UAB
 Universitat Autònoma de Barcelona

Dipòsit digital de documents de la UAB

This is the accepted version of the journal article:
Carro, María J.; Martín i Pedret, Joaquim. «Endpoint estimates from restricted rearrangement inequalities». Revista Matemática Iberoamericana, Vol. 20, Núm. 1 (2004), p. 131-150. DOI 10.4171/RMI/383

This version is available at https://ddd.uab.cat/record/271880
under the terms of the © ${ }_{\text {COPYRIGHt }}^{\mathbb{N}}$ license

Endpoint estimates from restricted rearrangement inequalities*

María J. Carro and Joaquim Martín

Abstract

Let T be a sublinear operator such that $(T f)^{*}(t) \leq h\left(t,\|f\|_{1}\right)$ for some positive function $h(t, s)$ and every function f such that $\|f\|_{\infty} \leq 1$. Then, we show that T can be extended continuously from a logarithmic type space into a weighted weak Lorentz space. This type of result is connected with the theory of restricted weak type extrapolation and extends a recent result of Arias-de-Reyna concerning the pointwise convergence of Fourier series to a much more general context.

1 Introduction

Let S be the Carleson maximal operator,

$$
S f(x)=\sup _{n}\left|S_{n} f(x)\right|,
$$

where $S_{n} f(x)=\left(D_{n} * f\right)(x)$, being D_{n} the Dirichlet kernel on $\mathbb{T}=\{z \in$ $\mathbb{C} ;|z|=1\}$ and $f \in L^{1}(\mathbb{T})$. Then, it was proved in [16] that, for every measurable set $E \subset \mathbb{T}$,

$$
\begin{equation*}
\left(S \chi_{E}\right)^{*}(t) \preceq \frac{|E|}{t}\left(1+\log ^{+} \frac{t}{|E|}\right) . \tag{1}
\end{equation*}
$$

This result can be improved using the following lemma due to Antonov (see [1]).

[^0]Lemma 1.1 (Antonov) Let $S^{N} f(x)=\sup _{0 \leq n \leq N}\left|S_{n} f(x)\right|$. Then, for every $\varepsilon>0$, every $N \in \mathbb{N}$ and every $0 \leq f(x) \leq 1$, there exists a measurable set F such that $|F|=\|f\|_{1}$ and $\left\|S^{N}\left(f-\chi_{F}\right)\right\|_{\infty} \leq \varepsilon$.

Using this lemma and the above estimate on characteristic functions we can conclude that

$$
\begin{equation*}
(S f)^{*}(t) \preceq \frac{\|f\|_{1}}{t}\left(1+\log ^{+} \frac{t}{\|f\|_{1}}\right) \tag{2}
\end{equation*}
$$

for every $f \in L^{1}$ such that $\|f\|_{\infty} \leq 1$.
Antonov's lemma has been extended in [17] to more general operators, namely to any maximal operator of the form

$$
T f(x)=\sup _{j}\left|K_{j} * f(x)\right|
$$

where $K_{j} \in L^{1}$, and therefore, (2) holds for any operator T of the above form such that T satisfies (1). Examples of such operators are given in [17] in the setting of differentiation of integrals and the Halo conjecture.

In particular, (and this is the connection with the weak extrapolation theory, see [11] and [18]) if T is an operator such that, for every $1<p \leq 2$,

$$
(T f)^{*}(t) t^{1 / p} \leq \frac{1}{(p-1)^{m}}\|f\|_{p}
$$

then, for every $f \in L^{1}$ such that $\|f\|_{\infty} \leq 1$,

$$
(T f)^{*}(t) \leq \frac{1}{(p-1)^{m}} \frac{\|f\|_{1}^{1 / p}}{t^{1 / p}}
$$

and taking the infimum in p, we conclude that

$$
\begin{equation*}
(T f)^{*}(t) \preceq \frac{\|f\|_{1}}{t}\left(1+\log ^{+} \frac{t}{\|f\|_{1}}\right)^{m} . \tag{3}
\end{equation*}
$$

Our main purpose (see Theorem 3.1) is to show that if T is a sublinear operator satisfying

$$
(T f)^{*}(t) \preceq h\left(t,\|f\|_{1}\right),
$$

for some positive function h and every $\|f\|_{\infty} \leq 1$, then

$$
T: Q_{D} \longrightarrow M(R)
$$

is bounded, where $h(t, s) \leq D(s) R(t)$,

$$
Q_{D}=\left\{f ; f=\sum_{k} e_{k} f_{k},\left\|f_{k}\right\|_{\infty} \leq 1,\|f\|_{Q_{D}}<\infty\right\},
$$

with

$$
\begin{aligned}
& \|f\|_{Q_{D}} \\
= & \inf \left\{\sum_{k} e_{k} D\left(\left\|f_{k}\right\|_{1}\right)\left(1+\log \frac{1}{a_{k}}\right) ; \sum_{k} a_{k}=1, a_{k} \geq 0, f=\sum_{k} e_{k} f_{k}\right\},
\end{aligned}
$$

and

$$
\|f\|_{M(R)}:=\sup _{t>0} \frac{f^{*}(t)}{R(t)}
$$

In particular, if $D(s)=s\left(1+\log ^{+} \frac{1}{s}\right)$ and $T=S^{*}$, then $Q_{D}=Q A$, where $Q A$ is, up to now, the biggest space where the pointwise convergence of the Fourier series is known to hold (see [2]).

Our proof turns out to be very simple and is based in the following basic result (see [7]):

Lemma 1.2 (Basic result:) Let $f=\sum_{n} f_{n}$ with $f_{n} \geq 0$ and let $c_{n}>0$ be such that $\sum_{n} c_{n}=1$. Then

$$
f^{*}(3 t) \leq \sum_{n}\left(f_{n}^{*}(t)+\frac{1}{t} \int_{c_{n} t}^{t} f_{n}^{*}(s) d s\right) .
$$

¿From it, the main result of this paper, which covers as a particular case the result of Arias-de-Reyna, can be immediately obtained.

The point now is that the space Q_{D} is difficult to handle and, therefore, it is convenient for the applications to find spaces of Logarithmic type L such that $L \subset Q_{D}$. In [2], it is proved that the space $L \log L \log \log \log L(\mathbb{T}) \subset$ $Q A$. We shall extend this result to our general context.

