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Abstract

If T is any bounded linear operator on Besov spaces B
σj ,qj
p (Rn)

(j = 0, 1, and 0 < σ1 < σ < σ0), it is proved that the commutator
[T, Tµ] = TTµ−TµT is bounded on Bσ,q

p (Rn), if Tµ is a Fourier multi-
plier such that µ is any (possibly unbounded) symbol with uniformly
bounded variation on dyadic coronas.

Key words and phrases: Multipliers, commutator, K–functional, approxi-
mation spaces, Besov space, Interpolation Theory.
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Commutators for Fourier Multipliers
on Besov Spaces

by

Joan Cerdà and Joaquim Mart́ın

1 Introduction

The mapping properties of commutators [T,M ] = TM −MT , for operators
between function spaces, and their various generalizations play an important
role in harmonic analysis, PDE, interpolation theory and other related areas.

A typical situation arises when M = Mb is the pointwise multiplication
by a function b and T is a Calderón–Zygmund operator on Rn. Then well–
known results of A.P. Calderón [4] and Coifman, Rochberg and Weiss [8]
state, respectively, that the commutator is bounded from L2 into W 1,2 if b
is a Lipschitz function, and from Lp into Lp if 1 < p < ∞ and b ∈ BMO.
Recently, its boundedness between some other function spaces, including
Besov–Lipschitz and Triebel–Lizorkin spaces, has been extensively studied
(see [13] and the references therein).

A related situation appears when M = Tµ is the Fourier multiplier with
symbol µ, i.e. T̂µf = µf̂ , where f̂ is the Fourier transform of f . It was proved
in [7] that, for Besov spaces of periodic functions Bσ,q

p (T), the commutator

[T, Tµ] : Bσ,q
p (T) → Bσ,q

p (T)

is bounded for a wide class of operators T and symbols µ (not necessarily
bounded). The fact that the symbol µ is a sequence of complex numbers
was used in the proof.

In this paper we will deal with Besov spaces on Rn. Now µ needs not
be a sequence of complex numbers and Theorem 3 of [7] cannot be applied.
However the simple device of taking averages (see Lemma 2 bellow) allows
to obtain a commutator theorem (Theorem 1) for [T, Tµ] for Besov spaces
Bσ,q

p = Bσ,q
p (Rn) where, as in the periodic case, the boundedness assumption

on µ is not required.



The description of Besov classes as approximation spaces, the calcula-
tion of almost optimal approximation elements in combination with real
interpolation and the cancellation properties of the commutators will be the
main tools used in the proof. See [5], [6], [9] and the references therein for
commutator theorems related with the main interpolation methods.

We briefly summarize the contents of this paper. In Section 2 we include
the needed definitions and background. Section 3 deals with admissible
multipliers defined via an appropriate notion of variation on dyadic coronas,
and Section 4 contains Theorem 1, the main result of this paper.

If A and B are two Banach spaces, we write T : A −→ B to mean that
T is a bounded linear operator between A and B.

Finally, P � Q means that P ≤ cQ for some constant c > 0 independent
of the variables involved, while by P ' Q we mean that P � Q and Q � P .

2 Preliminaries

Let us now start by briefly recalling some results about real interpolation
theory and Besov spaces (see [1],[2] or [3] for more details and definitions
concerning interpolation theory and [1], [2], [10] and [11] for general prop-
erties of Besov spaces).

If 0 < θ < 1 and 1 ≤ q ≤ ∞, for a given Banach couple Ā = (A0, A1),
the corresponding interpolation Banach space is

Āθ,q = {x ∈ Σ(Ā) = A0 + A1; ‖x‖Āθ,q
< ∞}

with
‖x‖Āθ,q

:= ‖t−θK(t, x)‖Lq(dt/t),

where K(t, x) = K(t, x; Ā) := inf{‖x0‖A0 + t‖x1‖A1 ; x = x0 + x1} is the
Peetre’s K–functional.

If Ā, B̄ are two Banach couples, we denote by L(Ā; B̄) the set all linear
operators T : Σ(Ā) −→ Σ(B̄) such that T (Aj) ⊂ Bj (j = 0, 1) and ‖T‖ =
max(‖T‖A0,B0 ; ‖T‖A1,B1) < ∞. If T ∈ L(Ā; B̄), then T : Āθ,q −→ B̄θ,q.

