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ABSTRACT: We consider social choice problems where a society must choose
a subset from a set of objects. Specifically, we characterize the families of
strategy-proof voting procedures when not all possible subsets of objects are

feasible, and voters’ preferences are separable or additively representable.
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1 Introduction

Many problems of social choice take the following form. There are n voters
and a set K = {1, ..., k} of objects. These objects may be bills considered by
a legislature, candidates to some set of positions, or the collection of char-
acteristics which distinguish a social alternative from another. The voters
must choose a subset of the set of objects.

Sometimes, any combination of objects is feasible: for example, if we
consider the election of candidates to join a club which is ready to admit
as many of them as the voters choose, or if we are modelling the global re-
sults of a legislature, which may pass or reject any number of bills. It is for
these cases that Barbera, Sonnenschein, and Zhou [7] provided characteri-
zations of all voting procedures which are strategy-proof and respect voter’s
sovereignty (all subsets of objects may be chosen) when voters’ preferences
are additively representable, and also when these are separable. For both of
these restricted domains, voting by committees turns out to be the family of
all rules satisfying the above requirements. Rules in this class are defined by
a collection of families of winning coalitions, one for each object; agents vote
for sets of objects; to be elected, an object must get the vote of all members
of some coalition among those that are winning for that object.

Most often, though, some combinations of objects are not feasible, while



others are: if there are more candidates than positions to be filled, only sets of
size less than or equal to the available number of slots are feasible; if objects
are the characteristics of an alternative, some collections of characteristics
may be mutually incompatible, and others not. Our purpose in this paper is
to characterize the families of strategy-proof voting procedures when not all
possible subsets of objects are feasible, and voters’ preferences are separable
or additively representable. As in [7], we can identify each set of objects with
the value of its characteristic functions, and thus with some vertex of the k-
dimensional hypercube. Our characterization tells us exactly what social
choice functions will be strategy-proof and onto for each given set of vertices,
to be interpreted as the family of feasible subsets from which society wants
and can choose from. Our main conclusions are the following. First: rules
that satisfy strategy-proofness are still voting by committees, with ballots
indicating the best feasible set of objects. Second: the coalition structures for
different objects must be interrelated, in precise ways which depend on what
families of sets of objects are feasible. Specifically, each family of feasible
subsets will admit a unique decomposition, which will dictate the exact form
of the strategy-proof and onto social choice functions that can be defined on
it. Third: unlike in [7], the class of strategy-proof rules when preferences
are additively representable can be substantially larger that the set of rules
satisfying the same requirement when voters’ preferences are separable.
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Our characterization result for separable preferences is quite negative:
infeasibilities quickly turn any non-dictatorial rule into a manipulable one,
except for very limited cases. In contrast, our characterization result for
additive preferences can be interpreted as either positive or negative, because
it has different consequences depending on the exact shape of the range of
feasible choices. The contrast between these two characterization results is
a striking conclusion of our research, because until now the results regarding
strategy-proof mechanisms for these two domains had gone hand to hand,
even if they are, of course, logically independent.

In order to compare our results with others in the literature, it is worth
noticing that our framework, where alternatives (sets of objects) can be ex-
pressed as vectors of zeros and ones, has been extended. Barbera, Gul, and
Stacchetti [4] extended the analysis to cover situations where the objects
of choice are Cartesian products of integer intervals, allowing for possibly
more than two values on each dimension. The pioneering work of Border
and Jordan [9] considered functions whose range is any Cartesian product
of intervals in the real line. In there and in other contexts of multidimen-
sional choice where the range of the social choice rule is a Cartesian product,
strategy-proof rules are necessarily decomposable into rules which indepen-
dently choose a value for each dimension, and are themselves strategy-proof
(see [10] and [11] for general expressions of this important result).
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In [5] (see also [6]) we considered the consequences of introducing feasi-
bility constraints in that larger framework. The range of feasible choices is
no longer a Cartesian product and this requires a more complex and careful
analysis. All strategy-proof rules are still decomposable, but choices in the
different dimensions must now be coordinated in order to guarantee feasibil-
ity. While these previous papers make an important step in understanding
how this coordination is attained for each given shape of the range, it is
marred by a strong assumption on the domain of admissible preferences.
Specifically, we assume there that the bliss point of each agent is feasible.
This assumption is not always realistic. Moreover, it makes the domain of
admissible preferences dependent on the range of feasible choices.

Several authors (Serizawa [13] and Answal, Chatterji, and Sen [1]) have
studied the consequences of specific restrictions on the range, like budget
constraints or limitations on the number of objects that may be chosen.
These authors only consider the case of separable preferences, not the additive
case, which is the one providing some positive results. Our results apply
generally and cover all types of infeasibilities within our context: ranges of
all shapes are allowed.

In the present paper we come back to the question of strategy-proofness
under constraints within a more limited framework, the one where only two
values can be taken by each of the components of k-dimensional vectors,
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initially considered by Barbera, Sonnenschein, and Zhou [7]. This is done
for clarity of exposition, given that in all other respects we are going to
substantially extend the previous analysis. One substantial extension consists
in that we can apply our result regardless of the nature and the form of
feasibility restrictions: our results apply to ranges of any shape. Budget
constraints, capacity limits, lower bounds on the number of objects to be
chosen are all specific cases that we cover with a single result. It is also
worth noticing that we tackle the case where all separable preferences, (and
all additive preferences) are admissible without any further restriction.
Perhaps the most important progress regarding previous results in this
literature comes from the new insights we get on the need for strategy-proof
rules to be decomposable. As already mentioned, when the range of the rule
is a Cartesian product, strategy-proofness requires and allows to decompose
global decisions into partial ones, one for each object (or for each dimension).
What we prove is that the decomposition of the range as a Cartesian product
is still essential in order to understand the possibility of defining strategy-
proof rules. Even when a set is not a Cartesian product of k£ separate sets of
values, one for each object, it can always be decomposed in different pieces
(maybe only one, in the most degenerate cases), through what we call the
minimal Cartesian decomposition. Then, strategy-proof rules must be de-
composable into rules that choose in a strategy-proof manner within each of
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these pieces (sections), and then aggregate these choices into a feasible alter-
native. This structure generalizes our previous notions of decomposability,
which was restricted before to one of the cases where the decomposition into
Cartesian components is trivial.

