
This is the submitted version of the article:

Bars Cortina, Francesc. «A relation between p-adic L-functions and the Tama-
gawa number conjecture for Hecke characters». Archiv der Mathematik, Vol. 83,
Issue 4 (October 2004), p. 317-327. DOI 10.1007/s00013-004-1148-2

This version is available at https://ddd.uab.cat/record/240655

under the terms of the license

https://ddd.uab.cat/record/240655


A relation between p-adic L-functions and the

Tamagawa number conjecture for Hecke

characters

Francesc Bars ∗

Abstract
We prove that the submodule in K-theory which gives the exact value

(up to Z∗(p)) of the L-function by the Beilinson regulator map at non-
critical values for Hecke characters of imaginary quadratic fields K with
cl(K) = 1(p-local Tamagawa number conjecture) satisfies that the length
of its coimage under the local Soulé regulator map is the p-adic valuation
of certain special values of p-adic L-functions associated to the Hecke
characters. This result yields immediately, up to Jannsen’s conjecture,
an upper bound for #H2

et(OK [1/S], Vp(m)) in terms of the valuation of
these p-adic L-functions, where Vp denotes the p-adic realization of a
Hecke motive.

1 Introduction

Consider a Hecke character ψ of an imaginary quadratic field K. Then there is
an associated complex L-function and, for any prime p, which we impose that
it is totally split in K, certain p-adic L-functions associated to the two primes
above p. In this paper we find, under technical conditions, a relation between
the special values of the complex L-funcions at non-critical points and some
special values of the p-adic L-functions.

Deninger [6] defines a pure motive for any Hecke character ψ of an imaginary
quadratic field whose L-function is equal to the L-function of the corresponding
Hecke character. He also proves the Beilinson conjecture for these motives.
For the p-adic L-functions Geisser proves in [8][9] a p-adic analogue of Beilin-
son’s conjecture, relating the p-adic valuation of some special values of the p-adic
L-functions with the length of a coimage module obtained from a map between
Iwasawa modules.
The local Tamagawa number conjecture predicts the exact value at integer
points of this L-function for the Hecke character ψ (up to Z∗(p)) in terms of
the corresponding motive. At non-critical points we can rewrite basically the
conjecture as the Beilinson conjecture for these motives and some p-adic control.
The study of the local Tamagawa number conjecture for these Hecke characters
is made in [2][3].

In this paper we compare the works [8] and [3] and we precise how in the
case of Hecke characters the values for the p-adic L-functions appear in Kato’s
reformulation of the weak Tamagawa number conjecture. We consider the case
cl(K) = 1 for simplicity but we believe that the results should generalize with
similar techniques to the case p - [H : K] where H is the Hilbert class field of
K. The paper is basically a global-local comparison between Iwasawa modules
and étale cohomology groups. Where we work with the subspace coming from
the étale realization of the motivic elliptic polylogarithm [11]. A relation in
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the p-adic world between the elliptic polylogarithm and a special value for the
p-adic L-function is studied by K. Bannai [1].

I would like to thank Xavier Xarles for his useful comments and suggestions
on different versions of this paper. It is a pleasure to thank him and Enric Nart
for their encouragement along my work on the Tamagawa number conjecture.
Kind thanks also to the referee for his/her comments and for noticing some
inaccuracies. I thank Jérôme Scherer and Xavier Xarles for proof-reading my
english and for more suggestions.

2 The Tamagawa number conjecture for Hecke
characters

Let E be a fixed elliptic curve with CM, which is defined over an imaginary
quadratic field K, with CM by OK , the ring of integers of K. Note that this
implies cl(K) = 1. Associated to this elliptic curve there is a Hecke character
ϕ of the imaginary quadratic field K with conductor f, an ideal of OK that
coincides with the conductor of the elliptic curve E.

