

This is the **accepted version** of the journal article:

Carro, María J.; Martín i Pedret, Joaquim. «Endpoint estimates from restricted rearrangement inequalities». Revista Matemática Iberoamericana, Vol. 20, Núm. 1 (2004), p. 131-150. DOI 10.4171/RMI/383

This version is available at https://ddd.uab.cat/record/271880 under the terms of the $\bigcirc^{\mbox{\footnotesize{IN}}}$ license

Endpoint estimates from restricted rearrangement inequalities*

María J. Carro and Joaquim Martín

Abstract

Let T be a sublinear operator such that $(Tf)^*(t) \leq h(t, \|f\|_1)$ for some positive function h(t,s) and every function f such that $\|f\|_{\infty} \leq 1$. Then, we show that T can be extended continuously from a logarithmic type space into a weighted weak Lorentz space. This type of result is connected with the theory of restricted weak type extrapolation and extends a recent result of Arias-de-Reyna concerning the pointwise convergence of Fourier series to a much more general context.

1 Introduction

Let S be the Carleson maximal operator,

$$Sf(x) = \sup_{n} |S_n f(x)|,$$

where $S_n f(x) = (D_n * f)(x)$, being D_n the Dirichlet kernel on $\mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}$ and $f \in L^1(\mathbb{T})$. Then, it was proved in [16] that, for every measurable set $E \subset \mathbb{T}$,

$$(S\chi_E)^*(t) \le \frac{|E|}{t} \left(1 + \log^+ \frac{t}{|E|} \right). \tag{1}$$

This result can be improved using the following lemma due to Antonov (see [1]).

 $^{^{*}\}mathrm{This}$ work has been partially supported by the DGICYT BFM2001-3395 and by CIRIT 1999SGR 00061.

Keywords and phrases: Rearrangement inequality, Real interpolation, Banach couples, Extrapolation theory, Carleson's operator.

²⁰⁰⁰ Mathematics Subject Classification: 46M35, 47A30.

Lemma 1.1 (Antonov) Let $S^N f(x) = \sup_{0 \le n \le N} |S_n f(x)|$. Then, for every $\varepsilon > 0$, every $N \in \mathbb{N}$ and every $0 \le f(x) \le 1$, there exists a measurable set F such that $|F| = ||f||_1$ and $||S^N (f - \chi_F)||_{\infty} \le \varepsilon$.

Using this lemma and the above estimate on characteristic functions we can conclude that

$$(Sf)^*(t) \le \frac{\|f\|_1}{t} \left(1 + \log^+ \frac{t}{\|f\|_1}\right),$$
 (2)

for every $f \in L^1$ such that $||f||_{\infty} \leq 1$.

Antonov's lemma has been extended in [17] to more general operators, namely to any maximal operator of the form

$$Tf(x) = \sup_{j} |K_j * f(x)|,$$

where $K_j \in L^1$, and therefore, (2) holds for any operator T of the above form such that T satisfies (1). Examples of such operators are given in [17] in the setting of differentiation of integrals and the Halo conjecture.

In particular, (and this is the connection with the weak extrapolation theory, see [11] and [18]) if T is an operator such that, for every 1 ,

$$(Tf)^*(t)t^{1/p} \le \frac{1}{(p-1)^m} \|f\|_p,$$

then, for every $f \in L^1$ such that $||f||_{\infty} \leq 1$,

$$(Tf)^*(t) \le \frac{1}{(p-1)^m} \frac{\|f\|_1^{1/p}}{t^{1/p}},$$

and taking the infimum in p, we conclude that

$$(Tf)^*(t) \le \frac{\|f\|_1}{t} \left(1 + \log^+ \frac{t}{\|f\|_1}\right)^m.$$
 (3)

Our main purpose (see Theorem 3.1) is to show that if T is a sublinear operator satisfying

$$(Tf)^*(t) \leq h(t, ||f||_1),$$

for some positive function h and every $||f||_{\infty} \leq 1$, then

$$T: Q_D \longrightarrow M(R)$$

is bounded, where $h(t, s) \leq D(s)R(t)$,

$$Q_D = \{f; f = \sum_k e_k f_k, \|f_k\|_{\infty} \le 1, \|f\|_{Q_D} < \infty\},$$

with

$$||f||_{Q_D} = \inf \left\{ \sum_k e_k D(||f_k||_1) \left(1 + \log \frac{1}{a_k} \right); \sum_k a_k = 1, a_k \ge 0, f = \sum_k e_k f_k \right\},$$

and

$$||f||_{M(R)} := \sup_{t>0} \frac{f^*(t)}{R(t)}.$$

In particular, if $D(s) = s\left(1 + \log^{+}\frac{1}{s}\right)$ and $T = S^*$, then $Q_D = QA$, where QA is, up to now, the biggest space where the pointwise convergence of the Fourier series is known to hold (see [2]).

Our proof turns out to be very simple and is based in the following basic result (see [7]):

Lemma 1.2 (Basic result:) Let $f = \sum_n f_n$ with $f_n \ge 0$ and let $c_n > 0$ be such that $\sum_n c_n = 1$. Then

$$f^*(3t) \le \sum_n \left(f_n^*(t) + \frac{1}{t} \int_{c_n t}^t f_n^*(s) ds \right).$$

¿From it, the main result of this paper, which covers as a particular case the result of Arias-de-Reyna, can be immediately obtained.

The point now is that the space Q_D is difficult to handle and, therefore, it is convenient for the applications to find spaces of Logarithmic type L such that $L \subset Q_D$. In [2], it is proved that the space $L \log L \log \log \log L(\mathbb{T}) \subset QA$. We shall extend this result to our general context.