The paper is organized as follows. Section 2 contains preliminary notation
and definitions as well as previous results. In Section 3 we introduce specific
definitions and notation, obtain preliminary results, and present our two
characterizations: Theorem 1 for additive preferences and Theorem 2 for
separable ones. Section 4 contains an important final remark: the Gibbard-
Satterthwaite Theorem is a corollary of our results. Section 5 contains the

proof of Theorem 1, omitted in Section 3.

2 Preliminaries

Agents are the elements of a finite set N = {1,2,...,n}. The set of objects
is K ={1,...,k}. We assume that n and k are at least 2. Generic elements
of N will be denoted by ¢ and j and generic elements of K will be denoted
by x, y, and z. Alternatives are subsets of K which will be denoted by X,
Y, and Z. Subsets of N will be represented by I and J. Calligraphic letters
will represent families of subsets; for instance, X', ), and Z will represent

families of subsets of alternatives and W, Z, and J families of subsets of



agents (coalitions).
Preferences are binary relations on alternatives. Let P be the set of
complete, transitive, and asymmetric preferences on 2%. Preferences in P

are denoted by P;, P;, P!

[

and Pj. For P; €P and X’ C 2K we denote the
alternative in X most-preferred according to P; as 7y (F;), and we call it the
top of P, on X. We will use 7 (P;) to denote the top of P; on 2. Generic
subsets of preferences will be denoted by P.

Preference profiles are n-tuples of preferences. They will be represented
by P = (Py,..., P,) or by P = (P;, P_;) if we want to stress the role of agents
1’s preference.

A social choice function on P is a function F: Pm — 2K,

Definition 1 The social choice function F : P — 2K respects voter’s

sovereignty if for every X € 2K there exists P eP" such that F (P)=X.

The range of a social choice function F" Pr — 2K is denoted by Rr; that
is,
Rp = {X € 25 | there exists P € P" such that F (P) = X} :

Denote by Rp the set of chosen objects; namely,
Rrp={r € K|z € X for some X € Rp}.

Definition 2 A social choice function F: P" — 2K js manipulable if there
exist P = (Py,...,P,) €P", i € N, and P! €P such that F (P!, P_;) P,F (P).
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A social choice function on P is strategy-proof if it is not manipulable.

Definition 3 A social choice function F: Pr — 2K s dictatorial if there

exists i € N such that F (P) = 1x,. (P;) for all P €P™.

The Gibbard-Satterthwaite Theorem states that any strategy-proof social
choice function on P will be either dictatorial or its range will have only two
elements. It would apply directly if any individual preference over the sets
of objects were in the domain. However, there are many situations were
agents’ preferences have specific structure due to the nature of the set of
objects, and this structure may impose meaningful restrictions on the way
agents rank subsets of objects. We will be interested in two natural domains

of preferences: those that are separable and those that are additive.
Definition 4 A preference P; on 2K is additive if there exists a function
u; : K — IR such that for all XY C K

XPY if and only if Z u; (x) > Zuz (y) .

zeX yey

The set of additive preferences will be denoted by A.

An agent i has separable preferences P; if the division between good ob-
jects ({z}P;{0}) and bad objects ({0} P,{z}) guides the ordering of subsets
in the sense that adding a good object leads to a better set, while adding a

bad object leads to a worse set. Formally,
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Definition 5 A preference P, on 2% is separable if for all X C K and all

y¢X
X U{y} PXif and only if {y}P,{0}.

Let S be the set of all separable preferences on 2X. We can give a geo-
metric interpretation to this set by identifying each object with a coordinate
and each set X of objects with a vertex of a k-dimensional cube; i.e., with
the k-dimensional vector of zeros and ones, where x belongs to X if and only
if that vector has a one in z’s coordinate. Sometimes we will make use of this
geometric interpretation. For instance, given X,Y C K the minimal box on
X and Y is the smallest subcube containing the vectors corresponding to X

and Y'; namely,
MB(X,Y)={Ze2X | (XNY)CZC(XUY)}.

Following with this interpretation, it is easy to see that a preference P, is
separable if for all Z and Y € MB(7(P,),Z)\Z, YP,Z.

Remark that additivity implies separability but the converse is false with
more than two objects. To see that, let K = {z,y, z} be the set of objects

and consider the separable preference

{z,y, 2} Py, 2} Bi{z, 2} P{w, y} P{x} Pi{y} P{ 2} P{0},
which is not additive since {z} P,{y} and {y, 2} P/{z, z}. Geometrically, addi-
tivity imposes the condition that the orderings of all vertices on each parallel
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face of the hypercube coincide while separability admits the possibility that
some vertices of two parallel faces have different orderings. This geometric
interpretation will become very useful to understand the differences of our
two characterizations.

To define voting by committees as in [7] we need the concept of a coalition

structure.

Definition 6 A coalition structure W is a nonempty family of nonempty
coalitions of N, which satisfies coalition monotonicity: if I € W and I C J,
then J € W. Coalitions in W are called winning. A coalition I € W is a

minimal winning coalition if for all J & I we have that J ¢ W .

