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Renormalization-Group Transformations and Correlations of Seismicity
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The effect of transformations analogous to those of the real-space renormalization group are analyzed
for the temporal occurrence of earthquakes. A recently reported scaling law for the distribution of
recurrence times implies that these distributions must be invariant under such transformations, for which
the role of the correlations between the magnitudes and the recurrence times are fundamental. This
approach puts the study of the temporal structure of seismicity in the context of critical phenomena.
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The study of the collective properties of earthquakes has
a long history, exemplified by the Omori law of aftershocks
and the Gutenberg-Richter relation for the number of
earthquakes above a given magnitude and, more recently,
by the fractal properties of earthquake spatial occurrence
[1–4]. Less attention has been paid to the timing of indi-
vidual earthquakes, for which a unifying picture was miss-
ing until the work of Bak et al. [5–7]. The main relevance
of that work was the seminal introduction of scaling con-
cepts in statistical seismology, providing a powerful tool to
unify descriptions and to derive relations between different
quantities [8]. Later, the procedure of Bak et al. was
modified to study the distribution of times between con-
secutive events in any single spatial region with a constant
or power-law decaying seismic rate [9–11].

Let us consider the seismicity of an arbitrary spatial
region. Given a lower bound Mc for the magnitude, and
intentionally disregarding the spatial degrees of freedom
[12], a marked point process in time of the form
�t0;M0�; �t1;M1�; . . . , is obtained, where ti denotes the
time of occurrence of event i, with a magnitude Mi �
Mc. The recurrence times are defined as the time intervals
between nearest-neighbor (i.e., consecutive) events, �i �
ti � ti�1. In the case of stationary seismicity (characterized
by a more or less linear relation between the accumulated
number of earthquakes and time [10]), for spatial regions
of linear size ranging from 20 km to the whole world, and
for magnitude bounds from 1.5 to 7.5, the probability
densities D��� of the recurrence time were found to verify
a universal scaling law [9–11],

D��� � Rf�R��; (1)

where f is a universal scaling function and the scaling
factor R is the rate of seismic occurrence, defined as the
mean number of events with M � Mc in the region, per
unit time, and given by the Gutenberg-Richter law,
R�Mc� � R010

�bMc , with the b value usually close to 1
and R0 depending on the region.

As no separation of mainshocks and aftershocks is per-
formed, the stationary recurrence-time distribution con-
sists of a mixture of different aftershock sequences and
more or less independent events; therefore, it is very sur-
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prising that distinct regions and earthquakes of disparate
sizes present such an extreme degree of regularity.

But even more surprising, the scaling relation for the
recurrence-time distribution reveals that seismicity is in a
highly orchestrated state, in which the removal of events
(when the lower bound Mc is raised) does not affect the
properties of seismic occurrence, as the distribution keeps
the same shape (with only a different mean) independently
of Mc. In general, when some events are removed from a
point process, the properties of the process do change;
therefore, the distribution of earthquake recurrence times
constitutes a very special case, invariant under a trans-
formation akin to those of the renormalization group
(RG) in real space [3,13,14].

The first step of our renormalization-group transforma-
tion consists of the raising of the lower bound Mc. This
implies that only a fraction of events survives the trans-
formation, which leads to a different recurrence-time dis-
tribution. (If Mc is increased in one unit, we are dealing
with an authentic decimation, as only about one-tenth of
the events are kept, because of the Gutenberg-Richter law.)
The second part of the procedure is the scale transforma-
tion, which changes the time scale to make the new system
comparable with the original one. A third step, the renor-
malization of the field (Mi), is not necessary here as we are
interested only in the recurrence times.

The Poisson process, characterized by an exponential
recurrence-time distribution, represents a trivial solution to
this problem when there are no correlations and therefore
events are randomly removed. In fact, it has been argued
that the scaling function f can be only an exponential
function [15]; however, seismic data analysis shows that
f clearly departs from an exponential [9], and in this way
the relevance of correlations in the structure of seismicity
becomes apparent.

The scaling function f is described by a decreasing
power law for intermediate times, R� < 1, with an expo-
nent about 0.3, and by a faster decay for long times, R� >
1, and is well approximated by a gamma distribution [9],
except at short times, R� < 0:01, for which the condition
of stationarity is usually not fulfilled. Nevertheless, in the
nonstationary case the process can be transformed into a
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stationary one with an appropriate nonlinear rescaling of
the time axis, and then the same scaling relation is found to
hold again [9]. As no model of earthquake occurrence is
assumed to obtain these results, they constitute a funda-
mental characteristic of seismicity.