Another situation we consider in this work is the following: Let Ω be any domain in \mathbb{R}^{n} and let $W^{1, p}(\Omega)$ be the classical Sobolev space and set $W_{0}^{1, p}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$.

$$
\|f\|_{W_{0}^{1, p}(\Omega)}=\|f\|_{p}+\|\nabla f\|_{p},
$$

where ∇f is the gradient of f. Let T be a sublinear operator such that

$$
T: W_{0}^{1, p}(\Omega) \longrightarrow L^{p, \infty}
$$

is bounded with constant C_{p} for every $p \in I \subset[1, \infty)$. Then, for every f such that $\|f\|_{\infty}+\|\nabla f\|_{\infty} \leq 1$, it holds that

$$
\begin{aligned}
(T f)^{*}(t) t^{1 / p} & \left.\leq C_{p}\left(\int_{0}^{\infty} f^{*}(t)^{p}+|\nabla f|^{*}(t)^{p} d t\right)^{1 / p}\right] \\
& \leq C_{p}\left(\int_{0}^{\infty} f^{*}(t)+|\nabla f|^{*}(t) d t\right)^{1 / p}
\end{aligned}
$$

Consequently,

$$
(T f)^{*}(t) \leq \inf _{p \in I}\left(C_{p}\left(\frac{\|f\|_{W_{0}^{1,1}(\Omega)}}{t}\right)^{1 / p}\right):=h\left(t,\|f\|_{W_{0}^{1,1}(\Omega)}\right)
$$

Then we show that the technique developed in Section 2 can also be extended to cover this situation and, in fact, our theory can be presented in the setting of compatible pairs of Banach spaces $\bar{A}=\left(A_{0}, A_{1}\right)$ using some of the ideas developed in [6]; that is, our operator T will be a sublinear operator acting on elements of the sum space $A_{0}+A_{1}$ and taking values on the set of measurable functions:

$$
T: A_{0}+A_{1} \longrightarrow L^{0}(\mu)
$$

Our first task is to extend the notion of characteristic functions to the setting of pairs. This will be done in Section 3.

As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant C (independent of all parameters involved) so that $(1 / C) f \leq g \leq C f$, while the symbol $f \preceq g$ means that $f \leq C g$. (\mathcal{M}, μ) will be a totally σ-finite resonant measure space and we shall denote by $L^{0}(\mu)$ the class of measurable functions that are finite μ a.e., endowed with the topology of the convergence in measure. We write $\|g\|_{p}$ to denote $\|g\|_{L^{p}(\mu)}$, $\lambda_{g}^{\mu}(y)=\mu(\{x \in \mathcal{M}:|g(x)|>y\})$ is the distribution function of g with respect to the measure μ and $g_{\mu}^{*}(t)=\inf \left\{s: \lambda_{g}^{\mu}(s) \leq t\right\}$ is the decreasing rearrangement (we refer the reader to [3] for further information about distribution functions and decreasing rearrangements).

In what follows we shall omit the indices μ whenever it is clear the measure we are working with.

2 Main results

First of all, given a positive concave function D such that $D(0+)=0$, we define the space

$$
\Lambda(D)=\left\{f ;\|f\|_{\Lambda(D)}=\int_{0}^{\infty} D\left(\lambda_{f}(y)\right) d y=\int_{0}^{\infty} f^{*}(s) d D(s)\right\} .
$$

Then, we have that the following properties holds:
Lemma 2.1 Given a positive concave function D such that $D(0+)=0$, it holds that

$$
\Lambda(D) \subset L^{1}+L^{\infty},
$$

and

$$
Q_{D} \subset \Lambda(D),
$$

with continuous embeddings.
Proof: The first embedding is wellknown, $\operatorname{since} \min (1, s) \preceq D(s)$ and hence

$$
\begin{aligned}
\|f\|_{L^{1}+L^{\infty}} & =\int_{0}^{1} f^{*}(s) d s=\int_{0}^{\infty} \min \left(\lambda_{f}(y), 1\right) d y \preceq \int_{0}^{\infty} D\left(\lambda_{f}(y)\right) d y \\
& =\|f\|_{\Lambda(D)} .
\end{aligned}
$$

For the second embedding, let us observe that if $\|f\|_{\infty} \leq 1$, then

$$
\|f\|_{\Lambda(D)}=\int_{0}^{1} D\left(\lambda_{f}(y)\right) d y \leq D\left(\int_{0}^{1} \lambda_{f}(y) d y\right)=D\left(\|f\|_{1}\right)
$$

and hence, if $f=\sum_{k} e_{k} f_{k}$, with $\left\|f_{k}\right\|_{\infty} \leq 1$, we obtain that

$$
\|f\|_{\Lambda(D)} \cdot \leq \sum_{k} e_{k}\left\|f_{k}\right\|_{\Lambda(D)} \leq \sum_{k} e_{k} D\left(\left\|f_{k}\right\|_{1}\right) \leq\|f\|_{Q_{D}} .
$$

Now we are ready to formulate our first main result:
Theorem 2.1 Let T be a sublinear operator such that

$$
T: L^{1}(\mu)+L^{\infty}(\mu) \longrightarrow L^{0}(\mu)
$$

is bounded, and let us assume that, for every $f \in L^{1} \cap L^{\infty}$ with $\|f\|_{\infty} \leq 1$,

$$
(T f)^{*}(t) \leq h\left(t,\|f\|_{1}\right),
$$

for some positive function $h:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ such that for every $t>0$, the function $h(t, \cdot)$ is increasing and, for every $s>0, t \cdot h(t, s)$ is also an increasing function in the variable t. Then, if D and R are such that

$$
h(t, s) \leq D(s) R(t)
$$

we have that

$$
T: Q_{D} \longrightarrow M(R)
$$

is bounded.
Although no conditions are assumed on R, it is clear that since $t \cdot h(t, s)$ is increasing in the variable t, we can assume without loss of generality that this condition also holds for R.