Given a coalition structure W, we will denote by W™ the set of its minimal
winning coalitions. A coalition structure W is dictatorial if there exists i € N
such that W™ = {{i}}. Associated to each family of coalition structures (one

for each object) we can define a special type of social choice functions.

Definition 7 A social choice function F' Pr — 2K s voting by commit-
tees, if for each x € K, there exists a coalition structure VW, such that for

all P = (P,...,P,) €P",
x € F(P)if and only if {i € N | x € Tr,(F;)} € W,.

A social choice function F' is called Voting by quota q (1 < ¢ < n) if
for all z the coalition structure W, is equal to the family of coalitions with
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cardinality equal or larger than q.
We state, as Proposition 1 below, Barbera, Sonnenschein, and Zhou [7]’s
characterization of voting by committees as the class of strategy-proof social

choice functions on S, as well as on A, satisfying voter’s sovereignty.

Proposition 1 A social choice function F: S™ — 2K (or, F: A" — 2K)
is strategy-proof and satisfies voter’s sovereignty if and only if it is voting by

committees.

To cover social choice problems with constraints we have to drop the
voter’s sovereignty condition of Proposition 1. But a result in [5] tells us
that the only strategy-proof rules in this case must still be of the same form:

this is stated in Proposition 2.

Proposition 2 Assume F: S® — 25 (or, F: A" — 25) is strategy-proof.

Then, F is voting by committees.!

3 Two Characterization Results

3.1 The Need to Coordinate: Two Examples and an

Outline

Because of feasibility constraints, not all voting by committees can be guar-

anteed to always select a feasible alternative. The exact nature of the con-
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straints, i.e., the shape of the range, will determine which combinations of
coalition structures can constitute a proper social choice function for this
range. Example 1 below illustrates this fact. Moreover, under the presence
of infeasibilities, there are voting by committees that, although respecting

feasibility, are not strategy-proof. Example 2 illustrates this possibility.

Example 1 Let K = {z,y} be the set of objects and N = {1,2,3} the
set of agents. Assume that {0}, {z}, and {y} are feasible but {z,y} is not.
Voting by quota 1 does not respect feasibility because for any preference
profile P, with the property that 7(P;) = 7(FP2) = {z} and 7(P3) = {y},
both x and y should be elected, which is infeasible. However, voting by
quota 2 does respect feasibility because z and y cannot get simultaneously
two votes (remember, agents cannot vote for infeasible outcomes) since the
complementary coalition of each winning coalition for z is not winning for y,

and viceversa. O

This idea will play an important role in our characterization with additive
preferences. As suggested by our example, when defining a social choice func-
tion by means of coalition structures, we must guarantee that if all agents
vote for a feasible alternative, then the result must also be a feasible alter-
native. This was the role played by the intersection property in [5]. Here we

shall ensure it by a combination of conditions, one of which will be the choice
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of mutually exclusive coalition structures under certain situations. Mutually
exclusive coalition structures, following the hint provided in the previous

example, are formally defined as follows.

Definition 8 We say that two coalition structures W and W' are mutually

exclusive if D € W implies N\D ¢ W' and D € W' implies N\D ¢ W.

The interested reader may check that our characterization results (Theo-
rems 1 and 2) guarantee that the intersection property in [5] will be satisfied

by the rules we define in each case.

Example 2 Let K = {z,y} be the set of objects and N = {1,2,3} the
set of agents. Assume that {0}, {z}, and {y} are feasible but {z,y} is not.
Consider the social choice function F' defined by voting by quota 3 (which
respects feasibility) and let P be any additive (as well as separable) preference
profile such that 7(P) = 7(P) = {y} and {z,y} P {z} P {y} P {0}. Since
Tor\ (21 (P1) = {2}, y receives two votes and = one; therefore, F(P) = {0}.
However, if agent 1 declares the preference P] where {y}P/{x,y}P{{0} P{{z},
then y receives three votes and x none; that is, F(P[, P», P3) = {y} P {0} =

F (P, Py, P5). Hence, F is not strategy-proof. O

The purpose of our two characterizations is to identify exactly the sub-
families of coalition structures that simultaneously respect feasibility and are

strategy-proof for the domains of additive and separable preferences.
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We begin with some intuition about the nature of our results. For that, we
first remind the reader about the essential features of voting by committees
when there are no constraints, as in [7]. There, the choice of a set can be
decomposed into a family of binary choices, one for each object. In each
case, society decides whether the object should or should not be retained,
and the union of selected objects amounts to the social alternative. If the
methods used to decide upon each object are each strategy-proof, then so
is the method resulting from combining them into a global decision, as long
as the agent’s preferences are additive or separable. Agents should be asked
to express their best set, and under the expressed domain restrictions this is
equivalent to expressing those objects that they would prefer to be included
in the social decision, rather than not.

In our case, a first difference is that the choice of sets may not be decom-
posable to the extreme of allowing for independent decisions on each object.
Our results tell us precisely about the extent to which global decisions can
be decomposed, and say how to coordinate the decisions within groups of
objects that require joint treatment. Indeed, in the presence of infeasibili-
ties, the decision on what objects to choose, and which ones not to, can no
longer be decomposed into object-by-object binary decisions. For example,
choosing x might only be possible if y is not chosen: then the choices regard-
ing z and y must be joint. Similarly, z might only be chosen if w is, and
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again decisions involving these two objects need to be coordinated. Yet, if
all feasible choices of z and y, when coupled with any feasible choice for z
and w, turn out to be feasible, there is still room for decomposition of the
choices in two blocks of objects. If, on the contrary, further restrictions must
be taken into account, whereby certain feasible choices from = and y become
incompatible with some feasible choices from z and w, then decomposition
is not possible. The paper provides a precise statement about the extent to
which decisions on what sets to choose can be decomposed into partial deci-
sions involving subsets (we call each part of the decomposition a section), in
the presence of feasibility constraints. Moreover, we discuss the characteris-
tics of the coalition structures that must be used in order to coordinate the

choices of objects within each of the sections.