In general, the time between two consecutive earth-
quakes, �i, may depend on the magnitude of the former
event, Mpre � Mi�1, on the previous recurrence time, �i�1,
and also on the occurrence of preceding events, i� 2, i�
3, etc. In their turn, the magnitude of the ith event Mi can
depend on �i, Mi�1, �i�1, and so on. Data analysis suggests
that the correlations of the magnitude with previous mag-
nitudes and times can be disregarded [16], whereas the
correlations of the recurrence times with history are im-
portant [16,17]. As a starting point, we consider here only
the dependence of �i on Mi�1, ignoring the dependence of
�i with �i�1, and the extent of correlations in the past. Note
that, although the dependence of the recurrence time with
the distance between events can be important, as we are
looking at the projection of seismicity in magnitude and
time, we do not need to take this effect into account. So, in
what follows we study the effect in the structure of seis-
micity of the simplified case of correlations between the
recurrence time and the magnitude of the previous
earthquake.

If we raise the magnitude threshold from Mc to M0
c the

distribution of recurrence times for events with magnitudes
M � M0

c can be obtained from the distribution for events
with M � Mc. Assuming that an event with magnitude
M0 � M0

c has occurred, we can write for the next event
above (or at) M0

c,

P�recurrence time > � for events M � M0
c	

�
X1
j�1

P���j� > �jM1 <M0
c; . . . ;Mj�1 <M0

c;Mj

� M0
c	P�M1 <M0

c	 � � �P�Mj�1 <M0
c	P�Mj � M0

c	

where P denotes probability, j conditional events, and the
jth return time is defined, for events with M � Mc, as
��j�i � ti � ti�j, that is, as the elapsed time between any
event and the jth event after it. We have explicitly made
use of the fact that in our approach the magnitude is
independent of history. Using the Gutenberg-Richter law
we define

p � P�M � M0
c	 � 10�b�M0

c�Mc�; (2)

and q � 1� p � P�M<M0
c	, where both probabilities

are, in fact, conditioned to M � Mc. Therefore,

P�recurrence time > � for events M � M0
c	

�
X1
j�1

pqj�1P���j� > �jM1 <M0
c; . . . ;Mj�1 <M0

c;Mj

� M0
c	:
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Derivation in this equation with respect to � yields the
probability densities D of the return times; as the recur-
rence times are considered independent of each other, we
use that the jth-return-time distribution is given by j con-
volutions of the first-return-time distributions (denoted by
the symbol *) to get

>1=2D��� � pD"��� � qpD"��� �D#��� � � � � (3)

where >1=2D��� denotes the probability density for events
with M � M0

c as a transformation >1=2 of the probability
density for events with M � Mc, D���; more precisely,
D��� � D��jM � Mc�, and >1=2D��� � D��jM � M0

c�.
The subscript 1=2 refers to the fact that this is only the
first half of the RG transformation. D" and D# denote the
recurrence-time probability densities for events above Mc
conditioned to the fact that the magnitude of the previous
event is above or below M0

c ( " or # ), respectively. To be
concrete, D"��� � D��jMpre � M0

c;M � Mc�, and
D#��� � D��jMpre <M0

c;M � Mc�.
It is convenient to look at Eq. (3) in Laplace space,

where

>1=2D�s� � pD"�s� � qpD"�s�D#�s� � � � � : (4)

Notice that we have used the same symbol D both for the
probability densities and for their Laplace transforms
(which we may call generating functions), although they
are different functions, of course. As q and D#�s� are
smaller than 1 (this is general for generating functions),
the infinite sum can be performed, turning out that

>1=2D�s� �
pD"�s�

1� qD#�s�
�

pD"�s�
1�D�s� � pD"�s�

; (5)

using that D��� is, in fact, a mixture of the distributions D"

and D#, of the form D � pD" � qD#.
Equation (5) describes the first part of the transforma-

tion. The second part is the scale transformation, >2=2,
which puts the distributions corresponding to Mc and M0

c
on the same scale. We obtain this by removing the effect of
the decreasing of the rate, which, by (2), is proportional to
p, so