Proof: Let $f \in Q_{D}$ and let us write $f=\sum_{k} e_{k} f_{k}$ with $\left\|f_{k}\right\|_{\infty} \leq 1$. Then, by the previous lemma, we have that the convergence of the series is in $L^{1}+L^{\infty}$ and therefore, we can conclude that

$$
(T f)^{*}(t) \leq\left(\sum_{k} e_{k} T f_{k}\right)^{*}(t) .
$$

Using now the basic result together with the hypothesis, we obtain that, for every sequence (a_{k}) of positive numbers such that $\sum_{k} a_{k}=1$,

$$
\begin{aligned}
(T f)^{*}(3 t) & \leq \sum_{k} e_{k}\left(T f_{k}\right)^{*}(t)+\frac{1}{t} \sum_{k} e_{k} \int_{a_{k} t}^{t}\left(T f_{k}\right)^{*}(s) d s \\
& \leq \sum_{k} e_{k} h\left(t,\left\|f_{k}\right\|_{1}\right)+\frac{1}{t} \sum_{k} e_{k} \int_{a_{k} t}^{t} h\left(s,\left\|f_{k}\right\|_{1}\right) d s .
\end{aligned}
$$

And, using the properties of the function h, we conclude that

$$
(T f)^{*}(3 t) \leq \sum_{k} e_{k} D\left(\left\|f_{k}\right\|_{1}\right) R(3 t)+R(3 t) \sum_{k} e_{k} D\left(\left\|f_{k}\right\|_{1}\right) \log \frac{1}{a_{k}},
$$

and hence,

$$
\|T f\|_{M(R)}=\sup _{t} \frac{(T f)^{*}(t)}{R(t)} \leq\|f\|_{Q_{D}}
$$

As was mentioned in the introduction, the point now is to analyze the space Q_{D} to make it useful for the applications. To this end, we have to introduce the following logarithmic spaces:

Definition 2.1 Let φ be a positive and concave function such that $\varphi\left(0^{+}\right)=$ 0.
(1) The space $L \log |\log L|(\varphi)$ is defined as the set of measurable functions f such that

$$
\begin{equation*}
\|f\|_{L \log |\log L|(\varphi)}:=\int_{0}^{\infty} f^{*}(s)(1+\log (|\log s|+e)) d \varphi(s)<\infty \tag{4}
\end{equation*}
$$

(2) The space $L \log \log L(\varphi)$ is defined as the set of measurable functions f such that

$$
\begin{equation*}
\|f\|_{L \log \log L(\varphi)}:=\int_{0}^{\infty} f^{*}(s)\left(1+\log ^{+} \log ^{+} \frac{1}{s}\right) d \varphi(s)<\infty \tag{5}
\end{equation*}
$$

(3) The space $L \log \log \log L(\varphi)$ is defined as the set of measurable functions f such that

$$
\begin{equation*}
\|f\|_{L \log \log \log L(\varphi)}:=\int_{0}^{\infty} f^{*}(s)\left(1+\log ^{+} \log ^{+} \log ^{+} \frac{1}{s}\right) d \varphi(s)<\infty \tag{6}
\end{equation*}
$$

We also need the two following technical lemmas:
Lemma 2.2 Let $\Phi(s)=s\left(1+\log ^{+} \frac{1}{s}\right)$ and let f be such that $\|f\|_{\Lambda(\varphi)}=1$, then

$$
\int_{0}^{\infty} \Phi\left(f^{*}(s) \varphi(s)\right) \frac{d \varphi(s)}{\varphi(s)} \simeq \int_{0}^{\infty} \Phi\left(s \varphi\left(\lambda_{f}(s)\right)\right) \frac{d s}{s} \preceq\|f\|_{L \log |\log L|(\varphi)}
$$

Proof: To show the first equivalence, let $H=f^{*} \circ \varphi^{-1}(s)$. Then, one has that

$$
\lambda_{H}(s)=\varphi\left(\lambda_{f}(s)\right)
$$

and, by Proposition 4.3 of [19], we have that

$$
\int_{0}^{\infty} \Phi\left(s \lambda_{H}(s)\right) \frac{d s}{s} \simeq \int_{0}^{\infty} \Phi(s H(s)) \frac{d s}{s}
$$

A simple change of variable ends the proof of the first part.
For the second part, let us consider the sets

$$
E_{0}=\left\{s<1: \varphi(s) f^{*}(s)>\left(\log \frac{1}{s}+e\right)^{-2}\right\}
$$

and

$$
E_{1}=\left\{s \geq 1: \varphi(s) f^{*}(s)>(\log s+e)^{-2}\right\}
$$

Then, we can write

$$
\begin{aligned}
& \int_{0}^{\infty} \Phi\left(f^{*}(s) \varphi(s)\right) \frac{d \varphi(s)}{\varphi(s)} \\
= & \left(\int_{E_{0}}+\int_{(0,1) \backslash E_{0}}+\int_{E_{1}}+\int_{(1, \infty) \backslash E_{1}}\right) \Phi\left(f^{*}(s) \varphi(s)\right) \frac{d \varphi(s)}{\varphi(s)} \\
= & I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
I_{1} & =\int_{E_{0}} f^{*}(s)\left(1+\log ^{+} \frac{1}{f^{*}(s) \varphi(s)}\right) d \varphi(s) \\
& \leq \int_{0}^{1} f^{*}(s)\left(1+2 \log \left(\log \frac{1}{s}+e\right)\right) d \varphi(s) \leq 2\|f\|_{L \log |\log L|(\varphi))}
\end{aligned}
$$

On the other hand, since Φ is increasing, $d \varphi(s) \leq(\varphi(s) / s) d s$ and $1=$ $\|f\|_{\Lambda(\varphi)} \leq\|f\|_{L \log |\log L|(\varphi)}$, we obtain that

$$
\begin{aligned}
I_{2} & \leq \int_{0}^{1} \frac{\left(1+2 \log \left(\log \frac{1}{s}+e\right)\right)}{\left(\log \frac{1}{s}+e\right)^{2}} \frac{d \varphi(s)}{\varphi(s)} \\
& \leq \int_{0}^{1} \frac{\left(1+2 \log \left(\log \frac{1}{s}+e\right)\right)}{s\left(\log \frac{1}{s}+e\right)^{2}} d s \preceq\|f\|_{L \log |\log L|(\varphi)} .
\end{aligned}
$$

Similarly,

$$
I_{3} \leq \int_{1}^{\infty} f^{*}(s)(1+2 \log (\log s+e)) d \varphi(s) \preceq\|f\|_{L \log |\log L|(\varphi)},
$$

and

$$
I_{4} \leq \int_{1}^{\infty} \frac{(1+2 \log (\log s+e))}{s(\log s+e)^{2}} d s \preceq\|f\|_{L \log |\log L|(\varphi)}
$$

Lemma 2.3 ([g]) Let w be a positive and measurable function and let φ be a positive and concave function such that $\varphi\left(0^{+}\right)=0$. Then

$$
\int_{0}^{\infty} \varphi\left(\lambda_{f}(s)\right) w(s) d s=\int_{0}^{\infty}\left(\int_{0}^{f^{*}(s)} w(t) d t\right) d \varphi(s)
$$