If
Sf(t) :=

∫ t

0
f(s)

ds

s
+ t

∫ ∞

t
f(s)

ds

s2

is the Calderón operator, we set

σ(Ā) := {x ∈ Σ(Ā); ‖x‖σ(Ā) := S(K(·, x))(1) < ∞}.

Observe that σ(Ā) is a linear subspace of Σ(Ā) which contain all real inter-
polation spaces Āθ,q and moreover ‖Tx‖σ(B̄) ≤ ‖T‖‖x‖σ(Ā), (T ∈ L(Ā; B̄)).
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Given r > 0, let V (r) = {g ∈ S ′ : supp ĝ ⊂ [−r, r]n} (V (0) = {0}),
where ĝ is the Fourier transform of the distribution g.

The Besov space Bσ,q
p (or Bσ,q

p (Rn) ), with 0 < σ < ∞ and 1 ≤ q, p < ∞,
is defined by

Bσ,q
p =

{
f ∈ Lp(Rn); ‖f‖Bσ,q

p
=

( ∫ ∞

0
[rsE(r, f)]q

dr

r

)1/q
< ∞

}
,

with E(r, f) := infg∈V (r) ‖f − g‖Lp .
Real interpolation for couples of Besov spaces is described in the follow-

ing Lemma (cf. [1] Theorem 6.4.5).

Lemma 1 Let 0 < σ0, σ̃0 < ∞, 1 ≤ p, q, q0, qq, r < ∞, 0 < θ < 1 and
σ = (1− θ)σ0 + θσ̃0. Then

(Bσ0,q0
p , Bσ̃0,q1

p )θ,q = Bσ,q
p , (Lp, Bσ0,r

p )θ,q = Bθσ0,q
p .

The calculation of almost optimal approximation elements is contained
in the following proposition

Proposition 1 Let 0 < σ0, σ̃0 < ∞, 1 ≤ p, q0, q̃0 < ∞, and assume that
ρ := σ0 − σ̃0 > 0. Then

K(tρ, f ;Bσ0,q0
p , Bσ̃0,q̃0

p ) ' ‖Ptf‖B
σ0,q0
p

+ tρ‖f − Ptf‖B
σ̃0,q̃0
p

,

and
K(tσ, f ;Bσ,q

p , Lp) ' ‖Ptf‖Bσ,q
p

+ tσ‖f − Ptf‖Lp .

where Pt is the Fourier multiplier with symbol χ[−t,t]n.

Proof: Let gt ∈ V (t) be such that ‖f − gt‖Lp ≤ 2E(t, f). Since (see [12] IV
Theorem 4) ‖Ptf‖Lp ≤ cp‖f‖Lp (∀f ∈ Lp(Rn), t > 0) we have that

‖f − Ptf‖Lp ≤ ‖f − gt‖Lp + ‖gt − Ptf‖Lp = ‖f − gt‖Lp + ‖Pt(gt − f)‖Lp

≤ CE(t, f).

Hence Theorem 4 of [7] applies and

K(tρ, f ;Bσ0,q0
p , Bσ̃0,q̃0

p ) ' ‖Ptf‖B
σ0,q0
p

+ tρ‖f − Ptf‖B
σ̃0,q̃0
p

.

5



3 Admissible multipliers

Let R =
∏n

k=1[ak, bk] be a rectangle on Rn with sides parallel to the axes
and let m be a function defined on R. We define ∆R by

∆R(m) = ∆(1)
h1

∆(2)
h2
· · ·∆(n)

hn
m(a1, · · · , an),

where hk = bk − ak and ∆(k) is the difference operator in the k−th variable,
i.e.

∆(k)
h m(a1, · · · , an) = m(a1, · · · , ak−1, ak + h, ak+1, · · · , an)−m(a1, · · · , an).

Given j ≥ 0, let Qj = [−2j , 2j ]n. We denote by Cj = Qj\Qj−1 (C0 = Q1)
the j−dyadic corona, and by C̄j the closed j−dyadic corona.

Following [14], the space of functions of bounded variation on C̄j is de-
fined inductively in n as follows:

If n = 1, we say that m is of bounded variation on C̄j if

sup
π

∑
|m(tk)−m(tk−1)| < ∞,

with the sup taken over all partitions π of C̄j = [−2j ,−2j−1] ∪ [2j−1, 2j ],
(C̄0 = [−1, 1]).