>2=2�>1=2D���	 � p�1>1=2D��=p�; (6)

and in Laplace space we get

>2=2�>1=2D�s�	 � >1=2D�ps�: (7)

Therefore, the combined effect of both transformations
leads to the final expression for the transformation, > �

>2=2>1=2,

>D�s� �
pD"�ps�

1�D�ps� � pD"�ps�
: (8)

The fixed points of the transformation are obtained by
the solutions of >D�s� � D�s�. This fixed-point equation
provides a connection with Eq. (1), both being equivalent.
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FIG. 1 (color online). Analysis of worldwide earthquakes from
1973 to 2002. Main: recurrence-time probability densities con-
ditioned to Mpre � M0

c, M0
c varying from 6 to 7 and with M � 6.

The data collapse indicates that D"��� may verify the same
scaling relation as D���. The solid line is a fit to D���, turning
out to be / e��=1:4=�0:29. Inset: inverse of the mean recurrence
time, R", scaled by R for recurrence periods started by events
with Mpre � M0

c and ending with M � 5. The error bars mark
2 standard deviations of the mean value, and the two curves are
the linear and exponential fits explained in the text, which do not
take into account the last two points.
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In order to get some understanding of the transformation
>, we can consider first the case in which there are no
correlations between the magnitude and the subsequent
recurrence time. Then, D" � D# � D � D0, and if we
introduce ! � ps and substitute p � !=s and q � 1�
!=s in the fixed-point equation corresponding to (8) we
get, separating variables and equating to an arbitrary con-
stant k (due to the fact that p and s are independent
variables and so are s and !)

D0�s� � �1� ks��1; (9)

which is the Laplace transform of an exponential distribu-
tion, D0��� � k�1e��=k. So, in the case of a process with
no correlations, the only scale invariant distribution is, as
one could have expected, the exponential, characteristic of
the Poisson process.

Correlations introduce new functions in the process. In
our case, in order to iterate the transformation > we need
to know how D" transforms as well. It turns out that D"

verifies an equation very similar to Eq. (8), which depends
on D*��� � D��jMpre � M00

c ;M � Mc�. So, in order to
apply > again, we also need an equation to transform
D*, which in turn depends on higher values of the magni-
tude threshold. In this way we obtain a hierarchy of equa-
tions. An easy way to break this hierarchy is to assume that,
at least at the fixed point, D" has the same functional form
as D, but in a different scale. So, let us assume, as a first
approximation, the following ansatz:

D"��� ’ 	D�	��; (10)

where 	 depends on M0
c �Mc with 	�0� � 1.

This ansatz (10) can be justified with real data. Figure 1
illustrates this, using worldwide earthquakes from the
NEIC PDE catalog [9]. The distributions D" for different
values of M0

c keeping Mc � 6 collapse onto a single curve
under rescaling of the axes. For each distribution the scal-
ing factor is the inverse of its mean value, R", and therefore
	 � R"=R. [Nevertheless, Eq. (10) only seems to be valid
at not very large M0

c �Mc; see Ref. [16].] The behavior of
	 as a function of M0

c appears in the inset of Fig. 1. A
horizontal line would indicate the absence of correlations,
as R" would be identical to R and therefore D" � D. As R"

increases with the magnitude of the previous event, this
means that the mean time between events decreases, lead-
ing to increasing clustering after larger events.

In the figure, fits of the type 	�M0
c �Mc� �

A� C�M0
c �Mc� and 	�M0

c �Mc� � AeC�M
0
c�Mc� are

shown; in both cases it turns out that A ’ 1 and C is in
the range 0.18–0.20. (Note that this behavior of 	 does not
strictly verify Båth’s law, which would imply 	 � 1 for
M0

c �Mc < 1:2 [18].)
Returning to our calculation, in Laplace space D"�s� ’

D�s=	�; therefore, the transformation (8) turns out to be

>D�s� ’
pD�ps=	�

1�D�ps� � pD�ps=	�
: (11)
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As this discrete transformation is difficult to deal with,
we look at the infinitesimal transformation defined by
M0

c ! Mc. Introducing � � M0
c �Mc, this implies p �

10�b�M0
c�Mc� ’ 1� B� with B � b ln10, D�ps� � D�s� �

BsD0�s��, 	 ’ 1� C�, and D�ps=	� � D�s� � �B�
C�sD0�s��. Substituting in Eq. (11) and up to first order
in � we get

>D�s� ’ D�s� � f�D�s� � 1	�BD�s� � CsD0�s�	

� BsD0�s�g�: (12)

In order to find the fixed point of this transformation, we
impose that the coefficient of � is zero, obtaining

D0�s� � �
BD�s��1�D�s�	

sfB� C�1�D�s�	g
; (13)

whose direct integration is easy, yielding

ksD1�"�s� �D�s� � 1 � 0; (14)

where the exponent 1� " comes from the definition " �
C=B. We immediately see that in the case of no correla-
tions, C � 0, one has " � 0, recovering Eq. (9) and then
the exponential form for D���.