Theorem 2.2 Let D be any positive and concave function D such that $D\left(0^{+}\right)=0$. Then,
1)

$$
L \log |\log L|(D) \subset Q_{D}
$$

2) If $s \leq D(s)$, then

$$
L \log \log L(D) \subset Q_{D}
$$

3) If $s \leq D(s)$ and, for every $0 \leq s \leq 1, D\left(s^{2}\right) \preceq s D(s)$, then

$$
L \log \log \log L(D) \subset Q_{D}
$$

Proof: 1) Let $f \in L \log |\log L|(D)$ be such that $\|f\|_{\Lambda(D)}=1$ and let us write

$$
f=\sum_{i \in \mathbb{Z}} 2^{i+1} f_{i}
$$

where $f_{i}=\frac{1}{2^{i+1}} f \chi_{\left\{2^{i}<|f| \leq 2^{i+1}\right\}}$. Then, for every sequence of positive number $\left(a_{i}\right)_{i}$ such that $\sum_{i \in \mathbb{Z}} a_{i}=1$, we have that

$$
\begin{aligned}
\|f\|_{Q_{D}} \preceq & \sum_{i \in \mathbb{Z}} 2^{i} D\left(\left\|f_{i}\right\|_{1}\right)\left(1+\log \frac{1}{a_{i}}\right) \\
& \leq \sum_{i \in \mathbb{Z}} 2^{i} D\left(\lambda_{f}\left(2^{i}\right)\right)\left(1+\log \frac{1}{a_{i}}\right)
\end{aligned}
$$

Taking now

$$
a_{i}=\frac{2^{i} D\left(\lambda_{f}\left(2^{i}\right)\right)}{\sum_{i} 2^{i} D\left(\lambda_{f}\left(2^{i}\right)\right)}
$$

we conclude that

$$
\|f\|_{Q_{D}} \preceq \int_{0}^{\infty} D\left(\lambda_{f}(s)\right)\left(1+\log \frac{1}{s D\left(\lambda_{f}(s)\right)}\right) d s
$$

and the result now follows by Lemma 2.2 .
2) Since $s \leq D(s)$ we have that $L \log \log L(D) \subseteq \Lambda(D) \subseteq L^{1}$. Let $f \in$ $L \log \log L(D)$ be such that $\|f\|_{\Lambda(D)}=1$, and decompose f as

$$
f=f \chi_{\{|f| \leq 1\}}+\left(\sum_{i \geq 0} 2^{i+1} f_{i}\right)
$$

where $f_{i}=\frac{1}{2^{i+1}} f \chi_{\left\{2^{i}<|f| \leq 2^{i+1}\right\}}$. Then, for every $\left(a_{i}\right)_{i}$ such that $\sum_{i} a_{i}=1$,

$$
\|f\|_{Q_{D}} \preceq D\left(\|f\|_{1}\right)+\sum_{i \geq 0} 2^{i} D\left(\lambda_{f}\left(2^{i}\right)\right)\left(1+\log \frac{1}{a_{i}}\right),
$$

and taking $\left(a_{i}\right)_{i}$ as in 1$)$, we get

$$
\|f\|_{Q_{D}} \preceq 1+\int_{1}^{\infty} D\left(\lambda_{f}(s)\right)\left(1+\log \frac{1}{s D\left(\lambda_{f}(s)\right)}\right) d s \preceq 1+I .
$$

To estimate I, it follows, by Lemma 2.2, that

$$
I \preceq \int_{\left\{f^{*} \geq 1\right\}} f^{*}(s)\left(1+\log \frac{1}{f^{*}(s) D(s)}\right) d D(s),
$$

and since $s \lambda_{f^{*}}(s) \leq 1$, we get that $\lambda_{f^{*}}(s) \leq 1$ if $s \geq 1$. Hence, $\left\{f^{*} \geq 1\right\} \subseteq$ $[0,1]$ and using the same argument than in the proof of Lemma 2.2, it follows that

$$
I \preceq \int_{0}^{1} f^{*}(s)\left(1+\log \frac{1}{f^{*}(s) D(s)}\right) d D(s) \preceq\|f\|_{L \log \log L(D)} .
$$

3) In this case, we take $f \in L \log \log \log L(D)$ such that $\|f\|_{\Lambda(D)}=1$ and we write

$$
f=f \chi_{\{|f| \leq 2\}}+\sum_{i=0}^{\infty} 2^{2^{i+1}} f_{i},
$$

where

$$
f_{i}=\frac{1}{2^{2^{i+1}}} f \chi_{\left\{2^{2^{i}}|f| \leq 2^{2^{i+1}}\right\}} .
$$

Then, if $\sum_{i} a_{i}=1$,

$$
\begin{aligned}
\|f\|_{Q_{D}} & \preceq 1+\sum_{i=0}^{\infty} 2^{2^{i+1}} D\left(\left\|f_{i}\right\|_{1}\right)\left(1+\log \frac{1}{a_{i}}\right) \\
& \preceq 1+\sum_{i=0}^{\infty} 2^{2^{i+1}} D\left(\frac{1}{2^{2^{i+1}}} \sum_{j=2^{i}}^{2^{i+1}-1} 2^{j} \lambda_{f}\left(2^{j}\right)\right)\left(1+\log \frac{1}{a_{i}}\right),
\end{aligned}
$$

and since D is concave,

$$
\|f\|_{Q_{D}} \preceq 1+\sum_{i=0}^{\infty} 2^{2^{i+1}} \sum_{j=2^{i}}^{2^{i+1}-1} D\left(\frac{2^{j}}{2^{2^{i+1}}} \lambda_{f}\left(2^{j}\right)\right)\left(1+\log \frac{1}{a_{i}}\right) .
$$

Now, using $D(s) / s$ decreases, and that $2^{i} \leq j<2^{i+1}$, we obtain that

$$
2^{2^{i+1}} D\left(\frac{2^{j}}{2^{2^{i+1}}} \lambda_{f}\left(2^{j}\right)\right) \leq\left(2^{j}\right)^{2} D\left(\frac{\lambda_{f}\left(2^{j}\right)}{2^{j}}\right)
$$

