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Abstract

If T is any bounded linear operator on Besov spaces Bp”'% (R")
(j =0,1, and 0 < 01 < 0 < 09), it is proved that the commutator
[T,T,] =TT, —T,T is bounded on B;?(R"), if T, is a Fourier multi-
plier such that u is any (possibly unbounded) symbol with uniformly
bounded variation on dyadic coronas.

Key words and phrases: Multipliers, commutator, K—functional, approxi-
mation spaces, Besov space, Interpolation Theory.



Commutators for Fourier Multipliers
on Besov Spaces

by

Joan Cerda and Joaquim Martin

1 Introduction

The mapping properties of commutators [T, M| = T'M — MT, for operators
between function spaces, and their various generalizations play an important
role in harmonic analysis, PDE, interpolation theory and other related areas.

A typical situation arises when M = M, is the pointwise multiplication
by a function b and T is a Calderén—Zygmund operator on R"™. Then well-
known results of A.P. Calderén [4] and Coifman, Rochberg and Weiss [§]
state, respectively, that the commutator is bounded from L? into W2 if b
is a Lipschitz function, and from LP into LP if 1 < p < oo and b € BMO.
Recently, its boundedness between some other function spaces, including
Besov-Lipschitz and Triebel-Lizorkin spaces, has been extensively studied
(see [13] and the references therein).

A related situation appears when M = T, is the Fourier multiplier with
symbol u, i.e. J/L\f = uf, where fis the Fourier transform of f. It was proved
in [7] that, for Besov spaces of periodic functions By(T), the commutator

[T, T,) : B3(T) — BSY(T)

is bounded for a wide class of operators T' and symbols p (not necessarily
bounded). The fact that the symbol p is a sequence of complex numbers
was used in the proof.

In this paper we will deal with Besov spaces on R"™. Now p needs not
be a sequence of complex numbers and Theorem 3 of [7] cannot be applied.
However the simple device of taking averages (see Lemma 2 bellow) allows
to obtain a commutator theorem (Theorem 1) for [T',T},] for Besov spaces
Byt = B (R™) where, as in the periodic case, the boundedness assumption
on u is not required.



The description of Besov classes as approximation spaces, the calcula-
tion of almost optimal approximation elements in combination with real
interpolation and the cancellation properties of the commutators will be the
main tools used in the proof. See [5], [6], [9] and the references therein for
commutator theorems related with the main interpolation methods.

We briefly summarize the contents of this paper. In Section 2 we include
the needed definitions and background. Section 3 deals with admissible
multipliers defined via an appropriate notion of variation on dyadic coronas,
and Section 4 contains Theorem 1, the main result of this paper.

If A and B are two Banach spaces, we write T : A — B to mean that
T is a bounded linear operator between A and B.

Finally, P < Q means that P < ¢(Q for some constant ¢ > 0 independent
of the variables involved, while by P ~ () we mean that P < @ and Q =< P.

2 Preliminaries

Let us now start by briefly recalling some results about real interpolation
theory and Besov spaces (see [1],[2] or [3] for more details and definitions
concerning interpolation theory and [1], [2], [10] and [11] for general prop-
erties of Besov spaces).

If0 <6 <1land 1< q< oo, for a given Banach couple A = (Ag, A1),
the corresponding interpolation Banach space is

Ap,={z € T(A) = Ay + Ay; Izl z,, < oo}
with
el s, = 14K () o,
where K (t,7) = K(t,x; A) := inf{||xo||a, + t]|z1]la;; * = 20 + 21} is the

Peetre’s K—functional.
If A, B are two Banach couples, we denote by L£(A; B) the set all linear

operators T': ¥(A) — X(B) such that T'(4;) C B; (j = 0,1) and || T]| =
max(||7'|| ag,Bo; |T]|41,B,) < 00. If T'€ L(A; B), then T': Agy — By 4.
If

t ds o0 ds
Sft) = —+t —
1= [ oS+t [ 165
is the Calderon operator, we set
o(4) = {z € B(A); [l2,(a) = SK(,2))(1) < oo}.
Observe that o(A) is a linear subspace of $(A) which contain all real inter-

polation spaces Ay, and moreover 1Tzl o) < 1 TI|lloca, (T € L(A; B)).
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Given r > 0, let V(r) = {g € &' : suppg C [-r,7]"} (V(0) = {0}),
where ¢ is the Fourier transform of the distribution g.