Although there are a few values of " for which Eq. (14)
can easily be solved (" � �1=2) and even transformed
back in Laplace (" � 1), we are more interested in general
properties. Let us study first the case " ! 0, characteristic
of weak correlations, C ’ 0. We can write the solution D�s�
as a perturbation of the Poisson behavior corresponding to
" � 0, i.e., D�s� � D0�s� � "u�s� �O�"2�, with D0�s� �
�1� ks��1; see Eq. (9). Substituting into Eq. (14), we get
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u�s� � ks�1� ks��2 ln�1� ks�;

and inverting in Laplace u�s� and D0�s�, we obtain [19]

D��� �
�
1� "

��
ln
�
k
� �

��
�
k
� 1

�
�
�
k

��
e��=k

k
�O�"�2;

where � in this case is Euler’s constant, � � ��0�1�.
We may derive an equivalent expression for D���, up to

first order in ", using the relation �k=��" ’ 1� " ln��=k�
and ��1� "� ’ 1� �"; so

D���’
�
k
�

�
" e��=k

k��1�"�

�
1�

1

1�"

�
�
k

�
���1�"�

�
�
k

�
1�"

�
;

which is not a systematic expansion in " but shows that
D��� can be approximated by a gamma distribution in a
certain domain, in agreement with observational-data
analysis [9].

This behavior is by no means exclusive of " ’ 0. If in
Eq. (14) we consider the limit s ! 1 we get, as D�s� ! 0
(which is general for generating functions),

D�s� ! 1=�ks�1=1�"; (15)

and, if 1� " > 0, by means of a Tauberian theorem [20],

D��� !
1

k��1� ��

�
k
�

�
�

for � ! 0; (16)

with � � "=�1� "�. This implies that for all " > 0, which
corresponds to 	> 1, and then to a shortening of the
recurrence times after large earthquakes, we get a decreas-
ing power law, which is a signature of clustering, and in
concordance with real data [9]. (The situation would be
reversed if �1< "< 0.)

Further insight can be obtained from Eq. (14), writing it
as D � 1� ksD1�", which can be iterated to get the
Taylor expansion of D�s�. Up to second order, it turns
out that D�s� ’ 1� ks� �1� "�k2s2, and as the coeffi-
cients of sn yield the moments of the distribution (with a
��1�n=n! factor [20]) we conclude that h�i � k, h�2i �

2�1� "�k2 and the coefficient of variation is cv ������������������������
h�2i � h�i2

p
=h�i �

���������������
1� 2"

p
. In fact, the Taylor expansion

can be obtained up to any order, and so all the moments
h�ni exist and D��� decays faster than any power law for
� ! 1, in agreement again with the observations [9].

Nevertheless, this agreement becomes a disagreement
when made quantitative. Which may be the reason of the
disagreement? In fact, one can verify that the solutions that
we find for Eq. (13) are not fixed points of the transforma-
tion (8). The reason is the approximation given by Eq. (10),
which, in addition, does not seem to be experimentally
valid for M0

c �Mc > 1. So we may obtain functions very
close to the true fixed points of Eq. (8), but after repeated
application of the RG transformation these functions flow
towards the true solution. Molchan has shown that these
fixed points can only be exponential [21]. We believe the
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inclusion of stronger correlations in the model will yield a
better agreement between theory and observations.

To summarize, our approach mainly consists of a sim-
plification of real seismicity, which allows one to under-
stand the complex structure of seismic occurrence in the
time and magnitude domains. Simply by imposing the self-
similarity of the process, a general characterization of the
recurrence-time distribution can be obtained. With this
study we have shown how the structure of seismic occur-
rence in time and magnitude can be understood as a critical
phenomenon and then constitutes a statistical-physics
problem [22].
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