3.2 The Minimal Cartesian Decomposition of a Family

of Subsets

In this subsection, we shall describe the way in which any family of subsets
can be decomposed uniquely into what we call a minimal Cartesian decom-
position. This will be exactly the decomposition that will allow us to make
our previous statements precise, as expressed in Theorems 1 and 2, to be

found in Subsection 3.3 and Subsection 3.4. As we proceed, and in order

17



to help the reader through the new definitions, we introduce an example to

illustrate the new concepts.

Example 3 Let K = {a,b,z,w,t} be the set of objects and assume that

the set of feasible alternatives M is

{{b} ) {b7 t} ) {ba Z} ) {ba Z, t} ) {ba <, w} ) {b, <, W, t}} .

Notice that (1) a is never chosen, (2) b is always chosen, (3) w is only chosen
if z is, and (4) t can be chosen or not, whatever happens. 0

Given a social choice function F: P" — 2K and a subset B of Rr define
the active components of B in the range as

AC(B)={YNB|Y € Rr}.

Active components of B are subsets of B whose union with some subset in
Rp\B is part of the range.

Example 3 (Continued) The active components of the sets {z}, {z, w}

and {t} are AC ({z}) = {{0},{z}}, AC({z,w}) = {{0} .{z} . {2, w}}, and
AC ({t}) = {{0}, {t}}, respectively. O

Now, given B’ C B C Rp define the range complement of B’ relative to
B as

CE(B)Y={C CRr\B|B UCEcRFr}.
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The range complement of a subset B’ of B is the collection of sets in Rp\B
whose union with B’ is in the range. Notice that AC (B) can also be written

as {X CB|XUY € Rp for some Y € CE (X)}.

Example 3 (Continued) The range complement of the subsets {0}, {z},

and {z, w} relative to {z, w} coincide and they are all equal to {b}+{{0}, {¢}}.>0]

A section is a group of objects with the property that the decision among
their active components can be made without paying attention to the infea-

sibilities involving objects on its complement.

Definition 9 A subset of objects B C K s a section of Rp if for all active

components B', B" € AC (B) we have CE (B') = CE(B").

Example 3 (Continued) The set {z,w} is a section of Rp because AC ({z,w}) =
{{0},{z},{z,w}} (notice that the subset {w} is not an active component of

{2, w}) and, as we have already seen, C&"? ({0}) = ¢ ({z}) = ¢ ({z,w}) =
{b} +{{0} . {t}}. O
Remark 1 B = Ry is a section of Rp because CE (X) = {0} for all active

components X € AC (Rr) = Rr.

Remark 2 B is a section of Ry if and only if, for all B’ € AC(B),
Ry = AC(B) + CE(B).

Lemma 1 Let B be a section of Rrp and let By and By be such that
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B = By U By, BN By = {0}, and By is a section of Rp. Then, By is also

a section of Rp.
Proof Toshow that B, is a section of Rp, let X5, Y5 € AC (B;) be arbitrary.
We must show
Cp? (X2) = Ci* (Ya). (1)
By definition of active component of Bs, we can find X,Y € Ry such that
Xy =XNDB, € AC(Bs) (2)
and
Yo =Y N B, € AC(By).
Moreover, by definition of range complement of X, and Y5 relative to B,
X N BS € C2(Xs)
and
Y 1B € CP:(Ya),

where, given a set Z C K, Z° = K\Z. Notice, that to show that (1) holds,

it is sufficient to show that Y N BS € Cp2(X>); that is,
XoU (Y NB3) € Rr.
By (2), and since B = B; U B°,
XoUu(YNBs) = (XNBy)U(YNBg)

= (XNBy)U (Y NB)U(YNB°.
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CoamMm 1 (XNB)U(XNB)U(YNB® € Rp.

PROOF Since Y € Ry, (YNB)U(YNB?) € Rp. Therefore, Y NB° € CE(B)
for some B € AC(B). Moreover, since B is a section and X N B € AC(B),
Remark 2 implies that (X N B) U (Y N B¢) € Rp. Hence, (X N By) U (X N

By) U (Y N B°) € R, which is the statement of the claim.

Therefore, by Claim 1 and the hypothesis that B; is a section,
(X NBy)U(Y NBY) € CP(By)

for all B} € AC(Bj). Because (Y N By) € AC(B;) we have, by Remark 2,

(XN By)U(YNB)U (Y NB) € Rp. Hence, (Y N BS) € CH2(X>). u

Definition 10 A partition {By, ..., B,} of Rp is a Cartesian decompo-
sition of Rp if for all p = 1,...,q, B, is a section of Rp. A Cartesian
decomposition is called minimal if there is no finer Cartesian decomposition

Of RF.

Example 3 (Continued) The partition {{b},{z,w},{t}} of R is the min-
imal Cartesian decomposition of R, since one can check that all of its ele-
ments are minimal sections. The section {z,w} is minimal since neither {z}

nor {w} are sections because, for instance, AC ({w}) = {{0}, {w}} but

CE ({0}) = {b} + {{0}, {=}} + {{0}, {t}}
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and
CE ({w}) = {0} + {2} + {{0}, {t}},

and hence, C&™F ({0}) # C&F ({w}).
The proof that all other components of the decomposition are also mini-

mal sections is similar and left to the reader. U

Remark 3 Let {By,..., B,} be a partition of Rp. Then, {By,...,B,} is a

Cartesian decomposition of Ry if and only if
Rp=AC(B1)+ ..+ AC(B,).

