

This is the **accepted version** of the journal article:

Carro, María J.; Martín i Pedret, Joaquim. «A useful estimate for the decreasing rearrangement of the sum of functions». The Quarterly Journal of Mathematics, Vol. 55, Issue 1 (March 2004), p. 41-45. DOI 10.1093/qmath/hag032

This version is available at https://ddd.uab.cat/record/271869

under the terms of the $\textcircled{O}^{\texttt{N}}_{\texttt{COPYRIGHT}}$ license

A useful estimate for the decreasing rearrangement of the sum of functions. *

María J. Carro and Joaquim Martín

Abstract

Given $f = \sum_{n \in \mathbb{N}} f_n$, where $\{f_n\}_n$ are measurable functions, we show that

$$f^*(3t) \le \sum_n \left(f_n^*(t) + \frac{1}{t} \int_{c_n t}^t f_n^*(s) ds \right),$$

where $\{c_n\}_n$ are positive numbers such that $\sum_n c_n = 1$. Several consequences in the setting of weighted Lorentz spaces are also given.

1 Introduction

Let (\mathcal{N}, μ) be a σ -finite resonant measure space and let $L^0(\mathcal{N})$ be the class of measurable functions that are finite μ a.e.

Let $g^*_{\mu}(t) = \inf \left\{ s : \lambda^{\mu}_g(s) \leq t \right\}$ be the decreasing rearrangement of g, where $\lambda^{\mu}_g(y) = \mu \left(\left\{ x \in \mathcal{N} : |g(x)| > y \right\} \right)$ is the distribution function of gwith respect to the measure μ . Then, it holds (see [2]) that, for every f and g in $L^0(\mathcal{N})$ and every $a \geq 0$ and $b \geq 0$ such that a + b = 1,

$$(f+g)^*_{\mu}(t) \le f^*_{\mu}(at) + g^*_{\mu}(bt),$$

and, in general, the *-operator is not subadditive. This estimate can be extended to the case of a countable set of functions $(f_n)_{n \in \mathbb{N}} \subset L^0(\mathcal{N})$ in the natural way; that is, for every sequence of positive elements $(c_n)_n$ such that $\sum_n c_n = 1$, we have that

$$\left(\sum_{n} f_n\right)_{\mu}^*(t) \le \sum_{n} (f_n)_{\mu}^*(c_n t).$$

 $^{^{*}\}mathrm{Both}$ authors have been partially supported by the DGICYT PB97-0986 and by CIRIT 1999SGR 00061.

Keywords and phrases: Rearrangement inequality, weighted Lorentz spaces. 2000 Mathematics Subject Classification: 46M35, 47A30.

However, on many occasions this estimate is too rough to be useful. Our purpose is to present an estimate for the decreasing rearrangement of $\sum_n f_n$ which allows us to get several useful consequences. In particular, a generalization of the following lemma due to E.M. Stein and N.J. Weiss (see [8]) will be presented.

Lemma 1.1 Let $f_n \subset L^0(\mathcal{N})$ be such that $\sup_{t>0} t(f_n)^*_{\mu}(t) \leq 1$ and let $(a_n)_n > 0$ be such that $\sum_n a_n \log(1/a_n) < \infty$. Then, if $f = \sum_n a_n f_n$, we have that $\sup_{t>0} tf^*_{\mu}(t) < \infty$.

As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant C (independent of all parameters involved) so that $(1/C)f \leq g \leq Cf$, while the symbol $f \leq g$ means that $f \leq Cg$. In what follows we shall omit the indices μ whenever it is clear the measure we are working with.

2 Main result

To prove our main estimate, we first need some technical lemma. Let $f \in L^0(\mathcal{N})$ be a positive function and let r > 0. If

$$A(f,r) = \left\{ x \in \mathcal{N} : f(x) = r \right\},\$$

then $A(f,r_1) \cap A(f,r_2) = \emptyset$ if $r_1 \neq r_2$, and, from the σ -finite condition, $\mu(A(f,r)) = 0$ except perhaps for at most a countable number of r.

Lemma 2.1 Let $f \in L^0(\mathcal{N})$ be a positive function and $\varepsilon > 0$. Then there exists a function $g \in L^0(\mathcal{N})$ such that $\mu(A(g,r)) = 0$ for each r > 0 and

$$f(x) \le g(x) \le (1+\varepsilon)f(x)$$
 a.e. $x \in \mathcal{N}$.