Let us introduce the motives that we will use and the result on the weak local
Tamagawa number conjecture for them. Consider the category of Chow motives
MQ(K) over K with morphisms induced by graded correspondences in Chow
theory tensored with Q. Then, the motive of the elliptic curve E has a canonical
decomposition h(E)Q = h0(E)Q ⊕ h1(E)Q ⊕ h2(E)Q. The motive h1(E)Q has
a multiplication by K [5, §1.3]. Let us consider the motive ⊗w

Qh1(E)Q, for w
a strictly positive integer, which has multiplication by Tw := ⊗w

QK. Observe
that Tw has a decomposition

∏
θ Tθ as a product of fields Tθ, where θ runs

through the Aut(C)-orbits of Υw = Hom(Tw,C), where Υ = Hom(K,C). This
decomposition defines some idempotents eθ and gives also a decomposition of the
motive and its realizations. Let us fix once and for all an immersion λ : K → C
as in [6, p.135].

The L-function associated to the motive eθ(⊗wh1(E)Q) corresponds to the
L-function associated to ψθ = eθ(⊗wϕ) : A∗K → K∗ ([6, §1.3.1]) a CM-character
(for equivalent definitions of Hecke characters over an imaginary quadratic field,
see [8, §2.2]), which, with the fixed embedding λ, corresponds to ϕaϕb, where
a, b ≥ 0 are integers such that w = a + b. The pair (a, b) is the infinite type
for ψθ. We note that there are different θ with the same infinite type. Every θ
gives two elements of Υw, one given by the infinite type ϑ ∈ θ ∩HomK(Tw,C)
and the other coming from the other embedding.

We introduce the notation

Mθ := eθ(⊗wh1(E)),

which is considered as an integral Chow motive (we can consider eθ as an idem-
potent integer with eθ(⊗wOK) ∼= OK an ⊗wOK

∼= ∏
eθ
OK because cl(K) = 1,

see [9, lemma 5.1] or [8, p.57]), that is an element in the category M(K) con-
structed like MQ(K) but without tensoring the correspondences by Q. Observe
that Mθ has multiplication by OK

∼= eθ(⊗wOK) =: Oθ. Since we want to con-
sider the values at positive integers of the L-function associated to the above
motive in the non-critical strip band, we take integers l ≥ 0 and we will study
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the Tamagawa number conjecture for the motive

Mθ(w + l + 1).

This conjecture predicts the value of the L-function for Mθ at w + l + 1. Via
the functional equation proved by Hecke for the Hecke characters, the study
of these values is equivalent to the study of the value of the L-function at −l
since Mθ has weight w. We will formulate the Tamagawa number conjecture
and our result on Hecke characters using this functional equation instead of
the original formulation made by Bloch and Kato [4]. In this reformulation,
the Tamagawa number conjecture predicts the cardinal of the coimage for the
Beilinson regulator map as well as for the Soulé regulator map at every prime
number p, of a lattice in a K-theory group associated to the motive. Let us
introduce all these objects. The K-theory group corresponding to our motive
Mθ(w + l + 1) is

HM := K2(w+l)−w+1(Mθ)(w+l+1) ⊗Q
where the K-groups are the Quillen K-groups and the superscript indicates
the Adam’s filtration on them. Let S be a finite set of primes of K, which
contains the primes above p, and such that the p-adic realization of the motive,
Hw

et(Mθ×K K,Zp(w+l+1)), is unramified outside S (in our situation S contains
the finite primes of K which divide pfθ, where fθ is the conductor of ψθ). Denote
for simplicity

MθZp(w + l + 1) := Hw
ét(Mθ ×K K,Zp(w + l + 1)),

and
MθQp(w + l + 1) := Hw

ét(Mθ ×K K,Qp(w + l + 1)).

We impose that w − 2(w + l + 1) ≤ −3. We have a Beilinson regulator map,

rD : HM ⊗ R→ Hw(MθC,Q(w + l))⊗ R,

where the cohomology group on the right is the Betti realization for our mo-
tive, which coincides with eθ(⊗w

QH1(E(C),Q(1))(l). We have inside this Q-
vector space a Z-lattice given by Hh,Z := eθ(⊗w

ZH1
B(E(C),Z(1)))(l), which is an

eθ(⊗w
ZOK) ∼= OK-module of rank 1.