Another situation we consider in this work is the following: Let Ω be any domain in \mathbb{R}^n and let $W^{1,p}(\Omega)$ be the classical Sobolev space and set $W^{1,p}_0(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$.

$$||f||_{W_0^{1,p}(\Omega)} = ||f||_p + ||\nabla f||_p,$$

where ∇f is the gradient of f. Let T be a sublinear operator such that

$$T: W_0^{1,p}(\Omega) \longrightarrow L^{p,\infty}$$

is bounded with constant C_p for every $p \in I \subset [1, \infty)$. Then, for every f such that $||f||_{\infty} + ||\nabla f||_{\infty} \leq 1$, it holds that

$$(Tf)^*(t)t^{1/p} \leq C_p \left(\int_0^\infty f^*(t)^p + |\nabla f|^*(t)^p \, dt \right)^{1/p}$$

$$\leq C_p \left(\int_0^\infty f^*(t) + |\nabla f|^*(t) \, dt \right)^{1/p} .$$

Consequently,

$$(Tf)^*(t) \le \inf_{p \in I} \left(C_p \left(\frac{\|f\|_{W_0^{1,1}(\Omega)}}{t} \right)^{1/p} \right) := h(t, \|f\|_{W_0^{1,1}(\Omega)}).$$

Then we show that the technique developed in Section 2 can also be extended to cover this situation and, in fact, our theory can be presented in the setting of compatible pairs of Banach spaces $\bar{A} = (A_0, A_1)$ using some of the ideas developed in [6]; that is, our operator T will be a sublinear operator acting on elements of the sum space $A_0 + A_1$ and taking values on the set of measurable functions:

$$T: A_0 + A_1 \longrightarrow L^0(\mu).$$

Our first task is to extend the notion of characteristic functions to the setting of pairs. This will be done in Section 3.

As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant C (independent of all parameters involved) so that $(1/C)f \leq g \leq Cf$, while the symbol $f \leq g$ means that $f \leq Cg$. (\mathcal{M}, μ) will be a totally σ -finite resonant measure space and we shall denote by $L^0(\mu)$ the class of measurable functions that are finite μ a.e., endowed with the topology of the convergence in measure. We write $\|g\|_p$ to denote $\|g\|_{L^p(\mu)}$, $\lambda_g^{\mu}(y) = \mu(\{x \in \mathcal{M} : |g(x)| > y\})$ is the distribution function of g with respect to the measure μ and $g_{\mu}^*(t) = \inf\{s : \lambda_g^{\mu}(s) \leq t\}$ is the decreasing rearrangement (we refer the reader to [3] for further information about distribution functions and decreasing rearrangements).

In what follows we shall omit the indices μ whenever it is clear the measure we are working with.

2 Main results

First of all, given a positive concave function D such that D(0+) = 0, we define the space

$$\Lambda(D) = \left\{ f; \ \|f\|_{\Lambda(D)} = \int_0^\infty D(\lambda_f(y)) \, dy = \int_0^\infty f^*(s) dD(s) \right\}.$$

Then, we have that the following properties holds:

Lemma 2.1 Given a positive concave function D such that D(0+) = 0, it holds that

$$\Lambda(D) \subset L^1 + L^{\infty},$$

and

$$Q_D \subset \Lambda(D)$$
,

with continuous embeddings.

Proof: The first embedding is wellknown, since $\min(1, s) \leq D(s)$ and hence

$$||f||_{L^{1}+L^{\infty}} = \int_{0}^{1} f^{*}(s)ds = \int_{0}^{\infty} \min(\lambda_{f}(y), 1)dy \leq \int_{0}^{\infty} D(\lambda_{f}(y)) dy$$
$$= ||f||_{\Lambda(D)}.$$

For the second embedding, let us observe that if $||f||_{\infty} \leq 1$, then

$$||f||_{\Lambda(D)} = \int_0^1 D(\lambda_f(y))dy \le D\left(\int_0^1 \lambda_f(y)dy\right) = D(||f||_1),$$

and hence, if $f = \sum_k e_k f_k$, with $||f_k||_{\infty} \leq 1$, we obtain that

$$||f||_{\Lambda(D)} \le \sum_{k} e_{k} ||f_{k}||_{\Lambda(D)} \le \sum_{k} e_{k} D(||f_{k}||_{1}) \le ||f||_{Q_{D}}.$$

Now we are ready to formulate our first main result:

Theorem 2.1 Let T be a sublinear operator such that

$$T: L^1(\mu) + L^{\infty}(\mu) \longrightarrow L^0(\mu)$$

is bounded, and let us assume that, for every $f \in L^1 \cap L^\infty$ with $||f||_\infty \leq 1$,

$$(Tf)^*(t) \le h(t, ||f||_1),$$

for some positive function $h:(0,\infty)\times(0,\infty)\to(0,\infty)$ such that for every t>0, the function $h(t,\cdot)$ is increasing and, for every s>0, $t\cdot h(t,s)$ is also an increasing function in the variable t. Then, if D and R are such that

$$h(t,s) \le D(s)R(t),$$

we have that

$$T: Q_D \longrightarrow M(R)$$

is bounded.

Although no conditions are assumed on R, it is clear that since $t \cdot h(t, s)$ is increasing in the variable t, we can assume without loss of generality that this condition also holds for R.