Proof: If $\mu(A(f,r)) = 0$ for each r > 0, then f = g, otherwise there exists a finite or countable sequence $\{r_n\}_n$ such that $\mu(A(f,r_n)) > 0$. Let $h: [0,\infty) \to [0,\infty)$ be defined by $h(t) = \varepsilon e^{-t}$, which is continuous, strictly decreasing and $\lim_{t\to\infty} h(t) = 0$. Hence there is a measure-preserving transformation $\sigma: (\mathcal{N}, \mu) \to ([0,\infty), m)$ such that $H = h \circ \sigma \in L^0(\mathcal{N})$ where m is the Lebesgue measure and $H^*_{\mu}(t) = h(t)$ [see [2], Corollary 7.6]. Moreover $\mu(A(H,r)) = 0$ for each r > 0, since H^*_{μ} and λ_H are inverse to each other, and H^*_{μ} is continuous and strictly decreasing.

We define g in the following way

$$g(x) = \begin{cases} f(x) & x \in \mathcal{N} \setminus \bigcup_n A(f, r_n) \\ (1 + H(x)) \sum_n r_n \chi_{A(f, r_n)}(x) & x \in \bigcup_n A(f, r_n). \end{cases}$$

Then

$$f(x) \le g(x) \le (1+\varepsilon)f(x)$$

since $0 < H \le \varepsilon$ and $f = r_n$ on $A(f, r_n)$. Also, $\mu(A(g, r)) = 0$ for each r > 0, since given r > 0

$$\begin{array}{ll} A(g,r) &=& \left\{ x \in \mathcal{N} \setminus \cup_n A(f,r) : f(x) = r \right\} \\ & \bigcup \left(\cup_n \left\{ x \in A(f,r_n) : r_n \left(1 + H(x) \right) = r \right\} \right). \end{array}$$

Obviously

$$\mu\left(\left\{x \in \mathcal{N} \setminus \bigcup_n A(f, r_n) : f(x) = r\right\}\right) = 0$$

and

$$\mu(\{x \in A(f, r_n) : r_n (1 + H(x)) = r\}) \leq \mu\left(\left\{x \in \mathcal{N} : H(x) = \frac{r - r_n}{r_n}\right\}\right)$$
$$= \mu\left(A\left(H, \frac{r - r_n}{r_n}\right)\right) = 0. \square$$

Theorem 2.1 Let $f = \sum_n f_n$ with $f_n \ge 0$ and let $c_n > 0$ be such that $\sum_n c_n = 1$. Then

$$f^*(3t) \le \sum_n \left(f_n^*(t) + \frac{1}{t} \int_{c_n t}^t f_n^*(s) ds \right).$$

Proof: Given $\varepsilon > 0$, by our previous Lemma, we can replace each function f_n by \tilde{f}_n such that $f_n \leq \tilde{f}_n \leq (1 + \varepsilon)f_n$, with $\mu\left(A(\tilde{f}_n, r)\right) = 0$ for each r > 0. For a fixed t > 0, let us write

$$\tilde{f}_{n} = \tilde{f}_{n}^{1} + \tilde{f}_{n}^{2} + \tilde{f}_{n}^{3}
= \tilde{f}_{n}\chi_{\{x\in\mathcal{N}: \tilde{f}_{n}(x)>\tilde{f}_{n}^{*}(c_{n}t)\}} + \tilde{f}_{n}\chi_{\{x\in\mathcal{N}: \tilde{f}_{n}^{*}(t)<\tilde{f}_{n}(x)\leq\tilde{f}_{n}^{*}(c_{n}t)\}}
+ \tilde{f}_{n}\chi_{\{x\in\mathcal{N}: \tilde{f}_{n}(x)\leq\tilde{f}_{n}^{*}(t)\}}.$$

Since $\mu\left(\left\{x \in \mathcal{N} : \tilde{f}_n(x) = \tilde{f}_n^*(c_n t)\right\}\right) = 0,$ $\tilde{f}_n^2 = \tilde{f}_n \chi_{\left\{x \in \mathcal{N} : \tilde{f}_n^*(t) < \tilde{f}_n(x) < \tilde{f}_n^*(c_n t)\right\}}.$ Then

$$f \le \tilde{f}^1 + \tilde{f}^2 + \tilde{f}^3 := \sum_n \tilde{f}_n^1 + \sum_n \tilde{f}_n^2 + \sum_n \tilde{f}_n^3.$$