We have also, for every prime number p, the Soulé regulator map:

rp : HM ⊗Qp → H1
ét(OK [1/S],MθQp(w + l + 1)).

The L-function associated to the motive Mθ is defined by

LS(Mθ, s) = LS(MθQp , s) :=
∏

p/∈S

Pp(MθQp , s) for Re(s) >> 0,

where MθQp = Hw
et(Mθ ×K K,Qp) and the local Euler factors Pp(MθQp , s) are

given by

Pp(MθQp , s) := detQp(1− FrpNp−s|M Ip

θQp
) = (1− ψθ(p)Np−s)(1− ψθ(p)Np−s)

where Fr means the geometric Frobenius and Ip is the inertia group at p [3,
Lemma 2.5].

After all these preliminaries we can formulate the local weak Tamagawa
number conjecture at p for odd primes for our motives:
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Conjecture 2.1. Let us fix a prime number p 6= 2 and let S be the finite primes
of K which divide pfθ, where fθ is the conductor of ψθ with infinite type (a, b),
a, b ≥ 0 integers with w = a + b ≥ 1. Let l ≥ 0 be an integer. Then, there is a
subspace Hconstr

M in HM such that

1. The maps rD and rp restricted to Hconstr
M are isomorphisms and the group

H2(OK [1/S],MθZp
(w + l + 1)) is finite.

2. dimQ(Hh,Z) = ords=−lLS(Hw(Mθ,Qp), s)=2.

3. Let η ∈ detZ(Hh,Z) be a Z-basis. There is an element ξ ∈ detQHconstr
M

such that
rD(ξ) = ( lim

s→−l
s−2LS(Hw(Mθ,Qp), s))η.

4. The element rp(ξ) is a basis of the Zp-lattice

detZp
(RΓ(OK [1/S],MθZp

(w + l + 1)))−1

⊂ detQp(RΓ(OK [1/S],MθQp(w + l + 1))[−1]).

Remark 2.2. The above conjecture when we take Hconstr
M = HM corresponds

to the local Tamagawa number conjecture.

Theorem 2.3 (Theorem 5.13 [3]). Let be p a prime 6= 2, 3 and p > NK/Qf.
Consider l a strictly positive integer. Suppose that ψθ has infinite type (a, b) with
a, b non-negative integers, such that a 6≡ b mod|O∗K | and w = a + b ≥ 1 verifies
−w − 2l ≤ −3. Suppose furthermore that O∗K → (OK/fθ)∗ is injective. Write
∆ for the Galois group Gal(K(E[p])/K), and consider the ∆-representation

HomOK⊗ZZp(MθZp(w + l),OK ⊗ Zp).

Finally, suppose that this representation is irreducible, that it is not the cyclo-
tomic character, and that it satisfies the hypothesis of [12, theorem 4.1] on the
main Iwasawa conjecture (these conditions are satisfied if p splits). Then, the
above conjecture 2.1 is true up to the finiteness for H2(OK [1/S],MθZp(w+l+1))
and the injectivity on the Soulé regulator map.

Let us write down explicitly the construction of Hconstr
M in theorem 2.3,

and briefly indicate a sketch of the proof. The elements in K-theory for these
motives were first constructed by Deninger in [5]. Denote by Γ = ΩOK the
lattice of the elliptic curve, and let f ∈ OK be a generator for fθ. Then we have
that Ωf−1 ∈ f−1

θ Γ, and hence (Ωf−1) gives a divisor in Z[E[fθ] \ 0] defined over
K(E[fθ]) ⊂ K(E[f]) = K(f) since fθ divides the conductor f of the elliptic curve
E. We obtain next a divisor defined over K by taking the norm:

βθ := NK(E[f])/K((Ωf−1)).