The Besov space By (or BJI(R™) ), with 0 < 0 < occand 1 < ¢, p < oo,
is defined by

Byt = {1 € PR | lage = ([ B i) < o0},

r

with E(r, f) := infgey ) [[f = gllzr-
Real interpolation for couples of Besov spaces is described in the follow-
ing Lemma (cf. [1] Theorem 6.4.5).

Lemma 1 Let 0 < 09, 09 < 00, 1 < p,q,q0,qq,7 < 00, 0 < 6 < 1 and
o= (1—-68)og+659. Then

70,490 50,491 — 0,9 p o0, — 000,q
(Bp 7Bp )9,q - Bp 5 (L 7Bp )H,q = Bp .

The calculation of almost optimal approximation elements is contained
in the following proposition

Proposition 1 Let 0 < 09,09 < 00, 1 < p,qo,Go < 00, and assume that
p:=o09—0ag>0. Then

K(t9, f; By»®, BJ%) = || P f|| oo + t°| f — Pufll go.a0,

and
K7, f; By, L) = ||Pyf||pga + || f — Pefl|Lr-

where Py is the Fourier multiplier with symbol x(_¢gn .

Proof: Let g; € V(t) be such that ||f — g¢||z» < 2E(¢, f). Since (see [12] IV
Theorem 4) ||P,f||rr < ¢pl fllze (Vf € LP(R™), t > 0) we have that

If = Fufllee < If = gellee + g = Peflle = |[f = gelle + |1 Pe(ge — f)llLe
< CE(, ).

Hence Theorem 4 of [7] applies and

K(t9, f; By™®, BJ%) = ||Pf|| groao + 17 f — Pifllgzon- D



3 Admissible multipliers

Let R = [[;—;[ak, br] be a rectangle on R™ with sides parallel to the axes
and let m be a function defined on R. We define A by

Ar(m) = AVAP A m(ay, - an),

where h; = by, —a, and A®) is the difference operator in the k—th variable,
i.e.

k
Ag )m<a17 to 7an> = m(ala Cee, Q1,0 T h7 Af41,° " 7an) - m(ah' ’ '7an)-

Given j > 0, let Q; = [-27,27]". We denote by C; = Q;\Qj—1 (Co = Q1)
the j—dyadic corona, and by C; the closed j—dyadic corona.

Following [14], the space of functions of bounded variation on C; is de-
fined inductively in n as follows:

If n = 1, we say that m is of bounded variation on C; if

sgpz |m(tx) — m(tp—1)| < oo,

with the sup taken over all partitions 7 of C; = [-27, -2~y [2971)27],
(Co = [-1,1]). ]

For n > 2, we say that m is of bounded variation on Cj if the following
properties are satisfied:

i) We have that
supZAR(m) < 00,
R

where the sup runs over all rectangles R with sides parallel to the axes
of disjoint interior whose vertices belong to Cj.

ii) For each 1 < k < n—1 the function m(xy,---,z,2%,---,27) considered
as a function of the first & variables, is of bounded variation on the
k—dimensional rectangle R = [TF_,[—27,27].

iii) The condition analogous to ii) is valid for every one of the n! permu-
tations of the variables x1, - -, x,.

We denote by [|mlly(g,) the sum of all quantities appearing in i) — iii).



Definition 1 An admissible multiplier will be a function p: R — C
such that

V() = sup || ully ¢,y < oo (1)
j=0
Notice that log™* (max{|x1],-- -, |z,|}) is a simple example of unbounded
admissible multiplier, but p(z1,- -+, x,) = log™ (max{|z1|,- - -, [2n|}) if z; >
0(j=1,---,n) and p(xy,---,z,) = 0 otherwise, is not admissible.

Definition 2 A dyadic multiplier will be a function
oo
p={p}iz0 =D mixc;,
j=0
which is constant on every corona Cj.