Now, since

$$\mu\left(\left\{x \in \mathcal{N} : \tilde{f}_n^1(x) > 0\right)\right\}\right) \le \mu\left(\left\{x \in \mathcal{N} : \tilde{f}_n(x) > \tilde{f}_n^*(c_n t)\right\}\right) \le c_n t,$$

it follows that $\left(\tilde{f}_n^1\right)^*(c_n t) = 0$, and therefore,

$$0 \le \left(\tilde{f}^1\right)^*(t) \le \sum_n \left(\tilde{f}^1_n\right)^*(c_n t) = 0.$$

On the other hand,

$$\left(\tilde{f}^2\right)^*(t) \leq \frac{1}{t} \left\|\tilde{f}^2\right\|_1 \leq \frac{1}{t} \sum_n \int_{\left\{x \in \mathcal{N} : \tilde{f}_n^*(t) < \tilde{f}_n(x) < \tilde{f}_n^*(c_n t)\right\}} \tilde{f}_n(s) ds$$
$$= \frac{1}{t} \sum_n \int_{c_n t}^t \tilde{f}_n^*(s) ds$$

and

$$\left(\tilde{f}^3\right)^*(t) \le \sum_n \left(\tilde{f}_n^3\right)^*(c_n t) \le \sum_n \tilde{f}_n^*(t).$$

Since $\tilde{f}_n \leq (1+\varepsilon)f_n$, we have that

$$f^{*}(3t) \leq \left(\tilde{f}^{1}\right)^{*}(t) + \left(\tilde{f}^{2}\right)^{*}(t) + \left(\tilde{f}^{3}\right)^{*}(t)$$

$$\leq \sum_{n} \tilde{f}_{n}^{*}(t) + \frac{1}{t} \sum_{n} \int_{c_{n}t}^{t} \tilde{f}_{n}^{*}(s) ds$$

$$\leq (1+\varepsilon) \sum_{n} \left(f_{n}^{*}(t) + \frac{1}{t} \int_{c_{n}t}^{t} f_{n}^{*}(s) ds\right),$$

and letting ε tends to zero, we are done. \square

3 Consequence and applications

Given a positive locally Lebesgue integrable function on $(0, \infty)$ (i.e., a weight), we recall that the weak type version of the Lorentz space $\Lambda^p(w)$, introduced in [6], are the spaces $\Lambda^{p,\infty}(w)$ defined as the set of μ -measurable functions such that

$$\|f\|_{\Lambda^{p,\infty}(w)} = \sup_{t>0} W^{1/p}(t) f^*(t) < \infty,$$

where $W(t) = \int_0^t w$ and 0 . In order to have that these spacesare quasi-normed, it is known that <math>W needs to satisfy the so-called Δ_2 condition; that is $W(2t) \leq CW(t)$ for every t (see [3]). This assumption will be assumed throughout the rest of the paper.

In general, these spaces are not normable and their normability has been studied in several papers (see [4] and [7]). Consequently, if $(f_n)_n \subset \Lambda^{p,\infty}(w)$ are such that $||f_n||_{\Lambda^{p,\infty}(w)} \leq 1$ and $(a_n)_n$ satisfies that $\sum_n a_n < \infty$, the function $\sum_n a_n f_n$ is not, in general, in $\Lambda^{p,\infty}(w)$. However, the following result holds:

Theorem 3.1 Let $(f_n)_n$ be such that $||f_n||_{\Lambda^{p,\infty}(w)} \leq 1$ and $(a_n)_n$ such that $\sum_n a_n < \infty$. If there exists a sequence $(c_n)_n \geq 0$ such that $\sum_n c_n = 1$ and

$$a_W := \sup_{t>0} \frac{W^{1/p}(t)}{t} \sum_n \left[a_n \int_{c_n t}^t \frac{1}{W^{1/p}(s)} \, ds \right] < \infty, \tag{1}$$

then the function $\sum_n a_n f_n \in \Lambda^{p,\infty}(w)$.

