## UAB <br> Universitat Autònoma de Barcelona

## Dipòsit digital

 de documents de la UABThis is the accepted version of the journal article:
Carro, María J.; Martín i Pedret, Joaquim. «A useful estimate for the decreasing rearrangement of the sum of functions». The Quarterly Journal of Mathematics, Vol. 55, Issue 1 (March 2004), p. 41-45. DOI 10.1093/qmath/hag032

This version is available at https://ddd.uab.cat/record/271869
under the terms of the © ${ }_{\text {COPYRIGHt }}^{\mathbb{N}}$ license

# A useful estimate for the decreasing rearrangement of the sum of functions. * 

María J. Carro and Joaquim Martín


#### Abstract

Given $f=\sum_{n \in \mathbb{N}} f_{n}$, where $\left\{f_{n}\right\}_{n}$ are measurable functions, we show that $$
f^{*}(3 t) \leq \sum_{n}\left(f_{n}^{*}(t)+\frac{1}{t} \int_{c_{n} t}^{t} f_{n}^{*}(s) d s\right)
$$ where $\left\{c_{n}\right\}_{n}$ are positive numbers such that $\sum_{n} c_{n}=1$. Several consequences in the setting of weighted Lorentz spaces are also given.


## 1 Introduction

Let $(\mathcal{N}, \mu)$ be a $\sigma$-finite resonant measure space and let $L^{0}(\mathcal{N})$ be the class of measurable functions that are finite $\mu$ a.e.

Let $g_{\mu}^{*}(t)=\inf \left\{s: \lambda_{g}^{\mu}(s) \leq t\right\}$ be the decreasing rearrangement of $g$, where $\lambda_{g}^{\mu}(y)=\mu(\{x \in \mathcal{N}:|g(x)|>y\})$ is the distribution function of $g$ with respect to the measure $\mu$. Then, it holds (see [2]) that, for every $f$ and $g$ in $L^{0}(\mathcal{N})$ and every $a \geq 0$ and $b \geq 0$ such that $a+b=1$,

$$
(f+g)_{\mu}^{*}(t) \leq f_{\mu}^{*}(a t)+g_{\mu}^{*}(b t),
$$

and, in general, the $*$-operator is not subadditive. This estimate can be extended to the case of a countable set of functions $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{0}(\mathcal{N})$ in the natural way; that is, for every sequence of positive elements $\left(c_{n}\right)_{n}$ such that $\sum_{n} c_{n}=1$, we have that

$$
\left(\sum_{n} f_{n}\right)_{\mu}^{*}(t) \leq \sum_{n}\left(f_{n}\right)_{\mu}^{*}\left(c_{n} t\right)
$$

*Both authors have been partially supported by the DGICYT PB97-0986 and by CIRIT 1999SGR 00061.
Keywords and phrases: Rearrangement inequality, weighted Lorentz spaces. 2000 Mathematics Subject Classification: 46M35, 47A30.

However, on many occasions this estimate is too rough to be useful. Our purpose is to present an estimate for the decreasing rearrangement of $\sum_{n} f_{n}$ which allows us to get several useful consequences. In particular, a generalization of the following lemma due to E.M. Stein and N.J. Weiss (see [8]) will be presented.

Lemma 1.1 Let $f_{n} \subset L^{0}(\mathcal{N})$ be such that $\sup _{t>0} t\left(f_{n}\right)_{\mu}^{*}(t) \leq 1$ and let $\left(a_{n}\right)_{n}>0$ be such that $\sum_{n} a_{n} \log \left(1 / a_{n}\right)<\infty$. Then, if $f=\sum_{n} a_{n} f_{n}$, we have that $\sup _{t>0} t f_{\mu}^{*}(t)<\infty$.

As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant $C$ (independent of all parameters involved) so that $(1 / C) f \leq g \leq C f$, while the symbol $f \preceq g$ means that $f \leq C g$. In what follows we shall omit the indices $\mu$ whenever it is clear the measure we are working with.