For n ≥ 2, we say that m is of bounded variation on C̄j if the following
properties are satisfied:

i) We have that
sup
R

∑
∆R(m) < ∞,

where the sup runs over all rectangles R with sides parallel to the axes
of disjoint interior whose vertices belong to C̄j .

ii) For each 1 ≤ k ≤ n−1 the function m(x1, · · · , xk, 2j , · · · , 2j) considered
as a function of the first k variables, is of bounded variation on the
k−dimensional rectangle R =

∏k
i=1[−2j , 2j ].

iii) The condition analogous to ii) is valid for every one of the n! permu-
tations of the variables x1, · · · , xn.

We denote by ‖m‖V (C̄j)
the sum of all quantities appearing in i) – iii).
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Definition 1 An admissible multiplier will be a function µ : Rn −→ C
such that

V (µ) := sup
j≥0

‖µ‖V (C̄j)
< ∞. (1)

Notice that log+(max{|x1|, · · · , |xn|}) is a simple example of unbounded
admissible multiplier, but µ(x1, · · · , xn) = log+(max{|x1|, · · · , |xn|}) if xj >
0 (j = 1, · · · , n) and µ(x1, · · · , xn) = 0 otherwise, is not admissible.

Definition 2 A dyadic multiplier will be a function

µ = {µj}j≥0 :=
∞∑

j=0

µjχCj ,

which is constant on every corona Cj.

For dyadic multipliers the admissibility condition (1) takes the form

V (µ) = sup
j≥0

|µj − µj−1| < ∞ (µ−1 = 0)

and for any admissible multiplier, µ, we claim that

µ(d) :=
∞∑

j=0

µ(2j , · · · , 2j)χCj =
∞∑

j=0

µjχCj .

defines an admissible dyadic multiplier with

V (µ(d)) ≤ V (µ). (2)

Since the case n = 2 is already completely typical situation of the general
case, to avoid some notational complications, let us to prove this claim only
in the case.

If j ≥ 1, considering the rectangle R = [2j−1, 2j ]× [2j−1, 2j ] we have that

|µj − µj−1| ≤ |µ(2j−1, 2j−1)− µ(2j , 2j−1) + µ(2j , 2j)− µ(2j−1, 2j)|
+|µ(2j , 2j−1)− µ(2j , 2j)|+ |µ(2j−1, 2j)− µ(2j , 2j)|

= |∆(1)
2j−1∆

(2)
2j−1µ(2j−1, 2j−1)|+ |∆(2)

2j−1µ(2j , 2j−1)|

+|∆(1)
2j−1µ(2j−1, 2j)|

≤ ‖µ‖V (C̄j)
.

Similarly, if j = 0, considering R = [0, 1]× [0, 1], we get

|µ0| ≤ |µ0 − µ(0, 0)|+ |µ(0, 0)| ≤ ‖µ‖V (C̄0) + |µ(0, 0)|.
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Finally, we recall that a dyadic interval of R will be one from the
sequences {[2k, 2k+1]}k∈Z, {[−2k+1,−2k]}k∈Z, and that by a dyadic rect-
angle on Rn we mean a rectangle R which is the product of n dyadic
intervals. We shall denote by D the family of the dyadic rectangles.

4 The Main result

Theorem 1 Let 1 ≤ q, q0, q1, q̃0, q̃1 < ∞, σ0 > σ̃0 > 0, σ1 > σ̃1 > 0, such
that σ0− σ̃0 = σ1− σ̃1, σ = (1−θ)σ0 +θσ̃0, σ̃ = (1−θ)σ1 +θσ̃1 (0 < θ < 1),
and assume that 1 < p0, p̃0 < ∞.

If µ is an admissible multiplier, then

‖[T, Tµ]‖L(Bσ,q
p0

;Bσ̃,q
p̃0

)
≤ c‖T‖,

where T is any bounded linear operator between the couples of Besov spaces
(Bσ0,q0

p0
;Bσ̃0,q̃0

p0
) and (Bσ1,q1

p̃0
;Bσ̃1,q̃1

p̃0
), and

‖T‖ = max
(
‖T‖L(B

σ0,q0
p0

;B
σ1,q1
p̃0

), ‖T‖L(B
σ̃0,q̃0
p0

;B
σ̃1,q̃1
p̃0

)

)
.

In order to prove the main theorem, let us start with a reduction to
dyadic multipliers.