Now we take $a_{i}=6 /\left(\pi^{2}(i+1)^{2}\right)$, and hence

$$
\begin{aligned}
\|f\|_{Q_{D}} & \preceq 1+\sum_{i=0}^{\infty} \sum_{j=2^{i}}^{2^{i+1}-1}\left(2^{j}\right)^{2} D\left(\frac{\lambda_{f}\left(2^{j}\right)}{2^{j}}\right)(1+\log (i+1)) \\
& \preceq \sum_{i=0}^{\infty} \sum_{j=2^{i}}^{2^{i+1}-1}\left(2^{j}\right)^{2} D\left(\frac{\lambda_{f}\left(2^{j}\right)}{2^{j}}\right)\left(1+\log ^{+} \log ^{+} \log ^{+} 2^{j}\right) \\
& \preceq \int_{1}^{\infty} s D\left(\frac{\lambda_{f}(s)}{s}\right)\left(1+\log ^{+} \log ^{+} \log ^{+} s\right) d s .
\end{aligned}
$$

Since $s \lambda_{f}(s) \leq 1$, we get that

$$
\frac{s}{\lambda_{f}(s)} \leq\left(\frac{1}{\lambda_{f}(s)}\right)^{2}
$$

and since $s D(1 / s)$ increases

$$
s D\left(\frac{\lambda_{f}(s)}{s}\right) \leq \frac{1}{\lambda_{f}(s)} D\left(\left(\lambda_{f}(s)\right)^{2}\right)
$$

Moreover, since $\lambda_{f}(s) \leq s \lambda_{f}(s) \leq 1$, if $s \geq 1$, by condition (ii)

$$
\frac{1}{\lambda_{f}(s)} D\left(\left(\lambda_{f}(s)\right)^{2}\right) \preceq D\left(\lambda_{f}(s)\right) .
$$

Using this estimate and Lemma 2.3 we get

$$
\begin{aligned}
I & \preceq \int_{1}^{\infty} D\left(\lambda_{f}(s)\right)\left(1+\log ^{+} \log ^{+} \log ^{+} s\right) d s \\
& \leq \int_{0}^{\infty} D\left(\lambda_{f}(s)\right)\left(1+\log ^{+} \log ^{+} \log ^{+} s\right) d s \\
& =\int_{0}^{\infty}\left(\int_{0}^{f^{*}(s)}\left(1+\log ^{+} \log ^{+} \log ^{+} t\right) d t\right) d D(s)
\end{aligned}
$$

Now, since $\left(1+\log ^{+} \log ^{+} \log ^{+} t\right)$ is increasing and $s f^{*}(s) \leq 1$

$$
\begin{aligned}
I & \leq \int_{0}^{\infty} f^{*}(s)\left(1+\log ^{+} \log ^{+} \log ^{+} f^{*}(s)\right) d D(s) \\
& \leq \int_{0}^{\infty} f^{*}(s)\left(1+\log ^{+} \log ^{+} \log ^{+} \frac{1}{s}\right) d D(s)
\end{aligned}
$$

3 Extension to arbitrary compatible pairs

Let $\bar{A}=\left(A_{0}, A_{1}\right)$ be a compatible pair of Banach spaces, that is, we assume that there is a topological vector space \mathcal{U} such that $A_{i} \subset \mathcal{U}, i=0,1$, continuously. In what follows we drop the terms "compatible" and "Banach" and refer to a compatible Banach pair simply as a "pair".

The Peetre K-functional (see [3], [4] and [5]) associated with a pair \bar{A} is defined, for each $a \in A_{0}+A_{1}$ and $t>0$, by

$$
K(a, t)=K(a, t ; \bar{A})=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{i} \in A_{i}\right\} .
$$

It is easy to see that $K(t, a)$ is a nonnegative and concave function of $t>0$, (and thus also continuous). Therefore

$$
K(a, t ; \bar{A})=K\left(a, 0^{+} ; \bar{A}\right)+\int_{0}^{t} k(a, s ; \bar{A}) d s,
$$

where the k-functional, $k(a, s ; \bar{A})=k(a, s)$, is a uniquely defined, nonnegative, decreasing and right-continuous function of $s>0$.

In order to find the analogue of the set $\left\{f \in L^{1} ;\|f\|_{\infty} \leq 1\right\}$ in the setting of pairs, let us recall that the Gagliardo completion \tilde{A}_{0} and \tilde{A}_{1} of a pair \bar{A} is defined by $\|a\|_{\tilde{A}_{0}}=\sup _{t} K(t, a ; \bar{A})$ and $\|a\|_{\tilde{A}_{1}}=\sup _{t} K(t, a ; \bar{A}) / t$ (see [3]).

Definition 3.1 Given a pair \bar{A}, we say that a is a characteristic element of \bar{A} if $a \in \tilde{A}_{0} \cap \tilde{A}_{1}$ and $\|a\|_{\tilde{A}_{1}} \leq 1$.

The collection of characteristic elements of a pair \bar{A} will be denoted by $C(\bar{A})$.

The following lemma was proved in [6] and it is fundamental for our purpose.

Lemma 3.1 Given an element $a \in A_{0}+A_{1}$ such that $K\left(a, 0^{+} ; \bar{A}\right)=0$, there exist a constant γ (depending only on \bar{A}) and a collection of characteristic elements $\left(a_{i}\right)_{i \in \mathbb{Z}}$ such that

$$
a=\gamma \sum_{i \in \mathbb{Z}} 2^{i} a_{i}\left(\text { convergence in } A_{0}+A_{1}\right),
$$

and

$$
\left\|a_{i}\right\|_{\tilde{A}_{0}} \leq \lambda_{k(a,)}\left(2^{i}\right)
$$

We say that $a=\gamma \sum_{i=-\infty}^{\infty} 2^{i} a_{i}$ is a dyadic decomposition of a.

Definition 3.2 ([6]) Given a pair $\bar{A}=\left(A_{0}, A_{1}\right)$ and a concave function φ, the minimal Lorentz space, $\Lambda(\varphi ; \bar{A})$, is the set of elements $a \in A_{0}+A_{1}$ such that $K\left(a, 0^{+} ; \bar{A}\right)=0$ and

$$
\|a\|_{\Lambda(\varphi ; \bar{A})}=\int_{0}^{\infty} k(a, s ; \bar{A}) d \varphi(s)<\infty
$$

If \bar{A} is the classical pair $\left(L^{1}(\nu), L^{\infty}(\nu)\right)$, then $k(a, s)=f^{*}(s)$ and hence $\Lambda(\varphi ; \bar{A})=\Lambda(\varphi)$ is the classical Lorentz spaces defined in the previous section.