For dyadic multipliers the admissibility condition (1) takes the form

V() = sup |pj — pja| < oo (-1 =0)
Jj=0

and for any admissible multiplier, u, we claim that
[e.e] ) ) oo
pD =3 (@, 2 )xey = D wixe
j=0 j=0
defines an admissible dyadic multiplier with
V(D) < V(p), (2)

Since the case n = 2 is already completely typical situation of the general
case, to avoid some notational complications, let us to prove this claim only
in the case.

If j > 1, considering the rectangle R = [27/~1,2/] x [2/~1,2/] we have that

lj = ] < (27277 = (27,297 4 (27, 27) — (27, )

Hu(2, 27 = (2, 20)| + (2 2) — (2, 29))
1 9 o 9 o
= 1A% AR @it 2 ) 4 1Al (2l 2 )
+AG (297, 29))
< Alpellve,)-
Similarly, if j = 0, considering R = [0, 1] x [0, 1], we get

kol < lpo = 140, 0)] + |0, 0)| < NIl (o) + 114(0,0)
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Finally, we recall that a dyadic interval of R will be one from the
sequences {[2%, 28]}, {[—2FF1 —2K]}, _ and that by a dyadic rect-
angle on R"™ we mean a rectangle R which is the product of n dyadic
intervals. We shall denote by D the family of the dyadic rectangles.

4 The Main result

Theorem 1 Let 1 < q,q0,q1,G0,q1 < 00, og > g > 0, 01 > &1 > 0, such
that og— 69 = 01— 01, 0 = (1—9)004-950, o= (1—9)01+951 (0 <h< 1),
and assume that 1 < pg, py < 00.

If 1 is an admissible multiplier, then

ess eyl

Loz
where T is any bounded linear operator between the couples of Besov spaces
(ngqu;ng’qo) and (ng’ql;ng’ql), and

I = mase (T g gnony 1T g g v )

In order to prove the main theorem, let us start with a reduction to
dyadic multipliers.

Lemma 2 Let p be an admissible multiplier and let p'® its admissible
dyadic multiplier, i.e.

o0 o0
/jJ(d) = Z M(2]7 T 2])X0j = ZM]XCJ
§=0 §=0
If T is any bounded linear operator from By to Bg”, then

[T, T,w] : By’ — By*

if and only if i
(T,T,] : By* — Bp™.

Proof: Again in order to avoid some notational complications, let us assume
that n = 2.

First we are going to see that 7 = u — (@ is bounded. Given (r1,22) €
R?, let j > 0 be such that (21,z2) € Cj. Then, if 1 = 27,

(27, 22)| = (2, w2) — (2, 27)] < |lllveyy < V()
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Similarly, if 2o = 27, |j(z1,27)] < V(u). Finally, if (x1,22) is an interior
point of Cj, by considering the rectangle R of vertices (z1,z2), (27, z2),
<2J72j)7 (x172j)7

|ﬁ(x1,x2)] < ’M(QfoQ) - M(Qj’ xQ) + M(2j7 2j) - :U’(wl? 2j)’
+p(27, m2) — (27, 27)] + |p(21,27) — p(27,27)]
< Alwellve,y < V).

On the other hand, for any dyadic rectangle R, there is j > 0 such that
R C Cj and then, by (2),

1Al ey < lellvery + 16 Plvery < lnllve,y + 18P lve,) < 2V (1)

Thus
sup [|/illy(r) < 2V (1)
ReD

and T3 : LP(R™) — LP(R™), by the Marcinkiewicz Multiplier Theorem
(see [14]). Hence
T.: B9 — BJY,

since E(t, T f) < infyey o) |15 = Tr9llr < | T E(, f), and the proof ends
by observing that [T',T,,] = [T, T3] + [T, T ] O

The proof of Theorem 1: By the previous Lemma, we may assume that
@ is a dyadic admissible multiplier, i.e. p = Y72 prxc,, with po = 0 and
supy, |k+1 — | < oo. Then, formally,