Proof: Let $f \in Q_D$ and let us write $f = \sum_k e_k f_k$ with $||f_k||_{\infty} \leq 1$. Then, by the previous lemma, we have that the convergence of the series is in $L^1 + L^{\infty}$ and therefore, we can conclude that

$$(Tf)^*(t) \le \left(\sum_k e_k Tf_k\right)^*(t).$$

Using now the basic result together with the hypothesis, we obtain that, for every sequence (a_k) of positive numbers such that $\sum_k a_k = 1$,

$$(Tf)^{*}(3t) \leq \sum_{k} e_{k} (Tf_{k})^{*}(t) + \frac{1}{t} \sum_{k} e_{k} \int_{a_{k}t}^{t} (Tf_{k})^{*}(s) ds$$

$$\leq \sum_{k} e_{k} h(t, \|f_{k}\|_{1}) + \frac{1}{t} \sum_{k} e_{k} \int_{a_{k}t}^{t} h(s, \|f_{k}\|_{1}) ds.$$

And, using the properties of the function h, we conclude that

$$(Tf)^*(3t) \le \sum_k e_k D(\|f_k\|_1) R(3t) + R(3t) \sum_k e_k D(\|f_k\|_1) \log \frac{1}{a_k},$$

and hence,

$$||Tf||_{M(R)} = \sup_{t} \frac{(Tf)^*(t)}{R(t)} \le ||f||_{Q_D}.$$

As was mentioned in the introduction, the point now is to analyze the space Q_D to make it useful for the applications. To this end, we have to introduce the following logarithmic spaces:

Definition 2.1 Let φ be a positive and concave function such that $\varphi(0^+) = 0$.

(1) The space $L \log |\log L|(\varphi)$ is defined as the set of measurable functions f such that

$$||f||_{L\log|\log L|(\varphi)} := \int_0^\infty f^*(s) (1 + \log(|\log s| + e)) d\varphi(s) < \infty.$$
 (4)

(2) The space $L \log \log L(\varphi)$ is defined as the set of measurable functions f such that

$$||f||_{L\log\log L(\varphi)} := \int_0^\infty f^*(s) \left(1 + \log^+ \log^+ \frac{1}{s}\right) d\varphi(s) < \infty.$$
 (5)

(3) The space $L \log \log \log L(\varphi)$ is defined as the set of measurable functions f such that

$$||f||_{L\log\log\log L(\varphi)} := \int_0^\infty f^*(s) \left(1 + \log^+ \log^+ \log^+ \frac{1}{s}\right) d\varphi(s) < \infty.$$
 (6)

We also need the two following technical lemmas:

Lemma 2.2 Let $\Phi(s) = s(1 + \log^{+}\frac{1}{s})$ and let f be such that $||f||_{\Lambda(\varphi)} = 1$, then

$$\int_0^\infty \Phi\left(f^*(s)\varphi(s)\right) \frac{d\varphi(s)}{\varphi(s)} \simeq \int_0^\infty \Phi\left(s\varphi\left(\lambda_f(s)\right)\right) \frac{ds}{s} \preceq \|f\|_{L\log|\log L|(\varphi)|}.$$

Proof: To show the first equivalence, let $H = f^* \circ \varphi^{-1}(s)$. Then, one has that

$$\lambda_H(s) = \varphi(\lambda_f(s))$$

and, by Proposition 4.3 of [19], we have that

$$\int_{0}^{\infty} \Phi\left(s\lambda_{H}(s)\right) \frac{ds}{s} \simeq \int_{0}^{\infty} \Phi\left(sH(s)\right) \frac{ds}{s}.$$

A simple change of variable ends the proof of the first part.

For the second part, let us consider the sets

$$E_0 = \left\{ s < 1 : \varphi(s) f^*(s) > \left(\log \frac{1}{s} + e \right)^{-2} \right\},$$

and

$$E_1 = \left\{ s \ge 1 : \varphi(s) f^*(s) > (\log s + e)^{-2} \right\}.$$

Then, we can write

$$\int_{0}^{\infty} \Phi\left(f^{*}(s)\varphi(s)\right) \frac{d\varphi(s)}{\varphi(s)}$$

$$= \left(\int_{E_{0}} + \int_{(0,1)\backslash E_{0}} + \int_{E_{1}} + \int_{(1,\infty)\backslash E_{1}}\right) \Phi\left(f^{*}(s)\varphi(s)\right) \frac{d\varphi(s)}{\varphi(s)}$$

$$= I_{1} + I_{2} + I_{3} + I_{4}.$$

Now,

$$I_1 = \int_{E_0} f^*(s) \left(1 + \log^+ \frac{1}{f^*(s)\varphi(s)} \right) d\varphi(s)$$

$$\leq \int_0^1 f^*(s) \left(1 + 2\log\left(\log\frac{1}{s} + e\right) \right) d\varphi(s) \leq 2 \|f\|_{L\log|\log L|(\varphi)|}.$$

On the other hand, since Φ is increasing, $d\varphi(s) \leq (\varphi(s)/s)ds$ and $1 = ||f||_{\Lambda(\varphi)} \leq ||f||_{L\log|\log L|(\varphi)}$, we obtain that

$$I_{2} \leq \int_{0}^{1} \frac{\left(1 + 2\log\left(\log\frac{1}{s} + e\right)\right)}{\left(\log\frac{1}{s} + e\right)^{2}} \frac{d\varphi(s)}{\varphi(s)}$$

$$\leq \int_{0}^{1} \frac{\left(1 + 2\log\left(\log\frac{1}{s} + e\right)\right)}{s\left(\log\frac{1}{s} + e\right)^{2}} ds \leq \|f\|_{L\log|\log L|(\varphi)}.$$

Similarly,

$$I_3 \le \int_1^\infty f^*(s) \left(1 + 2\log\left(\log s + e\right)\right) d\varphi(s) \le \|f\|_{L\log|\log L|(\varphi)},$$

and

$$I_4 \le \int_1^\infty \frac{\left(1 + 2\log(\log s + e)\right)}{s\left(\log s + e\right)^2} ds \le \|f\|_{L\log|\log L|(\varphi)}. \quad \Box$$

Lemma 2.3 ([9]) Let w be a positive and measurable function and let φ be a positive and concave function such that $\varphi(0^+) = 0$. Then

$$\int_0^\infty \varphi(\lambda_f(s)) w(s) ds = \int_0^\infty \left(\int_0^{f^*(s)} w(t) dt \right) d\varphi(s).$$

Theorem 2.2 Let D be any positive and concave function D such that $D(0^+) = 0$. Then,

$$L \log |\log L|(D) \subset Q_D$$
.