Lemma 2 Let µ be an admissible multiplier and let µ(d) its admissible
dyadic multiplier, i.e.

µ(d) :=
∞∑

j=0

µ(2j , · · · , 2j)χCj =
∞∑

j=0

µjχCj .

If T is any bounded linear operator from Bσ,q
p to Bσ̃,q

p , then

[T, Tµ(d) ] : Bσ,q
p → Bσ̃,q

p

if and only if
[T, Tµ] : Bσ,q

p → Bσ̃,q
p .

Proof: Again in order to avoid some notational complications, let us assume
that n = 2.

First we are going to see that µ̃ = µ− µ(d) is bounded. Given (x1, x2) ∈
R2, let j ≥ 0 be such that (x1, x2) ∈ Cj . Then, if x1 = 2j ,

|µ̃(2j , x2)| = |µ(2j , x2)− µ(2j , 2j)| ≤ ‖µ‖V (C̄j)
≤ V (µ).
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Similarly, if x2 = 2j , |µ̃(x1, 2j)| ≤ V (µ). Finally, if (x1, x2) is an interior
point of Cj , by considering the rectangle R of vertices (x1, x2), (2j , x2),
(2j , 2j), (x1, 2j),

|µ̃(x1, x2)| ≤ |µ(x1, x2)− µ(2j , x2) + µ(2j , 2j)− µ(x1, 2j)|
+|µ(2j , x2)− µ(2j , 2j)|+ |µ(x1, 2j)− µ(2j , 2j)|

≤ ‖µ‖V (C̄j)
≤ V (µ).

On the other hand, for any dyadic rectangle R, there is j ≥ 0 such that
R ⊂ C̄j and then, by (2),

‖µ̃‖V (R) ≤ ‖µ‖V (R) + ‖µ(d)‖V (R) ≤ ‖µ‖V (C̄j))
+ ‖µ(d)‖V (C̄j)

≤ 2V (µ).

Thus
sup
R∈D

‖µ̃‖V (R) ≤ 2V (µ)

and Tµ̃ : Lp(Rn) → Lp(Rn), by the Marcinkiewicz Multiplier Theorem
(see [14]). Hence

Tµ̃ : Bσ,q
p → Bσ,q

p ,

since E(t, Tµ̃f) ≤ infg∈V (t) ‖Tµ̃f−Tµ̃g‖Lp ≤ ‖Tµ̃‖E(t, f), and the proof ends
by observing that [T, Tµ] = [T, Tµ̃] + [T, Tµ(d) ].

The proof of Theorem 1: By the previous Lemma, we may assume that
µ is a dyadic admissible multiplier, i.e. µ =

∑∞
k=0 µkχCk

, with µ0 = 0 and
supk |µk+1 − µk| < ∞. Then, formally,

Tµf =
∞∑

k=1

µk(P2kf − P2k−1f), (3)

since µk(P2kf − P2k−1f )̂ = µk(χQk
− χQk−1

)f̂ = µkχCk
f̂ .

Now, by denoting

λ0 = µ1 − µ0 = µ1, λ1 = µ2 − µ1, . . . , λk = µk+1 − µk, . . .

we get supk |λk| = supk |µk+1 − µk| < ∞, since λ0 = µ1, λ0 + λ1 =
µ2, . . . ,

∑k
j=0 λj = µk+1, . . .

Then

Tµf =
∞∑

k=1

(
k−1∑
j=0

λj)(P2kf − P2k−1f) =
∞∑

j=0

λj

∑
k>j

(P2kf − P2k−1f)
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yields Tµf =
∑∞

j=0 λj(f − P2jf), a convergent series. Moreover

Tµ : σ(Ā) −→ Σ(Ā), if Ā = (Bσ0,q0
p0

;Bσ̃0,q̃0
p0

), (4)

since by Proposition 1, if ρ = σ0 − σ̃0, we have that

‖Tµf‖Σ(Ā) ≤ ‖λ‖∞
∑
j≥0

‖f − P2jf‖
B

σ̃0,q̃0
p0

� ‖λ‖∞
∑
j≥0

K(2ρj , f ; Ā)
2ρj

≤ 2ρ‖λ‖∞
ρ log 2

∫ ∞

1

K(s, f ; Ā)
s

ds

s
≤ 2ρ‖λ‖∞

ρ log 2
‖f‖σ(Ā).