Definition 3.3 Given a pair \bar{A}, and a quasi-Banach lattice $B \subset \Lambda(\varphi)$, we define $B(\varphi ; \bar{A})$ as

$$
\begin{equation*}
B(\varphi ; \bar{A})=\left\{a \in \Lambda(\varphi ; \bar{A}) ;\|a\|_{B(\varphi ; \bar{A})}:=\|k(a, \cdot)\|_{B}<\infty\right\} \tag{7}
\end{equation*}
$$

Remark 3.1 Obviously,
$L \log |\log L|(\varphi ; \bar{A}) \subset L \log \log L(\varphi ; \bar{A}) \subset L \log \log \log L(\varphi ; \bar{A})$,
and the above embeddings are, in general, strict. However, if \bar{A} is an ordered pair, that is $\left.A_{1} \subset A_{0}\right)$ then $k(a, t)=0$ ift >1, and hence $L \log |\log L|(\varphi ; \bar{A})=$ $L \log \log L(\varphi ; \bar{A})$.

Definition 3.4 Let $h:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ be such that for every $t>0$, the function $h(t, \cdot)$ is increasing and, for every $s>0, t \cdot h(t, s)$ is also an increasing function in the variable t. We say that a sublinear continuous operator

$$
T: A_{0}+A_{1} \longrightarrow L^{0}(\mathcal{N})
$$

satisfies a restricted h - rearrangement inequality if, for every $t>0$ and every characteristic element a of \bar{A},

$$
\begin{equation*}
(T a)^{*}(t) \leq h\left(t,\|a\|_{\tilde{A}_{0}}\right) \tag{8}
\end{equation*}
$$

Examples:

1) If $\bar{A}=\left(L^{1}(\nu), L^{\infty}(\nu)\right)$, then $C(\bar{A})=\left\{f \in L^{1} ;\|f\|_{\infty} \leq 1\right\}$, and hence, any sublinear operator satisfying (3), satisfies the condition assumed in the previous section.
2) Let Ω be any domain in \mathbb{R}^{n} and let $W^{1, p}(\Omega)$ be the classical Sobolev space

$$
\|f\|_{W^{1, p}(\Omega)}=\|f\|_{p}+\|\nabla f\|_{p}
$$

where ∇f is the gradient of f. Set $W_{0}^{1, p}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. Then it is known, (see [10]), that if $\bar{A}=\left(W_{0}^{1,1}(\Omega), W_{0}^{1, \infty}(\Omega)\right)$,

$$
K(t, f ; \bar{A}) \approx t\left(f^{* *}(t)+|\nabla f|^{* *}(t)\right)
$$

and therefore $C(\bar{A})=\left\{f \in W_{0}^{1,1}(\Omega) ;\|f\|_{\infty}+\|\nabla f\|_{\infty} \leq 1\right\}$. Hence, if T is a sublinear operator such that

$$
T: W_{0}^{1, p}(\Omega) \longrightarrow L^{p, \infty}
$$

is bounded with constant C_{p} for every $p \in I \subset[1, \infty)$, then,

$$
(T f)^{*}(t) \leq \inf _{p \in I}\left(C_{p}\left(\frac{\|f\|_{W_{0}^{1,1}(\Omega)}}{t}\right)^{1 / p}\right):=h\left(t,\|f\|_{W_{0}^{1,1}(\Omega)}\right)
$$

3) Let us now consider, for example, the pair $\bar{A}=\left(\Lambda^{1}(w), L^{\infty}\right)$, where $\Lambda^{1}(w)$ is the weighted Lorentz space introduced by Lorentz in [13] and defined by

$$
\|f\|_{\Lambda^{p}(w)}=\left(\int_{0}^{\infty} f^{*}(t)^{p} w(t) d t\right)^{1 / p}<\infty
$$

Let us recall that the weak type version of these spaces are defined by

$$
\|f\|_{\Lambda^{p, \infty}(W)}=\sup _{t>0} f^{*}(t) W^{1 / p}(t)<\infty
$$

Consider a sublinear operator T such that, for some weights w and W,

$$
T: \Lambda^{p}(w) \longrightarrow \Lambda^{p, \infty}(W)
$$

with constant less than or equal to C_{p}. Then, since it is known that $K(t, f ; \bar{A})=\int_{0}^{t}\left(f^{*}\right)_{w}^{*}(s) d s$, we can conclude that

$$
C(\bar{A})=\left\{f \in \Lambda^{1}(w):\|f\|_{\infty} \leq 1\right\}
$$

and therefore, for every characteristic element,

$$
(T f)^{*}(t) \leq \inf _{p}\left(C_{p}\left(\frac{\|f\|_{\Lambda^{1}(w)}}{W(t)}\right)^{1 / p}\right):=h\left(t,\|f\|_{\Lambda^{1}(w)}\right)
$$

Let us now define the space

$$
Q_{D}(\bar{A})=\left\{a=\sum_{k} e_{k} a_{k} ;\left\|a_{k}\right\|_{\tilde{A}_{1}} \leq 1,\|a\|_{Q_{D}(\bar{A})}<\infty\right\}
$$

where

$$
\begin{aligned}
& \|a\|_{Q_{D}(\bar{A})} \\
= & \inf \left\{\sum_{k} e_{k} D\left(\left\|a_{k}\right\|_{\tilde{A}_{0}}\right)\left(1+\log \frac{1}{a_{k}}\right) ; \sum_{k} a_{k}=1, a_{k} \geq 0, a=\sum_{k} e_{k} a_{k}\right\} .
\end{aligned}
$$

Then, we have the following extension of Theorem 2.1:
Theorem 3.1 Let $T: A_{0}+A_{1} \rightarrow L^{0}(\mathcal{N})$ be a sublinear operator satisfying a restricted h-rearrangement inequality. Then, if D and R are two positive functions such that D is concave, $D\left(0^{+}\right)=0$ and

$$
\begin{equation*}
h(t, s) \leq D(s) R(t) \tag{9}
\end{equation*}
$$

we have that

$$
T: Q_{D}(\bar{A}) \longrightarrow M(R)
$$

is bounded.
Proof: Given $a \in \Lambda(D ; \bar{A})$ such that $\|a\|_{\Lambda(D ; \bar{A})}=1$, we can decompose a as in Lemma 3.1

$$
a=\gamma \sum_{i \in Z} 2^{i} a_{i}
$$

Then, if $a_{N}=\gamma \sum_{i=-N}^{N} 2^{i} a_{i}$, we have that $T a_{N} \rightarrow T a$ in measure, and therefore, (see [12] p. 67)

$$
\begin{equation*}
\left(T a_{N}\right)^{*}(t) \rightarrow(T a)^{*}(t) \quad \text { a.e. } t>0 \tag{10}
\end{equation*}
$$

By the sublinearity of T we get that

$$
\left(T a_{N}\right)^{*}(t) \leq \gamma\left(\sum_{i=-N}^{N} 2^{i}\left|T a_{i}\right|\right)^{*}(t) \leq \gamma\left(\sum_{i=-\infty}^{\infty} 2^{i}\left|T a_{i}\right|\right)^{*}(t)
$$

and hence

$$
(T a)^{*}(t) \leq \gamma\left(\sum_{i=-\infty}^{\infty} 2^{i}\left|T a_{i}\right|\right)^{*}(t) \text { a.e. } t>0
$$

The proof now follows as in Theorem 2.1.