Deninger constructs a map from the divisors to HM as a composition of an
Eisenstein symbol map with a projection map (see [6, §2]),

Denw,l,θ : Z[E[fθ] \ 0] → K2(w+l)−w+1(Mθ)(w+l+1) ⊗Q.
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Then, we define Rθ by

(−1)l−1 (2l + w)!Pp(ψθ,−l)−1Φ(f)
2l−1NK/Qflθψθ(f)Φ(fθ)

Denw,l,θ(βθ)OK ,

where Φ(m) := |(OK/m)∗| and Pp is the product of the Euler factor of ψθ at
primes over p (see [3, remark 2.6] for the non-vanishing of these Euler factors).
We take Hconstr

M equal to Rθ ⊗Q.
For the proof of the theorem 2.3 we need to study the image of Hconstr

M with
respect to the Beilinson and Soulé regulator maps. In the case of the Beilinson
regulator map this study is basically made by Deninger in [6]. We compare the
Soulé regulator map with a map from an Iwasawa module to a global Galois
cohomology group,

(Soul)p : (C∞ ⊗ (eθ ⊗w TpE)(l))G → H1(OK [1/S], (eθ ⊗w TpE)(l + 1)),

where TpE means the Tate module of the elliptic curve E at p, C∞ are the elliptic
units and G is the Galois group Gal(K∞/K) (since K∞ = ∪n∈NK(E[pn])). Let
us introduce here the definition of this elliptic units for our latter interest.

Definition 2.4. Let Cn be the subgroup of units generated over Z[Gal(K(E[pn]))]
by ∏

σ∈Gal(K(f)/K)

θa(tσf + hn)

where a runs through all ideals prime to 6pf, tf is a primitive f-torsion point and
hn is a primitive pn-torsion point, and θa is the classical theta function (see [7,
II]). Define the group of elliptic units of Kn := K(E[pn]) as

Cn := µ∞(Kn)Cn.

If Up
n is the group of local units at Kn congruent to 1 for all place v of Kn

over p (called local principal units), denote by Cn the closure of Cn ∩ Up
n in Up

n.
Considering the limit with respect to the norm maps we obtain:

C∞ := lim
←−
Cn.

Remark 2.5. The definition above coincides with the one in [2] but it differs
from the one in [3]. Theorem 2.3 however remains valid with this definition as
well, using a similar argument as in remark 4.3 [3].

The main Iwasawa conjecture proved by Rubin [12] and the specialization
of the elliptic polylogarithm sheaf proved by Kings [11] allows to compare the
image of the map ep with the image of Hconstr

M under the Soulé regulator map.
This concludes the proof of the local weak Tamagawa number conjecture.

3 Relation with Geisser’s p-adic analogue of Beilin-
son’s conjectures

We want to relate theorem 2.3 with the results of Geisser (see [8] or [9]). We
impose once and for all that p splits in K, with p = pp∗, p 6= p∗. Observe
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that Mθ ⊗ Zp has multiplication by Oθ ⊗ Zp and, as p splits, it decomposes in
two idempotents. Denote by eΩ1 and eΩ2 the two idempotents which give the
following decomposition

Mθ ⊗ Zp = MΩ1 ⊕MΩ2 ∈MZp
(K)

in the category of Chow motives with coefficients in Zp. We have also a direct
sum decomposition of the map (Soul)p = (Soul)Ω1 ⊕ (Soul)Ω2 ,

(C∞ ⊗MΩ1Zp(w + l))G ⊕ (C∞ ⊗MΩ2Zp(w + l))G →
H1(K, MΩ1Zp

(w + l + 1))⊕H1(K, MΩ2Zp
(w + l + 1))

where MΩiZp is the p-adic lattice corresponding to eΩi(⊗wH1
et(M,Zp)).

Remark 3.1. The identification

H1(K,MθZp(w + l + 1)) = H1(OK [1/S],MθZp(w + l + 1)),

comes easily from the localization exact sequence.

Observe that ψθ ⊗ Zp = ψΩ1 ⊕ ψΩ2 and they satisfy ψΩ1 = ψΩ2 . If (aθ, bθ)
denotes the infinity type of ψθ, and we suppose that Ω1 comes from p and Ω2

from p∗ by using the identification Oθ = OK , then the infinity types for ψΩ1

and ψΩ2 are (aθ, bθ) and (bθ, aθ) respectively. Here the infinity types come from
morphisms to Cp, (see [9] for more details). Let us denote by ι : H1(K, ) →
H1(Kp, ) the restriction map.

