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A useful estimate for the decreasing rearrangement

of the sum of functions. ∗

Maŕıa J. Carro and Joaquim Mart́ın

Abstract
Given f =

∑
n∈N fn, where {fn}n are measurable functions, we show

that

f∗(3t) ≤
∑

n

(
f∗n(t) +

1
t

∫ t

cnt

f∗n(s)ds

)
,

where {cn}n are positive numbers such that
∑

n cn = 1. Several con-
sequences in the setting of weighted Lorentz spaces are also given.

1 Introduction

Let (N , µ) be a σ−finite resonant measure space and let L0(N ) be the class
of measurable functions that are finite µ a.e.

Let g∗µ(t) = inf
{
s : λµ

g (s) ≤ t
}

be the decreasing rearrangement of g,
where λµ

g (y) = µ ({x ∈ N : |g(x)| > y}) is the distribution function of g
with respect to the measure µ. Then, it holds (see [2]) that, for every f and
g in L0(N ) and every a ≥ 0 and b ≥ 0 such that a + b = 1,

(f + g)∗µ(t) ≤ f∗µ(at) + g∗µ(bt),

and, in general, the ∗-operator is not subadditive. This estimate can be
extended to the case of a countable set of functions (fn)n∈N ⊂ L0(N ) in the
natural way; that is, for every sequence of positive elements (cn)n such that∑

n cn = 1, we have that( ∑
n

fn

)∗
µ
(t) ≤

∑
n

(fn)∗µ(cnt).
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However, on many occasions this estimate is too rough to be useful. Our
purpose is to present an estimate for the decreasing rearrangement of

∑
n fn

which allows us to get several useful consequences. In particular, a gener-
alization of the following lemma due to E.M. Stein and N.J. Weiss (see [8])
will be presented.

Lemma 1.1 Let fn ⊂ L0(N ) be such that supt>0 t(fn)∗µ(t) ≤ 1 and let
(an)n > 0 be such that

∑
n an log(1/an) < ∞. Then, if f =

∑
n anfn, we

have that supt>0 tf∗µ(t) < ∞.

As usual, the symbol f ≈ g will indicate the existence of a univer-
sal positive constant C (independent of all parameters involved) so that
(1/C)f ≤ g ≤ Cf , while the symbol f � g means that f ≤ Cg. In what
follows we shall omit the indices µ whenever it is clear the measure we are
working with.

2 Main result

To prove our main estimate, we first need some technical lemma. Let f ∈
L0(N ) be a positive function and let r > 0. If

A(f, r) = {x ∈ N : f(x) = r} ,

then A(f, r1) ∩ A(f, r2) = ∅ if r1 6= r2, and, from the σ−finite condition,
µ (A(f, r)) = 0 except perhaps for at most a countable number of r.

Lemma 2.1 Let f ∈ L0(N ) be a positive function and ε > 0. Then there
exists a function g ∈ L0(N ) such that µ (A(g, r)) = 0 for each r > 0 and

f(x) ≤ g(x) ≤ (1 + ε)f(x) a.e. x ∈ N .

Proof: If µ (A(f, r)) = 0 for each r > 0, then f = g, otherwise there ex-
ists a finite or countable sequence {rn}n such that µ (A(f, rn)) > 0. Let
h : [0,∞) → [0,∞) be defined by h(t) = εe−t, which is continuous, strictly
decreasing and limt→∞ h(t) = 0. Hence there is a measure-preserving trans-
formation σ : (N , µ) → ([0,∞),m) such that H = h ◦ σ ∈ L0(N ) where m
is the Lebesgue measure and H∗

µ(t) = h(t) [see [2], Corollary 7.6]. Moreover
µ (A(H, r)) = 0 for each r > 0, since H∗

µ and λH are inverse to each other,
and H∗

µ is continuous and strictly decreasing.
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We define g in the following way

g(x) =

{
f(x) x ∈ N\ ∪n A(f, rn)
(1 + H(x))

∑
n

rnχA(f,rn)(x) x ∈ ∪nA(f, rn).