2) If $s \leq D(s)$, then

$$L \log \log L(D) \subset Q_D$$
.

3) If $s \leq D(s)$ and, for every $0 \leq s \leq 1$, $D(s^2) \leq sD(s)$, then

$$L \log \log \log L(D) \subset Q_D$$
.

Proof: 1) Let $f \in L \log |\log L|(D)$ be such that $||f||_{\Lambda(D)} = 1$ and let us write

$$f = \sum_{i \in \mathbb{Z}} 2^{i+1} f_i,$$

where $f_i = \frac{1}{2^{i+1}} f \chi_{\{2^i < |f| \le 2^{i+1}\}}$. Then, for every sequence of positive number $(a_i)_i$ such that $\sum_{i \in \mathbb{Z}} a_i = 1$, we have that

$$||f||_{Q_D} \leq \sum_{i \in \mathbb{Z}} 2^i D(||f_i||_1) \left(1 + \log \frac{1}{a_i}\right)$$
$$\leq \sum_{i \in \mathbb{Z}} 2^i D(\lambda_f(2^i)) \left(1 + \log \frac{1}{a_i}\right).$$

Taking now

$$a_i = \frac{2^i D(\lambda_f(2^i))}{\sum_i 2^i D(\lambda_f(2^i))},$$

we conclude that

$$||f||_{Q_D} \le \int_0^\infty D(\lambda_f(s)) \left(1 + \log \frac{1}{sD(\lambda_f(s))}\right) ds,$$

and the result now follows by Lemma 2.2. \square

2) Since $s \leq D(s)$ we have that $L \log \log L(D) \subseteq \Lambda(D) \subseteq L^1$. Let $f \in L \log \log L(D)$ be such that $||f||_{\Lambda(D)} = 1$, and decompose f as

$$f = f\chi_{\{|f| \le 1\}} + \left(\sum_{i>0} 2^{i+1} f_i\right),$$

where $f_i = \frac{1}{2^{i+1}} f \chi_{\{2^i < |f| \le 2^{i+1}\}}$. Then, for every $(a_i)_i$ such that $\sum_i a_i = 1$,

$$||f||_{Q_D} \leq D(||f||_1) + \sum_{i>0} 2^i D(\lambda_f(2^i)) \left(1 + \log \frac{1}{a_i}\right),$$

and taking $(a_i)_i$ as in 1), we get

$$||f||_{Q_D} \leq 1 + \int_1^\infty D(\lambda_f(s)) \left(1 + \log \frac{1}{sD(\lambda_f(s))}\right) ds \leq 1 + I.$$

To estimate I, it follows, by Lemma 2.2, that

$$I \leq \int_{\{f^* > 1\}} f^*(s) \left(1 + \log \frac{1}{f^*(s)D(s)} \right) dD(s),$$

and since $s\lambda_{f^*}(s) \leq 1$, we get that $\lambda_{f^*}(s) \leq 1$ if $s \geq 1$. Hence, $\{f^* \geq 1\} \subseteq [0,1]$ and using the same argument than in the proof of Lemma 2.2, it follows that

$$I \leq \int_0^1 f^*(s) \left(1 + \log \frac{1}{f^*(s)D(s)} \right) dD(s) \leq ||f||_{L \log \log L(D)}.$$

3) In this case, we take $f \in L \log \log \log L(D)$ such that $||f||_{\Lambda(D)} = 1$ and we write

$$f = f\chi_{\{|f| \le 2\}} + \sum_{i=0}^{\infty} 2^{2^{i+1}} f_i,$$

where

$$f_i = \frac{1}{2^{2^{i+1}}} f \chi_{\{2^{2^i}|f| \le 2^{2^{i+1}}\}}.$$

Then, if $\sum_i a_i = 1$,

$$||f||_{Q_D} \leq 1 + \sum_{i=0}^{\infty} 2^{2^{i+1}} D(||f_i||_1) \left(1 + \log \frac{1}{a_i}\right)$$

$$\leq 1 + \sum_{i=0}^{\infty} 2^{2^{i+1}} D\left(\frac{1}{2^{2^{i+1}}} \sum_{j=2^i}^{2^{i+1}-1} 2^j \lambda_f(2^j)\right) \left(1 + \log \frac{1}{a_i}\right),$$

and since D is concave,

$$||f||_{Q_D} \le 1 + \sum_{i=0}^{\infty} 2^{2^{i+1}} \sum_{j=2^i}^{2^{i+1}-1} D\left(\frac{2^j}{2^{2^{i+1}}} \lambda_f(2^j)\right) \left(1 + \log \frac{1}{a_i}\right).$$

Now, using D(s)/s decreases, and that $2^{i} \leq j < 2^{i+1}$, we obtain that

$$2^{2^{i+1}} D\left(\frac{2^j}{2^{2^{i+1}}} \lambda_f(2^j)\right) \le \left(2^j\right)^2 D\left(\frac{\lambda_f(2^j)}{2^j}\right).$$