Theorem 3.2 (Geisser, theorem 9.1 [9]). Suppose that p > 3w+2l+w+1,
θ is an idempotent with infinite type (a, b) with a, b ≥ 0, w = a+b ≥ 1, a+l > 0,
b + l > 0 and p is a prime which splits in K. Then, the length as an OΩi

∼= Zp-
module of the coimage of the Geisser elliptic units CRob

(defined below) via the
map ι ◦ eΩi is equal to the p-adic valuation of the p-adic L-function

G(ψΩiκ
l, u−ai−1

1 − 1, u−bi−1
2 − 1)

where (ai, bi) is the infinity type for ψΩi , κ is the cyclotomic character for G
and G is the (ψΩiκ

l)−1-component of the two variable p-adic L-function (see [9,
p. 227] for an explicit definition or see below).

We define now the Geisser elliptic units; and prove that they coincide with
the elliptic units introduced in 2.4. The Geisser elliptic units are a modification
of the elliptic units one can find in the book of de Shalit [7]. We follow [7,
III §1]. Consider the ideal of K given by g := fp∗n. We define C ′n,m as the
group generated by the primitive Robert units of conductor gpm. Then C ′n,m

is generated by θa(tf + hn,m) where hn,m is a point of p∗npm-torsion, with
(a, 6gp) = 1. If µ∞ denotes the roots of unity in K(gpm), consider the group
Cn,m := C ′n,mµ∞(K(gpm)). Define next Cgpm = Cfp∗npm as the closure of
Cn,m∩Up

gpm in Up
gpm where Up

gpm are the local principal units at K(gpm) for the
places over p. Define also Cf(p∗)n := lim

←−
m

Cfp∗npm , and

C(f) := lim
←−
n

Cfp∗n ,

where these limits are defined with respect to the norm maps.
The Geisser elliptic units over K are finally defined by taking the norm map

from K(f) to K of C(f). We will denote these elliptic units by CRob
.
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Lemma 3.3. The Geisser elliptic units coincide with the elliptic units 2.4.

Proof. First of all, notice that

NK(f)/K lim
←−
n,m

∼= lim
←−
n,m

NK(f)/K ,

where the projective limit (with respect to the norm maps) on the left is taken
over K(fpm(p∗)n), and on the right over K(E[pmp∗n]). This equality comes
from the fact that K(E[g]) = K(g) if f divides g.

From the above we obtain

NK(f)/K lim
←−
n

lim
←−
m

Up
f(p∗)npm = lim

←−
n

lim
←−
m

NK(f)/KUp
f(p∗)npm = lim

←−
n

NK(f)/KUp
fpn = lim

←−
n

Un
p ;

the second equality holds because the projectives limits coming from the bicom-
plex Un,m := NK(f)/KUfp∗mpn coincide, and as K(f)/K is unramified at p we
obtain the last equality. We compare now the definitions of elliptic units. For
similar reasons we have,

CRob
= lim

←−
n

lim
←−
m

NK(f)/KCf(p∗)npm = lim
←−
n

NK(f)/KCfpnp∗n .

Let us observe that NK(f)/KCn,n coincides with Cn possibly up to roots of unity.
Thus as K(f)/K in unramified at primes above p, Cn and NK(f)/KCf(p∗)npn

could differ only up to roots of unity. Since we take intersection with the
principal units at places over p, where the norm map of K(f)/K is surjective,
both definitions must coincide.

We recall now some facts on p-adic L-functions in our situation. Let us
denote by D the ring of integers of the maximal unramified extension of Kp. All
characters of finite groups of order prime to p have values in D.

Observe that the Galois group Γ := Gal(K∞/K(E[p])) is isomorphic to a
product Γ1×Γ2 of two copies of Zp, Γ1 being the Galois group Gal(K(E[p∞])/K(E[p]))
and Γ2 the analogue for p∗. Let γi be a generator of Γi, and let κi be the char-
acter of Γi giving the action on the torsion points of the elliptic curve. Denote
by ui the image of γi in Zp.