Proof: Let $f = \sum_{n} a_n f_n$. Then, using Theorem 2.1 and the fact that W satisfies the Δ_2 -condition, we obtain that

$$\begin{split} \|f\|_{\Lambda^{p,\infty}(w)} &= \sup_{t>0} f^*(t) W^{1/p}(t) \approx \sup_{t>0} f^*(3t) W^{1/p}(t) \\ &\leq \sup_{t>0} \left(\sum_n a_n f^*_n(t) W^{1/p}(t) + \frac{W^{1/p}(t)}{t} \sum_n \left[a_n \int_{c_n t}^t f^*_n(s) \, ds \right] \right) \\ &\preceq \sup_{t>0} \left(1 + \frac{W^{1/p}(t)}{t} \sum_n \left[a_n \int_{c_n t}^t \frac{1}{W^{1/p}(s)} \, ds \right] \right) = 1 + a_W, \end{split}$$

from which the result follows. \square

Remark 3.1 If w belongs to the Ariño and Muckenhoupt class of weights B_p (see [1]), it was proved in [7] that

$$\int_0^t \frac{1}{W^{1/p}(s)} \, ds \preceq \frac{t}{W^{1/p}(t)},$$

and, therefore, (1) holds, for every (c_n) .

From this we can give a new proof of the following fact (see [7])

Corollary 3.1 If $w \in B_p$, then $\Lambda^{p,\infty}(w)$ is normable.

Proof: Let $N \in \mathbb{N}$ and let $f_n \in \Lambda^{p,\infty}(w)$ for every $n = 1, \dots N$. Set $f = \sum_{n=1}^{N} f_n$. Then, using Theorem 3.1 and the above remark, we obtain that there exists a positive constant A independent of N such that

$$||f||_{\Lambda^{p,\infty}(w)} \le A \sum_{n} ||f_n||_{\Lambda^{p,\infty}(w)}.$$

From this, it follows that the quantity

$$||f|| := \inf \left\{ \sum_{\text{finite}} ||f_n||_{\Lambda^{p,\infty}(w)}; \sum_{\text{finite}} f_n = f \right\},$$

is a norm equivalent to $||f||_{\Lambda^{p,\infty}(w)}$. Therefore $\Lambda^{p,\infty}(w)$ is normable. \Box

For our next result, which is a natural extension of E.M. Stein and N.J. Weiss's Lemma ([8]), let us recall that an increasing function W is said to be quasi-concave if W(s)/s is a decreasing function.

Corollary 3.2 Let w be a weight such that $W^{1/p}$ is quasi-concave and let $(f_n)_n \subset \Lambda^{p,\infty}(w)$ be such that $||f_n||_{\Lambda^{p,\infty}(w)} \leq 1$. Then if $(a_n)_n > 0$ satisfy that $\sum_n a_n \log(1/a_n) < \infty$, we have that $\sum_n a_n f_n \in \Lambda^{p,\infty}(w)$.

Proof: The proof follows from the fact that, by the quasi-concavity of $W^{1/p}$,

$$\int_{c_n t}^t \frac{1}{W^{1/p}(s)} \, ds \le \frac{t}{W^{1/p}(t)} \log \frac{1}{c_n},$$

and therefore (1) holds for every (c_n) such that $\sum_n a_n \log \frac{1}{c_n} < \infty$. Taking $c_n = a_n / \sum_i a_i$, we are done. \Box

This corollary shows that for every weight w such that $W^{1/p}$ is quasiconcave, the space $\Lambda^{p,\infty}(w)$ is logconvex in the terminology of [5].

References

- M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Loretnz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727–735.
- [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston (1988).

- [3] M. Carro, A. García del Amo and J. Soria, Weak-type weights and normable Lorentz spaces, Proc. Amer. Math. Soc. 124 (1996), 849– 857.
- [4] A. Haaker, On the conjugate space of Lorentz space, Preprint, Department of mathematics, University of Lund (1970).
- [5] N.J. Kalton, Convexity, type and the three space problem, Studia Math. 69 (1981), 247–287.
- [6] G.G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411–429.
- [7] J. Soria, Lorentz spaces of weak-type, Quart. J. Math. Oxford 49 (1998), 93–103.
- [8] E.M. Stein and N.J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 34–54.

Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona, E-08071 Barcelona, (SPAIN) E-mail: carro@mat.ub.es, jmartin@mat.ub.es