Now we take $a_i = 6/(\pi^2(i+1)^2)$, and hence

$$||f||_{Q_D} \leq 1 + \sum_{i=0}^{\infty} \sum_{j=2^i}^{2^{i+1}-1} \left(2^j\right)^2 D\left(\frac{\lambda_f(2^j)}{2^j}\right) \left(1 + \log(i+1)\right)$$

$$\leq \sum_{i=0}^{\infty} \sum_{j=2^i}^{2^{i+1}-1} (2^j)^2 D\left(\frac{\lambda_f(2^j)}{2^j}\right) \left(1 + \log^+ \log^+ \log^+ 2^j\right)$$

$$\leq \int_1^{\infty} sD\left(\frac{\lambda_f(s)}{s}\right) \left(1 + \log^+ \log^+ \log^+ s\right) ds.$$

Since $s\lambda_f(s) \leq 1$, we get that

$$\frac{s}{\lambda_f(s)} \le \left(\frac{1}{\lambda_f(s)}\right)^2$$

and since sD(1/s) increases

$$sD\left(\frac{\lambda_f(s)}{s}\right) \le \frac{1}{\lambda_f(s)}D\left((\lambda_f(s))^2\right).$$

Moreover, since $\lambda_f(s) \leq s\lambda_f(s) \leq 1$, if $s \geq 1$, by condition (ii)

$$\frac{1}{\lambda_f(s)} D\left((\lambda_f(s))^2 \right) \leq D\left(\lambda_f(s) \right).$$

Using this estimate and Lemma 2.3 we get

$$I \leq \int_{1}^{\infty} D(\lambda_{f}(s)) \left(1 + \log^{+} \log^{+} \log^{+} s\right) ds$$

$$\leq \int_{0}^{\infty} D(\lambda_{f}(s)) \left(1 + \log^{+} \log^{+} \log^{+} s\right) ds$$

$$= \int_{0}^{\infty} \left(\int_{0}^{f^{*}(s)} \left(1 + \log^{+} \log^{+} \log^{+} t\right) dt\right) dD(s).$$

Now, since $(1 + \log^+ \log^+ \log^+ t)$ is increasing and $sf^*(s) \le 1$

$$I \leq \int_{0}^{\infty} f^{*}(s) \left(1 + \log^{+} \log^{+} \log^{+} f^{*}(s)\right) dD(s)$$

$$\leq \int_{0}^{\infty} f^{*}(s) \left(1 + \log^{+} \log^{+} \log^{+} \frac{1}{s}\right) dD(s). \quad \Box$$

3 Extension to arbitrary compatible pairs

Let $\bar{A} = (A_0, A_1)$ be a **compatible pair** of Banach spaces, that is, we assume that there is a topological vector space \mathcal{U} such that $A_i \subset \mathcal{U}$, i = 0, 1, continuously. In what follows we drop the terms "compatible" and "Banach" and refer to a compatible Banach pair simply as a "pair".

The Peetre K-functional (see [3], [4] and [5]) associated with a pair \bar{A} is defined, for each $a \in A_0 + A_1$ and t > 0, by

$$K(a,t) = K(a,t; \bar{A}) = \inf \{ \|a_0\|_{A_0} + t \|a_1\|_{A_1} : a = a_0 + a_1, a_i \in A_i \}.$$

It is easy to see that K(t, a) is a nonnegative and concave function of t > 0, (and thus also continuous). Therefore

$$K(a,t;\bar{A}) = K(a,0^+;\bar{A}) + \int_0^t k(a,s;\bar{A}) ds,$$

where the k-functional, $k(a, s; \bar{A}) = k(a, s)$, is a uniquely defined, nonnegative, decreasing and right-continuous function of s > 0.

In order to find the analogue of the set $\{f \in L^1; \|f\|_{\infty} \leq 1\}$ in the setting of pairs, let us recall that the Gagliardo completion \tilde{A}_0 and \tilde{A}_1 of a pair \bar{A} is defined by $\|a\|_{\tilde{A}_0} = \sup_t K(t, a; \bar{A})$ and $\|a\|_{\tilde{A}_1} = \sup_t K(t, a; \bar{A})/t$ (see [3]).

Definition 3.1 Given a pair \bar{A} , we say that a is a characteristic element of \bar{A} if $a \in \tilde{A}_0 \cap \tilde{A}_1$ and $\|a\|_{\tilde{A}_1} \leq 1$.

The collection of characteristic elements of a pair \bar{A} will be denoted by $C(\bar{A})$.

The following lemma was proved in [6] and it is fundamental for our purpose.

Lemma 3.1 Given an element $a \in A_0 + A_1$ such that $K(a, 0^+; \bar{A}) = 0$, there exist a constant γ (depending only on \bar{A}) and a collection of characteristic elements $(a_i)_{i \in \mathbb{Z}}$ such that

$$a = \gamma \sum_{i \in \mathbb{Z}} 2^i a_i$$
 (convergence in $A_0 + A_1$),

and

$$||a_i||_{\tilde{A}_0} \le \lambda_{k(a,\cdot)}(2^i).$$

We say that $a = \gamma \sum_{i=-\infty}^{\infty} 2^i a_i$ is a dyadic decomposition of a.

Definition 3.2 ([6]) Given a pair $\bar{A} = (A_0, A_1)$ and a concave function φ , the minimal Lorentz space, $\Lambda(\varphi; \bar{A})$, is the set of elements $a \in A_0 + A_1$ such that $K(a, 0^+; \bar{A}) = 0$ and

$$||a||_{\Lambda(\varphi;\bar{A})} = \int_0^\infty k(a,s;\bar{A}) \, d\varphi(s) < \infty.$$

If \bar{A} is the classical pair $(L^1(\nu), L^{\infty}(\nu))$, then $k(a, s) = f^*(s)$ and hence $\Lambda(\varphi; \bar{A}) = \Lambda(\varphi)$ is the classical Lorentz spaces defined in the previous section.