We recall the connections between measures and power series. We have the
isomorphism

Λ(Γ1 × Γ2,D) ∼= D[[T1, T2]],

mapping a measure µ in Λ(Γ,D) to the power series

G(T1, T2) :=
∫

Γ

(1 + T1)α(1 + T2)βdµ(α, β).

In particular G(ua
1 − 1, ub

2 − 1) is equal to
∫

(ua
1)α(ub

2)
βdµ(α, β) =

∫
κa

1κb
2dµ.

Let µ be a measure in Λ(G,D) for G = Gal(K(E[p∞])/K), and let χ be a
character of Gal(K(E[p])/K). We denote the power series associated to the
χ-component of µ by G(χ−1, T1, T2). Then we obtain that

G(χ−1, ua
1 − 1, ub

2 − 1) =
∫

G
κa

1κb
2χµ =

∫

Γ1×Γ2

κa
1κb

2dχ(µ).
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We denote G(χκa
1κb

2, T1, T2) by G(χ, T1, T2) for a character χκa
1κ

b
2 of G (in par-

ticular for the characters ψΩi
κl, see [9, §4 and §9])

By the interpolation theorem [7, theorem 4.14], G(χ, ua
1 − 1, ub

2 − 1) is a
p-adic interpolation of L(χκb−a

1 ,−b) = L(χκ−a
1 κ−b

2 , 0), at least for 0 ≤ −b ≤ a.

Proposition 3.4. With the hypotheses of theorems 2.3 and 3.2, the length of
the coimage of ι ◦ rp(Rθ) in H1(Kp,MθZp

(w + l + 1)) is equal to the p-adic
valuation of

G(ψΩ1κ
l, u−aθ−1

1 − 1, u−bθ−1
2 − 1)G(ψΩ2κ

l, u−bθ−1
1 − 1, u−aθ−1

2 − 1).

Proof. It is easy to check any element in the module (C∞ ⊗ MΩi(w + l))G is
an elliptic unit. This is because MΩi

is a free Zp-module of rank 1 endowed
with a Galois action ([8, proposition 2.4.6]) and the coinvariants come from the
representation HomZp(MΩi(w + l),Zp). Therefore

eΩi
(C∞) = eΩi

((C∞ ⊗MΩi
(w + l))G).

The comparison map between the image of ep and of rp, see [3, corollary 5.9 ],
yields

ep((C∞ ⊗MθZp(w + l))G) = rp(Rθ ⊗ Zp).

Hence, we obtain the following equality

ι ◦ ep(C∞) = ι ◦ rp(Rθ ⊗ Zp).

The lenght of the coimage of eΩi(C∞) is known factor by factor: it is equal to
G(ψΩiκ

l, u−ai−1
1 − 1, u−bi−1

2 − 1). The direct decomposition of ep and theorem
3.2 permit then to conclude.

Remark 3.5. In the context of the Tamagawa number conjecture with w = 1
for simplicity, (i.e. in the case of an elliptic curve with CM OK defined over
K), the conjecture follows from controlling the image of Rθ by the Beilinson
regulator (which gives us the value of the L-function associated to the elliptic
curve at −l (up to Z∗(p))) and the coimage of rp(Rθ) in H1(K, TpE(l + 1)) [11].
We prove above that the coimage of ι ◦ rp(Rθ) is related with some values of
the p-adic L-functions associated naturally to E.

Corollary 3.6. † Under the technical conditions of the above proposition we
have the following inclusion of Zp-modules in Qp,

detZpH2
et(OK [1/S],MθZp(w + l + 1)) ⊆

p−vp(G(ψΩ1κl,u
−aθ−1
1 −1,u

−bθ−1
2 −1)G(ψΩ2κl,u

−bθ−1
1 −1,u

−aθ−1
2 −1))Zp.