We want to show (Proposition 3 below) that, given any social choice
function F', its corresponding set Rr has a unique minimal Cartesian decom-

position. In the proof of Proposition 3 we will use the following Lemma.

Lemma 2 Let By and By be two sections of Rp. Then B = By U By is

also a section of Rp.

Proof Let B = B; U B, and assume that B; and B, are sections of Rp.

Let X,Y € Ry be arbitrary. They can also be written as
X=(XNB)U((XnNB°

and

Y = (Y NB)U (Y NB).
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To show that B is a section, it is sufficient to show that (X NB)U (Y NB°) €

Rp. Rewrite X and Y as
X = (XN (B\By)) U(X N (By\By)) U (XN (B NBy))U(XNB)
and
Y = (Y N (B;1\B2)) U (Y N (B\By)) U (Y N (BN By))U(Y NB).

Since Bj is a section, (Y N (B;\B2)) U (Y N (BN By)) and (X N (B1\Bs)) U
(X N (B1N By)) belong to AC(By), and (Y N (B,\B;))U(Y NB°) € CE((Y N

(Bl\BQ)) N (Y N (Bl N Bg))) Therefore,
(X N(B1\B2)) U(XN(B1NDBy))U((YN(B\B1))U (Y NB) € Rp.

By definition of the range complement of (Y N (B2\B1)) U (X N (B N By))

relative to Bs,
(XN (B\By))U (Y NB) €Cl((YN(B\By))U(XN(B.NB))). (3)
Also, since X and Y belong to Rr and Bs is a section,
(XNBy)U(YNBS) € RE. (4)
Rewriting (4), we have
(YN (Bi\B2)) U (X N(B\By))U(XN(BiNBy))U(YNB®) € Rp.
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Therefore,

(X N(B\By))U (XN (BN By)) € AC(By). (5)

Then, by (3) and (5), the fact again that Bs is a section, and Remark 2,
(XN (B\By))U(XN(B1NB))U(XN(B\By))U (Y NB°) € Rp.

This implies that (X N B) U (Y N B¢) € Rr. Hence, B is a section of Rp. B
Proposition 3 Rp has a unique minimal Cartesian decomposition.

Proof Assume not. Let {Bj,..,B}} and {B7,...,B}} be two distinct

minimal Cartesian decompositions of Rr. There exists at least one pair such
1 2 1 2 1 2 - .

that B} N B;, # {0} and B, # B . By Lemma 2, B U B is a section of

Rp. By Lemma 1, B} \ B2, is also a section of Rp implying, again by Lemma,

1, that {B], ..., B, } was not minimal. [

3.3 Additive Preferences

We can now state our first characterization.

Theorem 1 A social choice function F: A" — 25 is strategy-proof if and
only if it is voting by committees with the following properties:

(1.1) W, and W, are equal for all x and y in the same active component of
any section with two active components in Rp’s minimal Cartesian decom-

position,
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(1.2) W, and W, are mutually exclusive for all x and y in different active
components of the same section in Rgp’s minimal Cartesian decomposition,
when there are only two active components in this section, and

(1.3) W, is dictatorial and equal for all x’s in the same section in Rp’s
minimal Cartesian decomposition, when this section has more than two active

components.

The proof of Theorem 1 is in the Appendix at the end of the paper.

Our Theorem refers to the set Rp, and is thus stated as if we started from
a given function F' and then described the necessary and sufficient conditions
for this F' to be strategy-proof. We can take another point of view, which
is also compatible with our purposes. Start from any family M of subsets
of K. Interpret M as the set of feasible outcomes. We can then re-read
Theorem 1 as telling us everything about the strategy-proof social choice
functions which can be defined onto M (which will then be the range of
these functions). True, there may also exist other strategy-proof functions
which start with a feasible set M and end up having a subset of M as the
range. But then, if there are alternatives that the designer is willing to give
up as possible outcomes, we might as well reinterpret them and include these
outcomes among those which we consider unfeasible, for practical purposes.

Example 4 below illustrates the statement of Theorem 1.
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Example 4 Let K = {a,b,z,y,z,w,r,s,q,t} be the set of objects and

assume that the set of feasible alternatives is

M = {0}, {=} {y {0} {2} {2 wib+{{r}, {s, a3H{{0} , {£}}

Any voting by committees F': A" — 2K will be strategy-proof and will
have Rrp = M as long as it satisfies the following properties: (a) by (1.3)
of Theorem 1, Wi* = Wi = {{i1}} and W* = W' = {{i2}} for some
i1,i2 € N; (b) by (1.1) of Theorem 1, W* = Wi and (c) by (1.2) of
Theorem 1, W, and W, are mutually exclusive. To illustrate these conditions,
let N = {1,2} be the set of agents and consider the voting by committees
F where W' = W) = {{1}}, W = W' = {{2}}, and W]» = W" =
Wi = Wi =W = W = {{1,2}}. Observe that I satisfies properties
(a), (b), and (c), and hence, by Theorem 1, it is strategy-proof on the domain

of additive preferences and Rp = M. O

3.4 Separable Preferences

In contrast with the unconstrained case, our results for separable preferences
are quite different (and much more negative) than for additive preferences.
Essentially, this is because in the presence of infeasibilities, agents are not
asked to vote for their preferred sets, but rather for their preferred feasible

sets. Hence, they may end up voting for their second best, their third best,
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etc. Now: some of the individual objects they vote for may be retained, and
others not. Likewise, some objects they do not vote for can obtain. What
matters for strategy proofness is whether the best set for each agent among
those that contain some externally fixed objects (those that are chosen in
spite of the agent’s negative vote) and do not contain some others (those
that are not chosen even if the agent supports them) is the set that contains,
in addition to those, as many elements from the agent’s preferred feasible
set. This is the case for additive preferences in all cases. It is also the
case for separable preferences if the first best for the agent is feasible, but
not necessarily otherwise. That is why, in the presence of infeasibilities,
declaring the best feasible set may not be a dominant strategy for some
voters, even when voting by committees are used (except if the first best is
always feasible, a situation studied in [5]). Whereas it is always a dominant
strategy for additive preferences. This accounts for the differences in results
under these two different domains. To further illustrate this general point,

we can go back to Example 3.