Definition 3.3 Given a pair \bar{A} , and a quasi-Banach lattice $B \subset \Lambda(\varphi)$, we define $B(\varphi; \bar{A})$ as

$$B(\varphi; \bar{A}) = \left\{ a \in \Lambda(\varphi; \bar{A}); \|a\|_{B(\varphi; \bar{A})} := \|k(a, \cdot)\|_{B} < \infty \right\}. \tag{7}$$

Remark 3.1 Obviously,

$$L \log |\log L|(\varphi; \bar{A}) \subset L \log \log L(\varphi; \bar{A}) \subset L \log \log \log L(\varphi; \bar{A}),$$

and the above embeddings are, in general, strict. However, if \bar{A} is an ordered pair, that is $A_1 \subset A_0$) then k(a,t) = 0 if t > 1, and hence $L \log |\log L|(\varphi; \bar{A}) = L \log \log L(\varphi; \bar{A})$.

Definition 3.4 Let $h:(0,\infty)\times(0,\infty)\to(0,\infty)$ be such that for every t>0, the function $h(t,\cdot)$ is increasing and, for every s>0, $t\cdot h(t,s)$ is also an increasing function in the variable t. We say that a sublinear continuous operator

$$T: A_0 + A_1 \longrightarrow L^0(\mathcal{N}),$$

satisfies a restricted h- rearrangement inequality if, for every t>0 and every characteristic element a of \bar{A} ,

$$(Ta)^*(t) \le h(t, ||a||_{\tilde{A}_0}).$$
 (8)

Examples:

- 1) If $\bar{A} = (L^1(\nu), L^{\infty}(\nu))$, then $C(\bar{A}) = \{f \in L^1; ||f||_{\infty} \leq 1\}$, and hence, any sublinear operator satisfying (3), satisfies the condition assumed in the previous section.
- 2) Let Ω be any domain in \mathbb{R}^n and let $W^{1,p}(\Omega)$ be the classical Sobolev space

$$||f||_{W^{1,p}(\Omega)} = ||f||_p + ||\nabla f||_p,$$

where ∇f is the gradient of f. Set $W_0^{1,p}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. Then it is known, (see [10]), that if $\bar{A} = (W_0^{1,1}(\Omega), W_0^{1,\infty}(\Omega))$,

$$K(t,f;\bar{A}) \approx t \bigg(f^{**}(t) + |\nabla f|^{**}(t) \bigg),$$

and therefore $C(\bar{A}) = \{ f \in W_0^{1,1}(\Omega); \|f\|_{\infty} + \|\nabla f\|_{\infty} \leq 1 \}$. Hence, if T is a sublinear operator such that

$$T: W_0^{1,p}(\Omega) \longrightarrow L^{p,\infty}$$

is bounded with constant C_p for every $p \in I \subset [1, \infty)$, then,

$$(Tf)^*(t) \le \inf_{p \in I} \left(C_p \left(\frac{\|f\|_{W_0^{1,1}(\Omega)}}{t} \right)^{1/p} \right) := h(t, \|f\|_{W_0^{1,1}(\Omega)}).$$

3) Let us now consider, for example, the pair $\bar{A} = (\Lambda^1(w), L^{\infty})$, where $\Lambda^1(w)$ is the weighted Lorentz space introduced by Lorentz in [13] and defined by

$$||f||_{\Lambda^p(w)} = \left(\int_0^\infty f^*(t)^p w(t) dt\right)^{1/p} < \infty.$$

Let us recall that the weak type version of these spaces are defined by

$$||f||_{\Lambda^{p,\infty}(W)} = \sup_{t>0} f^*(t)W^{1/p}(t) < \infty.$$

Consider a sublinear operator T such that, for some weights w and W,

$$T: \Lambda^p(w) \longrightarrow \Lambda^{p,\infty}(W),$$

with constant less than or equal to C_p . Then, since it is known that $K(t, f; \bar{A}) = \int_0^t (f^*)_w^*(s) ds$, we can conclude that

$$C(\bar{A}) = \left\{ f \in \Lambda^1(w) : ||f||_{\infty} \le 1 \right\},\,$$

and therefore, for every characteristic element,

$$(Tf)^*(t) \le \inf_p \left(C_p \left(\frac{\|f\|_{\Lambda^1(w)}}{W(t)} \right)^{1/p} \right) := h(t, \|f\|_{\Lambda^1(w)}).$$

Let us now define the space

$$Q_D(\bar{A}) = \left\{ a = \sum_k e_k a_k; \|a_k\|_{\tilde{A}_1} \le 1, \|a\|_{Q_D(\bar{A})} < \infty \right\},\,$$

where

$$||a||_{Q_D(\bar{A})} = \inf \left\{ \sum_k e_k D(||a_k||_{\tilde{A}_0}) \left(1 + \log \frac{1}{a_k} \right); \sum_k a_k = 1, a_k \ge 0, a = \sum_k e_k a_k \right\}.$$

Then, we have the following extension of Theorem 2.1:

Theorem 3.1 Let $T: A_0 + A_1 \to L^0(\mathcal{N})$ be a sublinear operator satisfying a restricted h-rearrangement inequality. Then, if D and R are two positive functions such that D is concave, $D(0^+) = 0$ and

$$h(t,s) \le D(s)R(t),\tag{9}$$

we have that

$$T: Q_D(\bar{A}) \longrightarrow M(R)$$

is bounded.