We also have and analogue to Theorem 2.2:

Theorem 3.2 Let D be any positive and concave function D such that $D\left(0^{+}\right)=0$ and $D(\infty)=\infty$. Then,
1)

$$
L \log |\log L|(D ; \bar{A}) \subset Q_{D}(\bar{A})
$$

2) If $s \leq D(s)$, then

$$
L \log \log L(D ; \bar{A}) \subset Q_{D}(\bar{A})
$$

3) $s \leq D(s)$ and, for every $0 \leq s \leq 1, D\left(s^{2}\right) \preceq s D(s)$, then

$$
L \log \log \log L(D ; \bar{A}) \subset Q_{D}(\bar{A})
$$

Proof: 1) In this case, given $a \in \Lambda(D ; \bar{A})$ such that $\|a\|_{\Lambda(D ; \bar{A})}=1$, we decompose a as in Lemma 3.1

$$
a=\gamma \sum_{i \in Z} 2^{i} a_{i}
$$

and continue as in the proof of Theorem 2.2,1).
2) Since $s \leq D(s)$ we have that $L \log \log L(D ; \bar{A}) \subseteq \Lambda(D ; \bar{A}) \subseteq \tilde{A}_{0}$. Let $a \in \Lambda(D ; \bar{A})$ such that $\|a\|_{\Lambda(D ; \bar{A})}=1$, and decompose a as

$$
a=\gamma\left(\sum_{i<0} 2^{i} a_{i}+\sum_{i \geq 0} 2^{i} a_{i}\right)=\gamma\left(a^{0}+\sum_{i \geq 0} 2^{i} a_{i}\right)
$$

Then since $a^{0} \in C(\bar{A})$, and $\left\|a_{i}\right\|_{\tilde{A}_{0}} \leq \lambda_{k(a, \cdot)}\left(2^{i}\right)$, we have that

$$
\begin{aligned}
\|a\|_{Q_{D}(\bar{A})} & \preceq D\left(\left\|a^{0}\right\|_{\tilde{A}_{0}}\right)+\int_{1}^{\infty} D\left(\lambda_{k(a, \cdot)}(s)\right)\left(1+\log \frac{1}{s D\left(\lambda_{k(a, \cdot)}(s)\right)}\right) d s \\
& =I_{1}+I_{2}
\end{aligned}
$$

Obviously

$$
I_{1} \preceq D\left(\|a\|_{\tilde{A}_{0}}\right) \leq D\left(\|a\|_{\Lambda(D ; \bar{A})}\right)=D(1) \leq D(1)\|a\|_{L \log \log L(D ; \bar{A})}
$$

and to estimate I_{2}, we follow as in the proof of Theorem $2.2,2$).
3) In this case, given $a \in L \log \log \log L(D ; \bar{A})$ such that $\|a\|_{\Lambda(D ; \bar{A})}=1$, let $a=\gamma \sum_{i \in \mathbb{Z}} 2^{i} a_{i}$ be a dyadic decomposition. Then, if, for every $k \in \mathbb{N}$, $d_{k}=\sum_{i=2^{k}}^{2^{k+1}-1} 2^{i}$, we obtain that

$$
a=\sum_{i=-\infty}^{0} 2^{i} a_{i}+\sum_{k=0}^{\infty} d_{k}\left(\frac{1}{d_{k}} \sum_{i=2^{k}}^{2^{k+1}-1} 2^{i} a_{i}\right)=a^{0}+\sum_{k=0}^{\infty} d_{k} A_{k},
$$

where, it is immediate to see that both a^{0} and A_{k} are characteristic elements. Then, for every $\sum_{k} c_{k}=1$,

$$
\begin{aligned}
\|a\|_{Q_{D}(\bar{A})} & \leq D\left(\|a\|_{\tilde{A}_{0}}\right)+\sum_{k=0}^{\infty} d_{k} D\left(\left\|A_{k}\right\|_{\tilde{A}_{0}}\right)\left(1+\log \frac{1}{c_{k}}\right) \\
& =\left(D\left(\|a\|_{\tilde{A}_{0}}\right)+I\right) .
\end{aligned}
$$

Since $a_{i} \in C(\bar{A})$ and D is subadditive, we have that

$$
d_{k} D\left(\left\|A_{k}\right\|_{\tilde{A}_{0}}\right) \leq d_{k} \sum_{i=2^{k}}^{2^{k+1}-1} D\left(\frac{2^{i}}{d_{k}}\left\|a_{i}\right\|_{\tilde{A}_{0}}\right) \leq d_{k} \sum_{i=2^{k}}^{2^{k+1}-1} D\left(\frac{2^{i}}{d_{k}} \lambda_{k(a, \cdot)}\left(2^{i}\right)\right),
$$

and the proof now follows as in Theorem 2.2, 3).

4 Applications

(I) Let T be a sublinear operator satisfying a restricted h-rearrangement inequality, where

$$
h(t, s)=\frac{s}{t}\left(1+\log ^{+} \frac{t}{s}\right)^{m}
$$

with $m>0$, as it happens with the examples we have mentioned in the introduction. Then,

$$
h(t, s) \leq \frac{s}{t}\left(1+\log ^{+} \frac{t}{s}\right)^{m} \leq s\left(1+\log ^{+} \frac{1}{s}\right)^{m} \frac{1}{t}\left(1+\log ^{+} t\right)^{m}
$$

and we can take $D(s)=s\left(1+\log ^{+} \frac{1}{s}\right)^{m}$ and $R(t)=\frac{1}{t}\left(1+\log ^{+} t\right)^{m}$ in our Theorems 3.1 and 3.2 to conclude the following result.