## 2 Main result

To prove our main estimate, we first need some technical lemma. Let $f \in$ $L^{0}(\mathcal{N})$ be a positive function and let $r>0$. If

$$
A(f, r)=\{x \in \mathcal{N}: f(x)=r\},
$$

then $A\left(f, r_{1}\right) \cap A\left(f, r_{2}\right)=\emptyset$ if $r_{1} \neq r_{2}$, and, from the $\sigma$-finite condition, $\mu(A(f, r))=0$ except perhaps for at most a countable number of $r$.

Lemma 2.1 Let $f \in L^{0}(\mathcal{N})$ be a positive function and $\varepsilon>0$. Then there exists a function $g \in L^{0}(\mathcal{N})$ such that $\mu(A(g, r))=0$ for each $r>0$ and

$$
f(x) \leq g(x) \leq(1+\varepsilon) f(x) \quad \text { a.e. } x \in \mathcal{N} .
$$

Proof: If $\mu(A(f, r))=0$ for each $r>0$, then $f=g$, otherwise there exists a finite or countable sequence $\left\{r_{n}\right\}_{n}$ such that $\mu\left(A\left(f, r_{n}\right)\right)>0$. Let $h:[0, \infty) \rightarrow[0, \infty)$ be defined by $h(t)=\varepsilon e^{-t}$, which is continuous, strictly decreasing and $\lim _{t \rightarrow \infty} h(t)=0$. Hence there is a measure-preserving transformation $\sigma:(\mathcal{N}, \mu) \rightarrow([0, \infty), m)$ such that $H=h \circ \sigma \in L^{0}(\mathcal{N})$ where $m$ is the Lebesgue measure and $H_{\mu}^{*}(t)=h(t)$ [see [2], Corollary 7.6]. Moreover $\mu(A(H, r))=0$ for each $r>0$, since $H_{\mu}^{*}$ and $\lambda_{H}$ are inverse to each other, and $H_{\mu}^{*}$ is continuous and strictly decreasing.

We define $g$ in the following way

$$
g(x)= \begin{cases}f(x) & x \in \mathcal{N} \backslash \cup_{n} A\left(f, r_{n}\right) \\ (1+H(x)) \sum_{n} r_{n} \chi_{A\left(f, r_{n}\right)}(x) & x \in \cup_{n} A\left(f, r_{n}\right) .\end{cases}
$$

Then

$$
f(x) \leq g(x) \leq(1+\varepsilon) f(x)
$$

since $0<H \leq \varepsilon$ and $f=r_{n}$ on $A\left(f, r_{n}\right)$. Also, $\mu(A(g, r))=0$ for each $r>0$, since given $r>0$

$$
\begin{aligned}
A(g, r)= & \left\{x \in \mathcal{M} \cup_{n} A(f, r): f(x)=r\right\} \\
& \bigcup\left(\cup_{n}\left\{x \in A\left(f, r_{n}\right): r_{n}(1+H(x))=r\right\}\right) .
\end{aligned}
$$

Obviously

$$
\mu\left(\left\{x \in \mathcal{N} \backslash \cup_{n} A\left(f, r_{n}\right): f(x)=r\right\}\right)=0
$$

and

$$
\begin{aligned}
\mu\left(\left\{x \in A\left(f, r_{n}\right): r_{n}(1+H(x))=r\right\}\right) & \leq \mu\left(\left\{x \in \mathcal{N}: H(x)=\frac{r-r_{n}}{r_{n}}\right\}\right) \\
& =\mu\left(A\left(H, \frac{r-r_{n}}{r_{n}}\right)\right)=0 .
\end{aligned}
$$

Theorem 2.1 Let $f=\sum_{n} f_{n}$ with $f_{n} \geq 0$ and let $c_{n}>0$ be such that $\sum_{n} c_{n}=1$. Then

$$
f^{*}(3 t) \leq \sum_{n}\left(f_{n}^{*}(t)+\frac{1}{t} \int_{c_{n} t}^{t} f_{n}^{*}(s) d s\right) .
$$