Then
f(x) ≤ g(x) ≤ (1 + ε)f(x)

since 0 < H ≤ ε and f = rn on A(f, rn). Also, µ (A(g, r)) = 0 for each
r > 0, since given r > 0

A(g, r) = {x ∈ N\ ∪n A(f, r) : f(x) = r}⋃
(∪n {x ∈ A(f, rn) : rn (1 + H(x)) = r}) .

Obviously
µ ({x ∈ N\ ∪n A(f, rn) : f(x) = r}) = 0

and

µ({x ∈ A(f, rn) : rn (1 + H(x)) = r}) ≤ µ

({
x ∈ N : H(x) =

r − rn

rn

})
= µ

(
A

(
H,

r − rn

rn

))
= 0.

Theorem 2.1 Let f =
∑

n fn with fn ≥ 0 and let cn > 0 be such that∑
n cn = 1. Then

f∗(3t) ≤
∑
n

(
f∗n(t) +

1
t

∫ t

cnt
f∗n(s)ds

)
.

Proof: Given ε > 0, by our previous Lemma, we can replace each function
fn by f̃n such that fn ≤ f̃n ≤ (1 + ε)fn, with µ

(
A(f̃n, r)

)
= 0 for each

r > 0. For a fixed t > 0, let us write

f̃n = f̃1
n + f̃2

n + f̃3
n

= f̃nχ{x∈N : f̃n(x)>f̃∗n(cnt)} + f̃nχ{x∈N : f̃∗n(t)<f̃n(x)≤f̃∗n(cnt)}
+f̃nχ{x∈N : f̃n(x)≤f̃∗n(t)}.

Since µ
({

x ∈ N : f̃n(x) = f̃∗n(cnt)
})

= 0,

f̃2
n = f̃nχ{x∈N : f̃∗n(t)<f̃n(x)<f̃∗n(cnt)}.
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Then
f ≤ f̃1 + f̃2 + f̃3 :=

∑
n

f̃1
n +

∑
n

f̃2
n +

∑
n

f̃3
n.

Now, since

µ
({

x ∈ N : f̃1
n(x) > 0)

})
≤ µ

({
x ∈ N : f̃n(x) > f̃∗n(cnt)

})
≤ cnt,

it follows that
(
f̃1

n

)∗
(cnt) = 0, and therefore,

0 ≤
(
f̃1

)∗
(t) ≤

∑
n

(
f̃1

n

)∗
(cnt) = 0.

On the other hand,(
f̃2

)∗
(t) ≤ 1

t

∥∥∥f̃2
∥∥∥
1
≤ 1

t

∑
n

∫
{x∈N : f̃∗n(t)<f̃n(x)<f̃∗n(cnt)}

f̃n(s)ds

=
1
t

∑
n

∫ t

cnt
f̃∗n(s)ds

and (
f̃3

)∗
(t) ≤

∑
n

(
f̃3

n

)∗
(cnt) ≤

∑
n

f̃∗n(t).

Since f̃n ≤ (1 + ε)fn, we have that

f∗(3t) ≤
(
f̃1

)∗
(t) +

(
f̃2

)∗
(t) +

(
f̃3

)∗
(t)

≤
∑
n

f̃∗n(t) +
1
t

∑
n

∫ t

cnt
f̃∗n(s)ds

≤ (1 + ε)
∑
n

(
f∗n(t) +

1
t

∫ t

cnt
f∗n(s)ds

)
,

and letting ε tends to zero, we are done.