Tuf =Y e(Porf = Pyrr ), (3)

k=1

since pu(Por f — Por-1 f)"= pe(XQ, — XQi_1)f = trxcy f-
Now, by denoting

Ao = p1 — Ho = f1, AL = H2 = [,y N = [l — Mg - - -

we get Sl}cpk‘)‘k’ = supy [pk+1 — pk| < 00, since Ao = p1, Ao+ A\ =
M2 - ooy j:O)\j:/’l’k-i—la"'
Then
oo k—1 00
Tuf =3 (O N)(Parf — Pori f) =3 X D (Porf — Pyr f)
k=1 j=0 i=0  k>j



yields T, f = >=720 Aj(f — Pai f), a convergent series. Moreover
Ty, : o(A) — B(A), if A= (BJo%©; BooD), (4)

since by Proposition 1, if p = 0¢g — ¢, we have that

K2/, f; A
Tflsy < Il 17 = Posfll s = Al 3 2O
7>0 j>0
WAoo [ K(s.Fi A)ds _ 2\
9o < ZWee gy
plog2 Ji S S plog 2

Similarly, 7T}, : U(B) N 2(3)7 B = (Bgolm;ng,dl)_

Now, given T € L(A; B) and f € o(A), it follows from (4) that

TT,f = i N(Tf—TPyf) (convergence in X(B)).
=0

Moreover T'f € o(B) since, by interpolation, T' : ¢(A) — o(B). The
T,Tf=3320X(Tf—PyTf)in X(B). Hence, [T,T,] : 0(A) — (B )and

[T, T.0f =) N(Tf — TPy f) Z (T'f = Py Tf).
i=0 =0
Obviously (T'f — TPy f) — (Tf — Py Tf) = PoyTf — TPy f (here is where

cancellation takes place) and we may decompose [T',7,,]f in two sums,

[T, Tl f =Y Nj(PoyTf—=TPyif)+ > M(Tf =TPy; f) = \i(Tf — Py Tf),
) N\©

where © = O(t) := {j > 0; 2°U+D) < ¢},
Applying Proposition 1 to T'f and f, since p = 09 — 69 = 01 — 01, We
get

1A (PosTf = TPy Pl = [ Moo (1P Tfll ggroan + 1T Pos fll ggran)
Moo 1711 5 (277, £ A).

A

Similarly,

K (277, f; A)

[N (T = TPy f) = M(Tf = Py TSl o 3 Moo 11—
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Thus

B‘fl!ql
po

K(LT.T)f:B) < | S A(PuTf TPy f)
(C]

+tH Z )\j(Tf — TPy f)— Aj(Tf - PQJ'Tf)‘ goLa
N\O ro

(ZK 20i f: A) +tz fA))

N\©
< ([ K na% g [T R LA D)
— S f )0,

and, by Minkowski inequality and Hardy’s inequalities for averages (see [2]),
1T, T fls,, < cllflla,,. with Agq = Bg:? and Bp,y = By ? by Lemma 1,
and ¢ = c(p, [|Alloo, |T])- O

IA

Remark 1. Once the reduction to dyadic multipliers has been established,
using (3), Theorem 3 of [7] could be possibly adapted to end the proof
of Theorem 1. We have preferred to include here an easier direct proof
that does not use the abstract methods of [6] and that, in combination
with Lemma 2, can be also used in the periodic to give a short proof of the
commutator theorem presented in [7], including the case of several variables.

Remark 2. The admissibility conditions on the multipliers cannot be weak-
ened if [T', T},] has to be bounded for the elementary operator T'f(x) = f(2x),
since if p is dyadic and [T, T},] is bounded when T'f(x) = f(2x), by consid-
ering f such that || f| gz« =1 and supp f C C, then

1T, Tl Fllgre == lpayr — e

and supy jux1 — ok < 0.

Remark 3. By Proposition 1, we may also consider the Banach couples
(Bp®, LP) and (By%, L7), but reiteration would lead to the same result.

Remark 4. A commutator result similar to Theorem 1 holds for Besov
spaces BY? when X is any r.i. space with Boyd indices strictly between 0 and
1, since what is really needed in Proposition 1 is the uniform boundedness
of P, on X, which is an interpolation space between two LP spaces with
1 <p<oo.
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