Theorem 4.1 If $T: A_{0}+A_{1} \rightarrow L^{0}(\mathcal{N})$ satisfies a restricted h-rearrangement inequality with $h(t, s)=\frac{s}{t}\left(1+\log ^{+} \frac{t}{s}\right)^{m}, T$ can be extended continuously

$$
T: Q_{D}(\bar{A}) \longrightarrow M(R)
$$

where $D(t)=t\left(1+\log ^{+} \frac{1}{t}\right)^{m}$, and $R(t)=\frac{1}{t}\left(1+\log ^{+} t\right)^{m}$.
In particular

$$
T: L \log \log \log L(D ; \bar{A}) \longrightarrow M(R)
$$

is bounded.
If $\bar{A}=\left(L^{1}(\mathbb{T}), L^{\infty}(\mathbb{T})\right)$ and T is the Carleson maximal operator S^{*}, then $D(s)=s\left(1+\log \frac{1}{s}\right)$ and $R(t)=t$. In this particular case, the above result has been recently obtained by Arias-de-Reyna in [2]. Also, for such function D, it is very easy to see that

$$
L \log \log \log L(D ; \bar{A})=L \log L \log \log \log L(\mathbb{T})
$$

and the boundedness

$$
S^{*}: L \log L \log \log \log L(\mathbb{T}) \longrightarrow L^{1, \infty}
$$

was obtained previously by Antonov in [1], and for other more general operators, as mentioned in the introduction, in [17].
(II) If $\bar{A}=\left(W_{0}^{1,1}(\Omega), W_{0}^{1, \infty}(\Omega)\right)$ where Ω has finite measure, and

$$
T: W_{0}^{1, p}(\Omega) \longrightarrow L^{p, \infty}
$$

is bounded with constant say $1 /(p-1)$, then, applying Theorem 4.1, we obtain that

$$
T: W_{0}(\Omega) \longrightarrow L^{1, \infty}
$$

is bounded, where $W_{0}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in $W(\Omega)$ with

$$
W(\Omega)=\{f ;|f|+|\nabla f| \in L \log L \log \log \log L\}
$$

(III) Our third application deals with the theory of weighted Lorentz spaces. Let w_{0} and W_{1} be weights in $(0, \infty)$ and let T be a sublinear operator such that

$$
T: \Lambda^{1}\left(w_{0}\right)+L^{\infty} \longrightarrow L^{0}\left(\mathbb{R}^{n}\right)
$$

is continuous and, for every $p>2$,

$$
T: \Lambda^{p}\left(w_{0}\right) \longrightarrow \Lambda^{p, \infty}\left(W_{1}\right)
$$

is bounded with constant p (see, [14], [15], [8] to find examples of operators T satisfying the above condition); that is

$$
(T f)^{*}(t) W_{1}(t)^{1 / p} \leq p\left(\int_{0}^{\infty} f^{*}(s) w_{0}(s) d s\right)^{1 / p}
$$

Now, if we take $\bar{A}=\left(\Lambda^{1}\left(w_{0}\right), L^{\infty}\right)$, we have that $\tilde{A}_{0}=\Lambda^{1}\left(w_{0}\right)$ and hence, it follows, taking the infimum in $p>2$, that

$$
(T f)^{*}(t) \preceq h\left(W_{1}(t),\|a\|_{\tilde{A}_{0}}\right),
$$

where $h(t, s)=\inf _{p>2} p(s / t)^{1 / p} \approx(s / t)^{1 / 2}\left(1+\log ^{+}(s / t)\right)$. Therefore, we can deduced the following result.

Theorem 4.2 Let T be a sublinear operator as above. Then, T can be extended continuously

$$
T: L \log |\log L|(D ; \bar{A}) \rightarrow M(R)
$$

where $D(s)=s^{1 / 2}\left(1+\log ^{+} s\right)$, and $R(t)=W_{1}(t)^{-1 / 2}\left(1+\log ^{+} \frac{1}{W_{1}(t)}\right)^{-1}$.
Open Question: When is is true that the space $L \log \log \log \log L(D ; A) \subset$ $Q_{D}(\bar{A})$ or in general, $L \log ^{(m)} L(D ; A) \subset Q_{D}(\bar{A})$?.

References

[1] N.Y. Antonov, Convergence of Fourier Series, East J. on Appr. 2 (1996), 187-196.
[2] J. Arias-de-Reyna, Pointwise Convergence of Fourier Series, To appear in J. London Math. Soc.
[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston (1988).
[4] J. Bergh and J. Lofström, Interpolation spaces, An introduction, Springer, New York (1976).
[5] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam (1991).
[6] M.J. Carro and J. Martín, An abstract extrapolation theory for the real interpolation method, To appear in Collect. Math.
[7] M.J. Carro and J. Martín, A useful estimate for the decreasing rearrangement of a sum of functions, Preprint (2001).
[8] M.J. Carro, J.A. Raposo and J. Soria, Recent developments in the theory of Lorentz spaces and weighted inequalities, Preprint (2001).
[9] M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), 480-494.
[10] R. DeVore and K. Scherer, Interpolation of linear operators on Sobolev spaces, Ann. Math. 109 (1979), 583-609.
[11] B. Jawerth and M. Milman, Extrapolation Theory with Applications, Mem. Amer. Math. Soc. 89 (1991).
[12] S.G. Krein, Ju. I. Petunin and E.M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monograph A.M.S. Volume 54 (1982).
[13] G.G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411-429.
[14] B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[15] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158.
[16] P. Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Math. 7 (1969), 551-570.
[17] P. Sjölin and F. Soria, Remarks on a theorem by N.Y. Antonov, Manuscript (personal communication).
[18] F. Soria, On an extrapolation theorem of Carleson-Sjölin with applications to a.e. convergence of Fourier series, Studia Math. 94 (1989), 235-244.
[19] F. Soria, Characterizations of classes of functions generated by blocks and associated Hardy spaces, Indiana Univ. Math. J. 34 (1985), 463492.

Departament de Matemàtica Aplicada i Anàlisi
Universitat de Barcelona, E-08071 Barcelona, (SPAIN)
E-mail: carro@mat.ub.es, jmartin@mat.uab.es

[^0]: *This work has been partially supported by the DGICYT BFM2001-3395 and by CIRIT 1999SGR 00061.
 Keywords and phrases: Rearrangement inequality, Real interpolation, Banach couples, Extrapolation theory, Carleson's operator.
 2000 Mathematics Subject Classification: 46M35, 47A30.