Proof: Given $a \in \Lambda(D; \bar{A})$ such that $||a||_{\Lambda(D; \bar{A})} = 1$, we can decompose a as in Lemma 3.1

$$a = \gamma \sum_{i \in \mathbb{Z}} 2^i a_i.$$

Then, if $a_N = \gamma \sum_{i=-N}^{N} 2^i a_i$, we have that $Ta_N \to Ta$ in measure, and therefore, (see [12] p. 67)

$$(Ta_N)^*(t) \to (Ta)^*(t)$$
 a.e. $t > 0$. (10)

By the sublinearity of T we get that

$$(Ta_N)^*(t) \le \gamma \left(\sum_{i=-N}^N 2^i |Ta_i|\right)^*(t) \le \gamma \left(\sum_{i=-\infty}^\infty 2^i |Ta_i|\right)^*(t),$$

and hence

$$(Ta)^*(t) \le \gamma \left(\sum_{i=-\infty}^{\infty} 2^i |Ta_i|\right)^*(t) \text{ a.e. } t > 0.$$

The proof now follows as in Theorem 2.1. \square

We also have and analogue to Theorem 2.2:

Theorem 3.2 Let D be any positive and concave function D such that $D(0^+) = 0$ and $D(\infty) = \infty$. Then,

$$L \log |\log L|(D; \bar{A}) \subset Q_D(\bar{A}).$$

2) If $s \leq D(s)$, then

$$L \log \log L(D; \bar{A}) \subset Q_D(\bar{A}).$$

3) $s \leq D(s)$ and, for every $0 \leq s \leq 1$, $D(s^2) \leq sD(s)$, then $L \log \log \log L(D; \bar{A}) \subset Q_D(\bar{A}).$

Proof: 1) In this case, given $a \in \Lambda(D; \bar{A})$ such that $||a||_{\Lambda(D; \bar{A})} = 1$, we decompose a as in Lemma 3.1

$$a = \gamma \sum_{i \in Z} 2^i a_i,$$

and continue as in the proof of Theorem 2.2, 1).

2) Since $s \leq D(s)$ we have that $L \log \log L(D; \bar{A}) \subseteq \Lambda(D; \bar{A}) \subseteq \tilde{A}_0$. Let $a \in \Lambda(D; \bar{A})$ such that $||a||_{\Lambda(D; \bar{A})} = 1$, and decompose a as

$$a = \gamma \left(\sum_{i < 0} 2^i a_i + \sum_{i > 0} 2^i a_i \right) = \gamma \left(a^0 + \sum_{i > 0} 2^i a_i \right).$$

Then since $a^0 \in C(\bar{A})$, and $||a_i||_{\tilde{A}_0} \leq \lambda_{k(a,\cdot)}(2^i)$, we have that

$$||a||_{Q_D(\bar{A})} \leq D(||a^0||_{\tilde{A}_0}) + \int_1^\infty D(\lambda_{k(a,\cdot)}(s)) \left(1 + \log \frac{1}{sD(\lambda_{k(a,\cdot)}(s))}\right) ds$$

= $I_1 + I_2$.

Obviously

$$I_1 \preceq D\left(\|a\|_{\tilde{A}_0}\right) \leq D(\|a\|_{\Lambda(D;\bar{A})}) = D(1) \leq D(1) \|a\|_{L\log\log L(D;\bar{A})},$$

and to estimate I_2 , we follow as in the proof of Theorem 2.2, 2).

3) In this case, given $a \in L \log \log \log L(D; \bar{A})$ such that $||a||_{\Lambda(D; \bar{A})} = 1$, let $a = \gamma \sum_{i \in \mathbb{Z}} 2^i a_i$ be a dyadic decomposition. Then, if, for every $k \in \mathbb{N}$, $d_k = \sum_{i=2^k}^{2^{k+1}-1} 2^i$, we obtain that

$$a = \sum_{i=-\infty}^{0} 2^{i} a_{i} + \sum_{k=0}^{\infty} d_{k} \left(\frac{1}{d_{k}} \sum_{i=2^{k}}^{2^{k+1}-1} 2^{i} a_{i} \right) = a^{0} + \sum_{k=0}^{\infty} d_{k} A_{k},$$

where, it is immediate to see that both a^0 and A_k are characteristic elements. Then, for every $\sum_k c_k = 1$,

$$||a||_{Q_D(\bar{A})} \leq D(||a||_{\tilde{A}_0}) + \sum_{k=0}^{\infty} d_k D(||A_k||_{\tilde{A}_0}) \left(1 + \log \frac{1}{c_k}\right)$$

$$= \left(D(||a||_{\tilde{A}_0}) + I\right).$$

Since $a_i \in C(\bar{A})$ and D is subadditive, we have that

$$d_k D(\|A_k\|_{\tilde{A}_0}) \le d_k \sum_{i=2^k}^{2^{k+1}-1} D\left(\frac{2^i}{d_k} \|a_i\|_{\tilde{A}_0}\right) \le d_k \sum_{i=2^k}^{2^{k+1}-1} D\left(\frac{2^i}{d_k} \lambda_{k(a,\cdot)}(2^i)\right),$$

and the proof now follows as in Theorem 2.2, 3). \square

4 Applications

(I) Let T be a sublinear operator satisfying a restricted h-rearrangement inequality, where

$$h(t,s) = \frac{s}{t} \left(1 + \log^+ \frac{t}{s} \right)^m$$

with m > 0, as it happens with the examples we have mentioned in the introduction. Then,

$$h(t,s) \le \frac{s}{t} \left(1 + \log^+ \frac{t}{s} \right)^m \le s \left(1 + \log^+ \frac{1}{s} \right)^m \frac{1}{t} (1 + \log^+ t)^m,$$

and we can take $D(s) = s \left(1 + \log^{+} \frac{1}{s}\right)^{m}$ and $R(t) = \frac{1}{t}(1 + \log^{+} t)^{m}$ in our Theorems 3.1 and 3.2 to conclude the following result.