Similarly, Tµ : σ(B̄) −→ Σ(B̄), B̄ = (Bσ1,q1
p̃0

;Bσ̃1,q̃1
p̃0

).
Now, given T ∈ L(Ā; B̄) and f ∈ σ(Ā), it follows from (4) that

TTµf =
∞∑

j=0

λj(Tf − TP2jf) (convergence in Σ(B̄)).

Moreover Tf ∈ σ(B̄) since, by interpolation, T : σ(Ā) → σ(B̄). Then
TµTf =

∑∞
j=0 λj(Tf−P2jTf) in Σ(B̄). Hence, [T, Tµ] : σ(Ā) −→ Σ(B̄) and

[T, Tµ]f =
∞∑

j=0

λj(Tf − TP2jf)−
∞∑

j=0

λj(Tf − P2jTf).

Obviously (Tf − TP2jf) − (Tf − P2jTf) = P2jTf − TP2jf (here is where
cancellation takes place) and we may decompose [T, Tµ]f in two sums,

[T, Tµ]f =
∑
Θ

λj(P2jTf −TP2jf) +
∑
N\Θ

λj(Tf −TP2jf)−λj(Tf −P2jTf),

where Θ = Θ(t) := {j ≥ 0; 2ρ(j+1) < t}.
Applying Proposition 1 to Tf and f , since ρ = σ0 − σ̃0 = σ1 − σ̃1, we

get

‖λj(P2jTf − TP2jf)‖σ1,q1 ≤ ‖λ‖∞(‖P2jTf‖B
σ1,q1
p̃0

+ ‖TP2jf‖B
σ1,q1
p̃0

)

� ‖λ‖∞‖T‖K(2ρj , f ; Ā).

Similarly,

‖λj(Tf − TP2jf)− λj(Tf − P2jTf)‖
B

σ̃1,q̃1
p̃0

� ‖λ‖∞‖T‖
K(2ρj , f ; Ā)

2ρj
.
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Thus

K(t, [T, Tµ]f ; B̄) ≤
∥∥∥ ∑

Θ

λj(P2jTf − TP2jf)
∥∥∥

B
σ1,q1
p̃0

+t
∥∥∥ ∑

N\Θ
λj(Tf − TP2jf)− λj(Tf − P2jTf)

∥∥∥
B

σ̃1,q̃1
p̃0

�
( ∑

Θ

K(2ρj , f ; Ā) + t
∑
N\Θ

K(2ρj , f ; Ā)
2ρj

)

�
( ∫ t

0
K(s, f ; Ā)

ds

s
+ t

∫ ∞

t

K(s, f ; Ā)
s

ds

s

)
= S(K(·, f ; Ā))(t),

and, by Minkowski inequality and Hardy’s inequalities for averages (see [2]),
‖[T, Tµ]f‖B̄θ,q

≤ c‖f‖Āθ,q
, with Āθ,q = Bσ,q

p0
and B̄θ,q = Bσ̃,q

p̃0
by Lemma 1,

and c = c(ρ, ‖λ‖∞, ‖T‖).

Remark 1. Once the reduction to dyadic multipliers has been established,
using (3), Theorem 3 of [7] could be possibly adapted to end the proof
of Theorem 1. We have preferred to include here an easier direct proof
that does not use the abstract methods of [6] and that, in combination
with Lemma 2, can be also used in the periodic to give a short proof of the
commutator theorem presented in [7], including the case of several variables.

Remark 2. The admissibility conditions on the multipliers cannot be weak-
ened if [T, Tµ] has to be bounded for the elementary operator Tf(x) = f(2x),
since if µ is dyadic and [T, Tµ] is bounded when Tf(x) = f(2x), by consid-
ering f such that ‖f‖Bσ,q

p
= 1 and supp f̂ ⊂ Ck, then

‖[T, Tµ]f‖Bσ,q
p

' |µk+1 − µk|

and supk |µk+1 − µk| < ∞.

Remark 3. By Proposition 1, we may also consider the Banach couples
(Bσ,q0

p , Lp) and (Bσ,q1
q , Lq), but reiteration would lead to the same result.

Remark 4. A commutator result similar to Theorem 1 holds for Besov
spaces Bσ,q

X when X is any r.i. space with Boyd indices strictly between 0 and
1, since what is really needed in Proposition 1 is the uniform boundedness
of Pt on X, which is an interpolation space between two Lp spaces with
1 < p < ∞.
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