Proof: Given $\varepsilon>0$, by our previous Lemma, we can replace each function $f_{n}$ by $\tilde{f}_{n}$ such that $f_{n} \leq \tilde{f}_{n} \leq(1+\varepsilon) f_{n}$, with $\mu\left(A\left(\tilde{f}_{n}, r\right)\right)=0$ for each $r>0$. For a fixed $t>0$, let us write

$$
\begin{aligned}
\tilde{f}_{n}= & \tilde{f}_{n}^{1}+\tilde{f}_{n}^{2}+\tilde{f}_{n}^{3} \\
= & \left.\tilde{f}_{n} \chi_{\{x \in \mathcal{N}}: \tilde{f}_{n}(x)>\tilde{f}_{n}^{*}\left(c_{n} t\right)\right\} \\
& \left.+\tilde{f}_{n} \chi_{\{x \in \mathcal{N}}: \tilde{f}_{n}^{*}(t)<\tilde{f}_{n}(x) \leq \tilde{f}_{n}^{*}\left(c_{n} t\right)\right\} \\
& \left\{x \in \mathcal{N}: \tilde{f}_{n}(x) \leq \tilde{f}_{n}^{*}(t)\right\}
\end{aligned}
$$

Since $\mu\left(\left\{x \in \mathcal{N}: \tilde{f}_{n}(x)=\tilde{f}_{n}^{*}\left(c_{n} t\right)\right\}\right)=0$,

$$
\left.\tilde{f}_{n}^{2}=\tilde{f}_{n} \chi_{\{x \in \mathcal{N}: ~}: \tilde{f}_{n}^{*}(t)<\tilde{f}_{n}(x)<\tilde{f}_{n}^{*}\left(c_{n} t\right)\right\} .
$$

Then

$$
f \leq \tilde{f}^{1}+\tilde{f}^{2}+\tilde{f}^{3}:=\sum_{n} \tilde{f}_{n}^{1}+\sum_{n} \tilde{f}_{n}^{2}+\sum_{n} \tilde{f}_{n}^{3}
$$

Now, since

$$
\left.\mu\left(\left\{x \in \mathcal{N}: \tilde{f}_{n}^{1}(x)>0\right)\right\}\right) \leq \mu\left(\left\{x \in \mathcal{N}: \tilde{f}_{n}(x)>\tilde{f}_{n}^{*}\left(c_{n} t\right)\right\}\right) \leq c_{n} t
$$

it follows that $\left(\tilde{f}_{n}^{1}\right)^{*}\left(c_{n} t\right)=0$, and therefore,

$$
0 \leq\left(\tilde{f}^{1}\right)^{*}(t) \leq \sum_{n}\left(\tilde{f}_{n}^{1}\right)^{*}\left(c_{n} t\right)=0
$$

On the other hand,

$$
\begin{aligned}
\left(\tilde{f}^{2}\right)^{*}(t) & \leq \frac{1}{t}\left\|\tilde{f}^{2}\right\|_{1} \leq \frac{1}{t} \sum_{n} \int_{\left\{x \in \mathcal{N}: \tilde{f}_{n}^{*}(t)<\tilde{f}_{n}(x)<\tilde{f}_{n}^{*}\left(c_{n} t\right)\right\}} \tilde{f}_{n}(s) d s \\
& =\frac{1}{t} \sum_{n} \int_{c_{n} t}^{t} \tilde{f}_{n}^{*}(s) d s
\end{aligned}
$$

and

$$
\left(\tilde{f}^{3}\right)^{*}(t) \leq \sum_{n}\left(\tilde{f}_{n}^{3}\right)^{*}\left(c_{n} t\right) \leq \sum_{n} \tilde{f}_{n}^{*}(t)
$$