Moreover, if the Jannsen conjecture is true for these motives, (see [2, Appendix
B] for the formulation and for some positive answers), an upper bound for
#H2

et(OK [1/S], MθZp(w + l + 1)) is given by,

pvp(G(ψΩ1κl,u
−aθ−1
1 −1,u

−bθ−1
2 −1)G(ψΩ2κl,u

−bθ−1
1 −1,u

−aθ−1
2 −1)).

†We use the determinant formulae as in [10].
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Proof. Set Hi
p := Hi

et(OK [1/S],MθZp(w + l + 1)). We know that detZp
H2

p
∼=

detZp(H1
p/rp(Rθ ⊗ Zp)), and, by the above proposition, we have,

detZp(H1(Kp,MθZp(w + l + 1))/ι(rp(Rθ ⊗ Zp))) ⊆

p−vp(G(ψΩ1κl,u
−aθ−1
1 −1,u

−bθ−1
2 −1)G(ψΩ2κl,u

−bθ−1
1 −1,u

−aθ−1
2 −1))Zp.

Let us consider the injective map

i : H1
p/(rp(Rθ ⊗ Zp) + Ker(ι)) → (H1(Kp,MθZp

(w + l + 1))/ι(rp(Rθ ⊗ Zp)))

and the short exact sequence,

0 → rp(Rθ ⊗ Zp) + Ker(ι)
rp(Rθ ⊗ Zp)

→ H1
p

rp(Rθ ⊗ Zp)
→ H1

p

rp(Rθ ⊗ Zp) + ker(ι)
→ 0.

From the determinant property for short exact sequences follows that

detZp(
H1

p

rp(Rθ ⊗ Zp)
) ⊆ detZp(H1

p/(rp(Rθ ⊗ Zp) + Ker(ι)))

⊆ detZp(H1(Kp, MθZp(w + l + 1))/ι(rp(Rθ ⊗ Zp))).

For the first inclusion we use that ker(ι) has no torsion of H1
p and that by

assumption ι(rp(Rθ ⊗Zp)) 6= 0. To obtain the second inclusion one checks that
detZp(coker(ι)) = p−αZp with α ≥ 0.
Let us recall that if A is finite and detZpA = p−δZp then #A = pδ, thus we
obtain an upper bound for H2

p when it is finite.

Corollary 3.7. Denote by PolQp the elliptic polylogarithm sheaf (see [11, §3.2]).
Let βθ be as in §2. We have ([3, theorem 5.2])

rp(Denw,l,θ(βθ)) = −NK/Qf
2(w+2l)
θ KM(β∗θPolQp)w+2l

in H1
et(OS , Symw+2lTpE⊗Qp), where KM is the projector map ([6, §2.8]). Then

under the technical condition of the proposition 3.4 the length of the coimage of
the OK ⊗ Zp-module generated by the specialization of the polylogarithm sheaf,
ι(KM(β∗θPolQp)w+2lOK ⊗ Zp), is the p-adic valuation of

(Pp(ψθ,−l)((2l+w)!)−1)2G(ψΩ1κl, u
−aθ−1
1 −1, u

−bθ−1
2 −1)G(ψΩ2κl, u

−bθ−1
1 −1, u

−aθ−1
2 −1).

Proof. We only need to remark that the difference between the p-adic valuation
of ξθ and Denw,l,θ(βθ) is the factor Pp(ψθ,−l)/(2l+w)! (see the definition of ξθ

given after theorem 2.3). The length of the coimage of ι(KM(β∗θPolQp)w+2lOK⊗
Zp) in H1(Kp,MθZp(w + l +1)), is (under the conditions of proposition 3.4) the

length of the coimage of Pp(ψθ)
(2l+w)! ι(rp(Rθ⊗Zp)) in H1(Kp,MθZp(w+ l+1)). This

cohomology group decomposes into two pieces, H1(Kp, MΩiZp)(w+ l+1)) with
i = 1, 2. From the proof of [8, theorem 3.3.1], we see that the length of the
coimage in each piece is

vp(Pp(ψθ,−l)((2l + w)!)−1G(ψΩiκ
l, u−ai−1

1 − 1, u−bi−1
2 − 1),

obtaining the result.
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