Example 3 (Continued) Let F': S* — 2% be defined by the coalition
structures W' = W' = {{1}}, and W* = W = W;" = {{1,2}}. To see
that F' is manipulable on the domain of separable preferences, consider any

separable preference P; with the following properties:

27



(1) 7 (P) = {b,w,t} and Tr, (P1) = {b, z,w,t} .
(2) {b, z,w,t} P, {b,t} and {b} P, {b, z,w}.
Observe that P; is not additive because adding ¢ to {b, z, w} and to {b}

inverts its ordering. Take any separable profile of preferences (P], P,) with

the properties that 7 (P]) = {b} and 7 (P;) = {b, z,w}. Then,

F (P, P) ={b} Pi{b,z,w} =F (P, P),

implying that F' is manipulable by agent 1 at profile (P, P;) with the pref-

erence Pj. g

Theorem 2 below characterizes the family of strategy-proof social choice
functions when voters’ preferences are separable. Our result shows that the
class of strategy-proof social choice functions under additive representable
preferences identified in Theorem 1 is drastically reduced as a consequence of
this enlargement of the domain of preferences. This is an important novelty
with respect to the situation without constraints. Now, only social choice
functions with Cartesian product ranges (up to constant and/or omitted
objects,) are strategy-proof. Namely, the range of F' has to be a subcube:
all sections of the minimal Cartesian decomposition of Rp (the set of not
omitted objects) are singletons, either with the object itself as the unique
active component (constant object) or else with the object itself and the
empty set as the two active components. Formally,
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Theorem 2 A social choice function F: S™ — 2% is strateqy-proof if and
only if it is voting by committees with the following property:
(2.1) If #Rp > 3 then either F is dictatorial or all sections of the minimal

Cartesian decomposition of Rp are singletons.

Proof Let F: S™ — 2K be a voting by committees satisfying property (2.1).
If F is dictatorial then it is obviously strategy-proof. If #Rr > 3 and all
sections of the minimal Cartesian decomposition of Ry are singletons, then
the set of active components in the range of each object x of this Cartesian
decomposition of Rp is either {{0},{z}} or {{z}}. When the set of active
components is of the form {{z}}, this means that object x is always chosen.
When the set of active components is of the form {{(}} , {x}}, then voters have
a choice between including = and not doing it. Leaving aside the constant
elements, which have no consequence for strategy-proofness, the remaining
choices between the objects with active components of the form {{0},{z}}
are of the type contemplated by Barbera, Sonnenschein, and Zhou [7]. Hence,
since we assume voting by committees, then F' is strategy-proof.

For the converse, assume that F'is strategy-proof. By Proposition 2, F
is voting by committees. To show that F' satisfies property (2.1) assume
#Rpr > 3. Since all additive preferences are separable, Theorem 1 applies

to the subdomain of additive preferences. Therefore, the coalition struc-
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tures associated to F' satisfy properties (1.1), (1.2), and (1.3) of Theorem 1.
Assume F' is non-dictatorial. Then, property (1.3) implies that the minimal
Cartesian decomposition of Rr cannot consist of just one section with strictly
more than two active components. Therefore, and since #Rpr > 3, the min-
imal Cartesian decomposition of Rp contains at least two sections. Now,
notice that when preferences are separable but not additively representable,
the active components of a section can be ordered differently among them-
selves, depending on which objects are present in another section. That is,
for each pair of sections B; and Bs of the minimal Cartesian decomposition
of Rr there exist at least one separable preference P; € S, X1,Y; € AC (By),

XQ,)/Q e AC (Bg), and Z C RF\ (Bl U Bg) such that
(XTUXo UZ)P(X3UY,UZ) and (TUYLUZ) P (TUX,UZ).  (6)

This can now be used to show that we cannot have a section with more than
two active components together with another section having more than one
active component. To prove it, it is enough to construct profiles where the
presence of an object affects the ordering of the active components in another
section. Assume that a section B; has the property that #AC (B;) > 3.
Then, by property (1.3) of Theorem 1, for all x € By, W, is dictatorial (i.e.,
Wit = {{i}} for some i € N). Also assume that there exists another section

By such that #AC (By) > 2. Then, for all y € By, W = {{i}}, since
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there exists a separable preference P; satisfying (6). By applying the same
argument we could prove that dictatorship extends to all objects belonging
to sections with more than two active components. Therefore, all sections
have either only one active component (the objects that are always selected)
or they have just two active components. Following a similar argument to the
one already used to establish (6) it is immediate to see that if a section has
two active components they are of the form {{0},{z}}. Hence, all sections

in the minimal Cartesian decomposition of Rp are singletons. [ |

4 Final Remark

Until now, we have taken the dimension of our problems (i.e., the number
of objects), as well as the feasibility constraints, as given data. Our analysis
admits another reading without any formal change, except for its interpreta-
tion.

Consider a situation where society faces four alternatives, a, b, ¢, and d.
One possibility is that each of these alternatives might be described by two
characteristics, and that identifying a = (0,0), b = (1,0), ¢ = (0,1), and
d = (1,1) provides a good description of the actual choices (this particular
choice would indicate that a and c are similar in the first characteristic but

differ on the second, etc.). It may also be, in another extreme, that these four
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alternatives share nothing relevant in common. They can still be represented
as vectors of zeros and ones, but now it is better to embed them in IR*,
and identify them as a = (1,0,0,0), b = (0,1,0,0), ¢ = (0,0,1,0), and d =
(0,0,0,1). There may still be intermediate cases where three characteristics
are necessary and sufficient to distinguish between these four alternatives.