3 Consequence and applications

Given a positive locally Lebesgue integrable function on (0,∞) (i.e., a weight),
we recall that the weak type version of the Lorentz space Λp(w), introduced
in [6], are the spaces Λp,∞(w) defined as the set of µ-measurable functions
such that

‖f‖Λp,∞(w) = sup
t>0

W 1/p(t)f∗(t) < ∞,
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where W (t) =
∫ t
0 w and 0 < p < ∞. In order to have that these spaces

are quasi-normed, it is known that W needs to satisfy the so-called ∆2-
condition; that is W (2t) ≤ CW (t) for every t (see [3]). This assumption will
be assumed throughout the rest of the paper.

In general, these spaces are not normable and their normability has been
studied in several papers (see [4] and [7]). Consequently, if (fn)n ⊂ Λp,∞(w)
are such that ‖fn‖Λp,∞(w) ≤ 1 and (an)n satisfies that

∑
n an < ∞, the

function
∑

n anfn is not, in general, in Λp,∞(w). However, the following
result holds:

Theorem 3.1 Let (fn)n be such that ‖fn‖Λp,∞(w) ≤ 1 and (an)n such that∑
n an < ∞. If there exists a sequence (cn)n ≥ 0 such that

∑
n cn = 1 and

aW := sup
t>0

W 1/p(t)
t

∑
n

[
an

∫ t

cnt

1
W 1/p(s)

ds

]
< ∞, (1)

then the function
∑

n anfn ∈ Λp,∞(w).

Proof: Let f =
∑

n anfn. Then, using Theorem 2.1 and the fact that W
satisfies the ∆2-condition, we obtain that

‖f‖Λp,∞(w) = sup
t>0

f∗(t)W 1/p(t) ≈ sup
t>0

f∗(3t)W 1/p(t)

≤ sup
t>0

( ∑
n

anf∗n(t)W 1/p(t) +
W 1/p(t)

t

∑
n

[
an

∫ t

cnt
f∗n(s) ds

] )

� sup
t>0

(
1 +

W 1/p(t)
t

∑
n

[
an

∫ t

cnt

1
W 1/p(s)

ds

] )
= 1 + aW ,

from which the result follows.

Remark 3.1 If w belongs to the Ariño and Muckenhoupt class of weights
Bp (see [1]), it was proved in [7] that∫ t

0

1
W 1/p(s)

ds � t

W 1/p(t)
,

and, therefore, (1) holds, for every (cn).

From this we can give a new proof of the following fact (see [7])

Corollary 3.1 If w ∈ Bp, then Λp,∞(w) is normable.
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Proof: Let N ∈ N and let fn ∈ Λp,∞(w) for every n = 1, · · ·N . Set
f =

∑N
n=1 fn. Then, using Theorem 3.1 and the above remark, we obtain

that there exists a positive constant A independent of N such that

‖f‖Λp,∞(w) ≤ A
∑
n

‖fn‖Λp,∞(w).

From this, it follows that the quantity

‖f‖ := inf

 ∑
finite

‖fn‖Λp,∞(w);
∑

finite
fn = f

 ,

is a norm equivalent to ‖f‖Λp,∞(w). Therefore Λp,∞(w) is normable.

For our next result, which is a natural extension of E.M. Stein and N.J.
Weiss’s Lemma ([8]), let us recall that an increasing function W is said to
be quasi-concave if W (s)/s is a decreasing function.

Corollary 3.2 Let w be a weight such that W 1/p is quasi-concave and let
(fn)n ⊂ Λp,∞(w) be such that ‖fn‖Λp,∞(w) ≤ 1. Then if (an)n > 0 satisfy
that

∑
n an log(1/an) < ∞, we have that

∑
n anfn ∈ Λp,∞(w).

Proof: The proof follows from the fact that, by the quasi-concavity of W 1/p,∫ t

cnt

1
W 1/p(s)

ds ≤ t

W 1/p(t)
log

1
cn

,

and therefore (1) holds for every (cn) such that
∑

n an log 1
cn

< ∞. Taking
cn = an/

∑
i ai, we are done.

This corollary shows that for every weight w such that W 1/p is quasi-
concave, the space Λp,∞(w) is logconvex in the terminology of [5].
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