Theorem 4.1 If $T: A_0 + A_1 \to L^0(\mathcal{N})$ satisfies a restricted h-rearrangement inequality with $h(t,s) = \frac{s}{t} \left(1 + \log^+ \frac{t}{s}\right)^m$, T can be extended continuously

$$T: Q_D(\bar{A}) \longrightarrow M(R),$$

where $D(t) = t \left(1 + \log^{+} \frac{1}{t}\right)^{m}$, and $R(t) = \frac{1}{t}(1 + \log^{+} t)^{m}$.
In particular

$$T: L \log \log \log L(D; \bar{A}) \longrightarrow M(R),$$

is bounded.

If $\bar{A} = (L^1(\mathbb{T}), L^{\infty}(\mathbb{T}))$ and T is the Carleson maximal operator S^* , then $D(s) = s \left(1 + \log \frac{1}{s}\right)$ and R(t) = t. In this particular case, the above result has been recently obtained by Arias-de-Reyna in [2]. Also, for such function D, it is very easy to see that

$$L \log \log \log L(D; \bar{A}) = L \log L \log \log \log L(\mathbb{T}),$$

and the boundedness

$$S^*: L \log L \log \log \log L(\mathbb{T}) \longrightarrow L^{1,\infty},$$

was obtained previously by Antonov in [1], and for other more general operators, as mentioned in the introduction, in [17].

(II) If $\bar{A}=(W_0^{1,1}(\Omega),W_0^{1,\infty}(\Omega))$ where Ω has finite measure, and

$$T:W^{1,p}_0(\Omega)\longrightarrow L^{p,\infty}$$

is bounded with constant say 1/(p-1), then, applying Theorem 4.1, we obtain that

$$T: W_0(\Omega) \longrightarrow L^{1,\infty}$$

is bounded, where $W_0(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $W(\Omega)$ with

$$W(\Omega) = \{ f; |f| + |\nabla f| \in L \log L \log \log \log L \}.$$

(III) Our third application deals with the theory of weighted Lorentz spaces. Let w_0 and W_1 be weights in $(0, \infty)$ and let T be a sublinear operator such that

$$T: \Lambda^1(w_0) + L^{\infty} \longrightarrow L^0(\mathbb{R}^n)$$

is continuous and, for every p > 2,

$$T: \Lambda^p(w_0) \longrightarrow \Lambda^{p,\infty}(W_1)$$

is bounded with constant p (see, [14], [15], [8] to find examples of operators T satisfying the above condition); that is

$$(Tf)^*(t)W_1(t)^{1/p} \le p\left(\int_0^\infty f^*(s)w_0(s)\,ds\right)^{1/p}.$$

Now, if we take $\bar{A} = (\Lambda^1(w_0), L^{\infty})$, we have that $\tilde{A}_0 = \Lambda^1(w_0)$ and hence, it follows, taking the infimum in p > 2, that

$$(Tf)^*(t) \leq h(W_1(t), ||a||_{\tilde{A}_0}),$$

where $h(t,s) = \inf_{p>2} p(s/t)^{1/p} \approx (s/t)^{1/2} (1 + \log^+(s/t))$. Therefore, we can deduced the following result.

Theorem 4.2 Let T be a sublinear operator as above. Then, T can be extended continuously

$$T: L \log |\log L|(D; \bar{A}) \to M(R),$$

where
$$D(s) = s^{1/2}(1 + \log^+ s)$$
, and $R(t) = W_1(t)^{-1/2} \left(1 + \log^+ \frac{1}{W_1(t)}\right)^{-1}$.

Open Question: When is is true that the space $L \log \log \log \log \log L(D; A) \subset Q_D(\bar{A})$ or in general, $L \log^{(m)} L(D; A) \subset Q_D(\bar{A})$?.

References

- N.Y. Antonov, Convergence of Fourier Series, East J. on Appr. 2 (1996), 187-196.
- [2] J. Arias-de-Reyna, *Pointwise Convergence of Fourier Series*, To appear in J. London Math. Soc.
- [3] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, Boston (1988).
- [4] J. Bergh and J. Lofström, Interpolation spaces, An introduction, Springer, New York (1976).

- [5] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam (1991).
- [6] M.J. Carro and J. Martín, An abstract extrapolation theory for the real interpolation method, To appear in Collect. Math.
- [7] M.J. Carro and J. Martín, A useful estimate for the decreasing rearrangement of a sum of functions, Preprint (2001).
- [8] M.J. Carro, J.A. Raposo and J. Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, Preprint (2001).
- [9] M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), 480–494.
- [10] R. DeVore and K. Scherer, Interpolation of linear operators on Sobolev spaces, Ann. Math. 109 (1979), 583–609.
- [11] B. Jawerth and M. Milman, Extrapolation Theory with Applications, Mem. Amer. Math. Soc. 89 (1991).
- [12] S.G. Krein, Ju. I. Petunin and E.M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monograph A.M.S. Volume 54 (1982).
- [13] G.G. Lorentz, On the theory of spaces Λ , Pacific J. Math. 1 (1951), 411–429.
- [14] B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
- [15] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. **96** (1990), 145–158.
- [16] P. Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Math. 7 (1969), 551–570.
- [17] P. Sjölin and F. Soria, Remarks on a theorem by N.Y. Antonov, Manuscript (personal communication).
- [18] F. Soria, On an extrapolation theorem of Carleson-Sjölin with applications to a.e. convergence of Fourier series, Studia Math. **94** (1989), 235–244.

[19] F. Soria, Characterizations of classes of functions generated by blocks and associated Hardy spaces, Indiana Univ. Math. J. **34** (1985), 463–492.

Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona, E–08071 Barcelona, (SPAIN) E–mail: carro@mat.ub.es, jmartin@mat.uab.es