Since $\tilde{f}_{n} \leq(1+\varepsilon) f_{n}$, we have that

$$
\begin{aligned}
f^{*}(3 t) & \leq\left(\tilde{f}^{1}\right)^{*}(t)+\left(\tilde{f}^{2}\right)^{*}(t)+\left(\tilde{f}^{3}\right)^{*}(t) \\
& \leq \sum_{n} \tilde{f}_{n}^{*}(t)+\frac{1}{t} \sum_{n} \int_{c_{n} t}^{t} \tilde{f}_{n}^{*}(s) d s \\
& \leq(1+\varepsilon) \sum_{n}\left(f_{n}^{*}(t)+\frac{1}{t} \int_{c_{n} t}^{t} f_{n}^{*}(s) d s\right)
\end{aligned}
$$

and letting $\varepsilon$ tends to zero, we are done.

## 3 Consequence and applications

Given a positive locally Lebesgue integrable function on ( $0, \infty$ ) (i.e., a weight), we recall that the weak type version of the Lorentz space $\Lambda^{p}(w)$, introduced in [6], are the spaces $\Lambda^{p, \infty}(w)$ defined as the set of $\mu$-measurable functions such that

$$
\|f\|_{\Lambda^{p, \infty}(w)}=\sup _{t>0} W^{1 / p}(t) f^{*}(t)<\infty
$$

where $W(t)=\int_{0}^{t} w$ and $0<p<\infty$. In order to have that these spaces are quasi-normed, it is known that $W$ needs to satisfy the so-called $\Delta_{2^{-}}$ condition; that is $W(2 t) \leq C W(t)$ for every $t$ (see [3]). This assumption will be assumed throughout the rest of the paper.

In general, these spaces are not normable and their normability has been studied in several papers (see [4] and [7]). Consequently, if $\left(f_{n}\right)_{n} \subset \Lambda^{p, \infty}(w)$ are such that $\left\|f_{n}\right\|_{\Lambda^{p, \infty}(w)} \leq 1$ and $\left(a_{n}\right)_{n}$ satisfies that $\sum_{n} a_{n}<\infty$, the function $\sum_{n} a_{n} f_{n}$ is not, in general, in $\Lambda^{p, \infty}(w)$. However, the following result holds:

Theorem 3.1 Let $\left(f_{n}\right)_{n}$ be such that $\left\|f_{n}\right\|_{\Lambda^{p, \infty}(w)} \leq 1$ and $\left(a_{n}\right)_{n}$ such that $\sum_{n} a_{n}<\infty$. If there exists a sequence $\left(c_{n}\right)_{n} \geq 0$ such that $\sum_{n} c_{n}=1$ and

$$
\begin{equation*}
a_{W}:=\sup _{t>0} \frac{W^{1 / p}(t)}{t} \sum_{n}\left[a_{n} \int_{c_{n} t}^{t} \frac{1}{W^{1 / p}(s)} d s\right]<\infty \tag{1}
\end{equation*}
$$

then the function $\sum_{n} a_{n} f_{n} \in \Lambda^{p, \infty}(w)$.
Proof: Let $f=\sum_{n} a_{n} f_{n}$. Then, using Theorem 2.1 and the fact that $W$ satisfies the $\Delta_{2}$-condition, we obtain that

$$
\begin{aligned}
\|f\|_{\Lambda^{p, \infty}(w)} & =\sup _{t>0} f^{*}(t) W^{1 / p}(t) \approx \sup _{t>0} f^{*}(3 t) W^{1 / p}(t) \\
& \leq \sup _{t>0}\left(\sum_{n} a_{n} f_{n}^{*}(t) W^{1 / p}(t)+\frac{W^{1 / p}(t)}{t} \sum_{n}\left[a_{n} \int_{c_{n} t}^{t} f_{n}^{*}(s) d s\right]\right) \\
& \preceq \sup _{t>0}\left(1+\frac{W^{1 / p}(t)}{t} \sum_{n}\left[a_{n} \int_{c_{n} t}^{t} \frac{1}{W^{1 / p}(s)} d s\right]\right)=1+a_{W}
\end{aligned}
$$