Two examples may be given by the cases

a=(1,0,0),b=(1,1,0), ¢c=(1,0,1), and d = (0,0,0)

or

a=(1,0,0),b=(0,1,0), c=(0,0,1), and d = (0,1,1).

In the four-dimensional and three-dimensional cases, these four alternatives
are only some of the conceivable vertices of the corresponding cubes. Other
combinations of zeros and ones represent conceivable but unfeasible choices.

These examples suggest that the objects in our model (interpreted as
characteristics) may be taken as partial aspects of the overall alternatives
(whose role is played in our model by the feasible sets). This interpretation
is not restrictive: any alternative (out of a finite set) can be described by
a (finite) set of characteristics. What is restrictive is that once we identify
each alternative with a set of characteristics (thus embedding it into some
[-dimensional cube), we also determine the shape of the set of feasible alter-
natives, and this has consequences on the class of preferences which pass the
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test of additivity (or separability).?

In fact, thanks to the above observations, we can conclude by argu-
ing that the Gibbard-Satterthwaite Theorem arises as a particular corol-
lary of our Theorem 1. Indeed, take any finite set A = {x,y,...,w} of k
alternatives (k > 2). Identify them with the k unit vectors and assume
that the set of feasible alternatives M is {{z},{y},...,{w}}. Notice that
all preferences over A are restrictions of some additive preference on the
k-dimensional cube. Hence, we are considering the universal domain as-
sumption of the Gibbard-Satterthwaite result. Let F: A™ — 24 be such
that Rp = {{z},{y},...,{w}}. The minimal Cartesian decomposition of
Rp (= A) contains only the section B = {z,y,...,w}, whose set of active
components is AC (B) = {{z},{y}, ..., {w}}. Since #AC (B) > 2, property
(1.3) of Theorem 1 tells us that only dictatorial rules are strategy-proof on

additive preferences. This is the conclusion we wanted.?

5 Appendix: Proof of Theorem 1

The proof of Theorem 1 is based on a decomposition argument that applies
an important result of Le Breton and Sen [10] to our context. This argument,
which will be exploited in the proof of Theorem 1, is expressed as Proposition

4 below. But before, we need the following notation.
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Let P, be an additively representable preference on 2% and consider a
subset B of K. Let PP stand for the preferences on 2% generated by the
utilities which represent P;. Let Ag be the set of additive preferences on 25.
For a profile P of preferences on 2%, PP will denote the profile of preferences
so restricted, for all 1 € N.

Given a strategy-proof social choice function F: A® — 2% and a subset

B of objects, let FB: A% — 28 be defined so that for all PP €A%,
FP(PP)=F(P)NB,

where P is any additive preference such that P? is generated by the utilities

which represent P.

Remark 4 Notice that, since F: A" — 2K is a strategy-proof social choice
function, it is voting by committees (by Proposition 2). Hence, for any
BCK,F(P)NB =F (P) N B for all P,P €A" such that PP = P5.

Therefore, F'® is well-defined.

Proposition 4 (4.1) Let F: A™ — 25 be a social choice function and let

{Bi, ..., By} be a Cartesian decomposition of Rp. If F is strategy-proof then

FBi .. FBa are strategy-proof and F (P) = ql FBr (PPr) for all P €A™
=

(4.2) Conwversely, let { By, ..., By} be a partition of K' C K and let {B, ..., B,}

be a collection of subsets of objects, with B, C 2P» for all p = 1,...,q.

Let FPr: A% — B, be a collection of onto social choice functions, one
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for each p = 1,...,q. If FP\ ... FB« are strategy-proof, then the function

F(P) = qul FBe (PPr) for all P €A™ is strategy-proof, {Bx, ..., By} is a
=

Cartesian decomposition of Rp = K', and Rp = B1 + ... + B,.

Proof (4.1) Assume { By, ..., B, } is a Cartesian decomposition of Ry and

let P €A™, Then,

F(P) =F(P)NRp by definition of Rp

Ce

[F(P)N B, since {By, ..., B;} is a partition of Rp

p=1

= |J FP(P%) by definition of FP and PPr.

p=1

=

To obtain a contradiction, assume that F'Pr is not strategy-proof; that is,
there exist PP, i, and P”% such that FB (P P"")\PP» FBr(PBr). There-

fore, and since preferences are additive,

B, 5Bp B B B
yeFBr (B P ,P°P) yeF e (Por)

for any uf” : B, — IR representing PiB”.
Take any P € A" generating PP and P, generating pin with the property
that
P =D (8)
for all p’ # p. For each p’ # p, take any uf”' representing PiB”/. Then, by

(7),
Yo wr @+ Y uw)

PP werPr (PP yeFBr (PBp)
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/ .B B B B
V7P erB (B oY) yeFBr (PPr)
B_, B
P P
< E E u; " () + u; " (y),
/ . B B ~ B B
p'#p :CEFBPI(Pi p/’Piipl) yEFBP(PZ. p,P_f)

where the equality follows from (8) and the inequality follows from (7).
Therefore, F(P,i, P,)P,F(P); that is, F is not strategy-proof.

