ready to show that the outcome of the algorithm is the set of

stable matchings.

Proof of Theorem 1. First, from Lemma 4, we have S1 (P ) ⊆ S (P ) . Applying

iteratively Lemma 4 to successive stages we obtain

SK (P ) ⊆ S (P ) .

Second, assume that µ ∈ S (P ) . By Corollary 2, there exists k ≤ K such that

µ ∈ Sk (P ). Therefore,

S (P ) ⊆ SK (P ) .

5 Concluding Remark

Our contribution is three-fold. First, we come to understand that the firm-

optimal stable matching of truncated preference profiles might be stable in the

original profile. Second, we discover that the Choice Property for w relative to

P is the only thing that has to be checked to guarantee the stability of this

matching (Lemmas 2, 3, and 4). Third, and more importantly, we show that all

stable matchings are identified in this way (Lemmas 5, 6, and 7).
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6 Appendix

To illustrate the deferred-acceptance algorithm in which firms make offers we use

the preference profile P (f4,w4)(f4,w3)(f3,w3) of Example 2 to compute µ(f4,w4)(f4,w3)(f3,w3)F ;

that is, F = {f1, f2, f3, f4} and W = {w1, w2, w3, w4} are the two sets of agents

with the following substitutable profile of preferences

P (f1) = w1w2, w1w3, w2w4, w3w4, w1w4, w2w3, w1, w2, w3, w4

P (f2) = w1w2, w2w3, w1w4, w3w4, w1w3, w2w4, w1, w2, w3, w4

P (f3) = w1w4, w1w2, w2w4, w1, w2, w4

P (f4) = w1w2, w1, w2

P (w1) = f3f4, f2f3, f2f4, f1f4, f1f3, f1f2, f1, f2, f3, f4

P (w2) = f3f4, f2f3, f1f4, f2f4, f1f3, f1f2, f1, f2, f3, f4

P (w3) = f1f2, f2f3, f1f3, f2f4, f1f4, f3f4, f1, f2, f3, f4

P (w4) = f1f2, f1f3, f1f4, f2f3, f2f4, f3f4, f1, f2, f3, f4.

The offers made by firms, and received and accepted by workers, in Step 1

are:

f1 f2 f3 f4

w1w2 w1w2 w1w4 w1w2

w1 w2 w3 w4

f1f2f3f4 f1f2f4 ∅ f3

f3f4 f1f4 ∅ f3.

38



The provisional matching µ1 after Step 1 is:

µ1 =

 f1 f2 f3 f4

w2 ∅ w1w4 w1w2

 .

The offers made by firms, and received and accepted by workers, in Step 2

are:

f1 f2 f3 f4

w2w4 w3w4 w1w4 w1w2

w1 w2 w3 w4

f3f4 f1f4 f2 f1f2f3

f3f4 f1f4 f2 f1f2.

The provisional matching µ2 after Step 2 is:

µ2 =

 f1 f2 f3 f4

w2w4 w3w4 w1 w1w2

 .

The offers made by firms, and received and accepted by workers, in Step 3

are:

f1 f2 f3 f4

w2w4 w3w4 w1w2 w1w2

w1 w2 w3 w4

f3f4 f1f3f4 f2 f1f2

f3f4 f3f4 f2 f1f2.

39



The provisional matching µ3 after Step 3 is:

µ3 =

 f1 f2 f3 f4

w4 w3w4 w1w2 w1w2

 .

The offers made by firms, and received and accepted by workers, in Step 4

are:

f1 f2 f3 f4

w3w4 w3w4 w1w2 w1w2

w1 w2 w3 w4

f3f4 f3f4 f1f2 f1f2

f3f4 f3f4 f1f2 f1f2.

the provisional matching µ4 after Step 4 is:

µ4 =

 f1 f2 f3 f4

w3w4 w3w4 w1w2 w1w2

 .

The algorithm stops after Step 4 because all offers have been accepted. The provi-

sional matching µ4, becomes definite, and it is the firm-optimal stable matching.
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