from which the result follows.
Remark 3.1 If $w$ belongs to the Ariño and Muckenhoupt class of weights $B_{p}$ (see [1]), it was proved in [7] that

$$
\int_{0}^{t} \frac{1}{W^{1 / p}(s)} d s \preceq \frac{t}{W^{1 / p}(t)}
$$

and, therefore, (1) holds, for every $\left(c_{n}\right)$.
From this we can give a new proof of the following fact (see [7])
Corollary 3.1 If $w \in B_{p}$, then $\Lambda^{p, \infty}(w)$ is normable.

Proof: Let $N \in \mathbb{N}$ and let $f_{n} \in \Lambda^{p, \infty}(w)$ for every $n=1, \cdots N$. Set $f=\sum_{n=1}^{N} f_{n}$. Then, using Theorem 3.1 and the above remark, we obtain that there exists a positive constant $A$ independent of $N$ such that

$$
\|f\|_{\Lambda^{p, \infty}(w)} \leq A \sum_{n}\left\|f_{n}\right\|_{\Lambda^{p, \infty}(w)} .
$$

From this, it follows that the quantity

$$
\|f\|:=\inf \left\{\sum_{\text {finite }}\left\|f_{n}\right\|_{\Lambda^{p, \infty}(w)} ; \sum_{\text {finite }} f_{n}=f\right\}
$$

is a norm equivalent to $\|f\|_{\Lambda^{p, \infty}(w)}$. Therefore $\Lambda^{p, \infty}(w)$ is normable.
For our next result, which is a natural extension of E.M. Stein and N.J. Weiss's Lemma ([8]), let us recall that an increasing function $W$ is said to be quasi-concave if $W(s) / s$ is a decreasing function.

Corollary 3.2 Let $w$ be a weight such that $W^{1 / p}$ is quasi-concave and let $\left(f_{n}\right)_{n} \subset \Lambda^{p, \infty}(w)$ be such that $\left\|f_{n}\right\|_{\Lambda^{p, \infty}(w)} \leq 1$. Then if $\left(a_{n}\right)_{n}>0$ satisfy that $\sum_{n} a_{n} \log \left(1 / a_{n}\right)<\infty$, we have that $\sum_{n} a_{n} f_{n} \in \Lambda^{p, \infty}(w)$.

Proof: The proof follows from the fact that, by the quasi-concavity of $W^{1 / p}$,

$$
\int_{c_{n} t}^{t} \frac{1}{W^{1 / p}(s)} d s \leq \frac{t}{W^{1 / p}(t)} \log \frac{1}{c_{n}}
$$

and therefore (1) holds for every $\left(c_{n}\right)$ such that $\sum_{n} a_{n} \log \frac{1}{c_{n}}<\infty$. Taking $c_{n}=a_{n} / \sum_{i} a_{i}$, we are done.

This corollary shows that for every weight $w$ such that $W^{1 / p}$ is quasiconcave, the space $\Lambda^{p, \infty}(w)$ is logconvex in the terminology of [5].

## References

[1] M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Loretnz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735.
[2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston (1988).
[3] M. Carro, A. García del Amo and J. Soria, Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc. 124 (1996), 849857.
[4] A. Haaker, On the conjugate space of Lorentz space, Preprint, Department of mathematics, University of Lund (1970).
[5] N.J. Kalton, Convexity, type and the three space problem, Studia Math. 69 (1981), 247-287.
[6] G.G. Lorentz, On the theory of spaces $\Lambda$, Pacific J. Math. 1 (1951), 411-429.
[7] J. Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford 49 (1998), 93-103.
[8] E.M. Stein and N.J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 34-54.

Departament de Matemàtica Aplicada i Anàlisi
Universitat de Barcelona, E-08071 Barcelona, (SPAIN)
E-mail: carro@mat.ub.es, jmartin@mat.ub.es