(4.2) Let { By, ..., By} be a partition of K’ C K and consider any P €A™,
1 € N, and P €A. Since for all p = 1,...,q the functions F'Pr are strategy-
proof, we have that FBP(PBP)R?’FBP(?Z.BP, Pi.”); that is, for all p =1, ...q,

> u(x) Yoo a),

z€FPr (PPp) yeFBr (PP pPP)

v

B . B . . . B
where u;” and ;" are any pair of functions on B, representing P,” and

A

PZ-B”, respectively. Therefore, adding up,
q

> ur(z) =Y Yoo ).

p=1 CL‘EFBP(PBP) p=1 yEFBP(p-Bp,P_Bf)

3

Hence, F(P)RiF(FA’i,P_i); that is, F' is strategy-proof. That {Bi,..., B,}
is a Cartesian decomposition of Rp = K’ and Rp = By + ... + B, follow

q
immediately from the fact that £ (P) = |J F5 (PP») forall P €A". ®
p=1

Our strategy of proof for necessity relies heavily on invoking the Gibbard-
Satterthwaite Theorem for the case where there are more than three active
components in a section B, of the minimal Cartesian decomposition of the
range. This is done by proving that, then, there will be three feasible out-
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comes which agents can rank as the three most-preferred, and in any relative
order (a “free triple”). But F'®» must be strategy-proof if F' is (Proposition
4). If F'B» was non-dictatorial, we could use it to construct a non-dictatorial
and strategy-proof social choice function over our free triple, which we know
is impossible by the Gibbard-Satterthwaite Theorem. As for the case where
a section has two active components only, notice that we can divide the ob-
jects of this section into two sets, such that all the elements in one of the sets
obtains when those on the other don’t, and vice-versa. Our restriction that
the coalition structures corresponding to these two sets of objects are mutu-
ally exclusive guarantees that no vote can lead to choose at the same time
objects from these two active components. Otherwise, no further restriction
is imposed on our coalition structures by strategy-proofness when only two
outcomes arise.

Now, we state and prove that whenever a section in the minimal Cartesian
decomposition of Rp contains more than two active components, then we get
a dictator. This is achieved by showing that a free triple always exists in this

case.

Proposition 5 Assume that the following properties of Rp hold: (5.1)
the minimal Cartesian decomposition of Rp has a unique section and (5.2)

#Rp > 3. Then, there exists i € N such that for all k € Rp, W = {{i}}.
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Proof of Proposition 5 By properties (5.1) and (5.2) there exists Z € 2K
such that Z ¢ Rpr. Without loss of generality first assume that there exists
x such that either ZU {z} € Rr or Z\{z} € Rr. Moreover, by rotating the
hypercube to locate Z to its origin and redefining all coordinates accordingly,
assume that Z = {0} and {z} € Rp. Let y € Rp\{z} be arbitrary. We will
show that there exists i € N such that W' = W;» = {{i}}. We will

distinguish between two cases.
Case 1: There exists D € R such that y € D and M B (D,{0})NRr = {D}.

Subcase 1.1: Assume M B (D U {z},{0}) # {{z}, D} . Since MB(D,{0}) N
Rr = {D} there exists B such that {0} # B C D, BU {z} # D, and

Bu{z} e MB(DU{x},{0})NRp.

Subcase 1.1.1: Assume B & D. Without loss of generality assume that
MB(BU{z},{z}) NRr = {BU{z},{z}}. Then we can generate, by an
additive preference with top on {@}, the orderings D =! {z} = B U {z},
{z} =2 D =2 BU{z}, and {z} =2 BU {z} =3 D, by an additive preference
with top on B, the orderings D »=* BU {z} =* {z}, BU{z} »° {z} =° D,
and BU{z} »=% D =5 {z}. Moreover, by associating large negative values to
objects outside D U {x}, we must be able to put these three alternatives at
the tops of the individual orderings. Therefore, we have a free-triple on the

elements of the range D, {z}, and BU{z}. Then the Gibbard-Satterthwaite
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Theorem implies that there exists i € N such that W;* = W = {{i}}.

Subcase 1.1.2: Assume B = D. Because M B (D U {z},{0})"Rr # {{z},D}
then D U {z} € Rp. Then MB(DU{z},{z}) N Rr = {{z},DU{x}},
MB(DU{z},D)NRr ={D,DU{x}}. Notice that MB (D,{0}) N Rr =
{D}. Therefore, using an argument similar to the one already used in the
proof of Subcase 1.1.1, we have a free triple on elements of the range D, {z}
and D U {z}, and again, the Gibbard-Satterthwaite Theorem implies that
there exists i € N such that W = W) = {{i}}.

Subcase 1.2: Assume M B (D U{xz},{0}) = {{z},D}.

Subcase 1.2.1: There exists C' € R, such that C N (DU {x}) ¢ {{z},D}.
Let C = CN DU {z} and without loss of generality assume M B {U, C } N
Rp =C. Since MB{C,{z}} NRp = {z} and MB{C,D} NRp = {D} we
have a free triple on elements of the range D, {z} and C, implying that there
exists ¢ € N such that W;* = W;* = {{i}}, because y € D.

Subcase 1.2.2: For all C € Rp, CNDU{z} € {{z},D}.

CrLAM 1 Assume that for all C' € Rp either {x} C C or D C C. Then,
there exists A, B € Rp and Z € {{z}, D} such that:

(C.1) MB(A,B)NRr ={A,B}.

(C2) ZC ANB.

(C.3) MB(A,B)NRp =4,
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where A = (AU ({z} UD))\Z and B = (BU ({z} U D))\ Z.
PrOOF OF CLAIM 1: Since R has the property that its minimal Cartesian
decomposition has a unique section there exits G € Rp and Z € {{z}, D}

such that Z C G and G = (GU ({z} U D)) \Z ¢ Rp. Define
MB(H,Z)={E€2" |E=(EU({z}UD))\Z for E€ MB(H,Z)NRp}.

Denote ~ Z =z if Z=D or~Z =D if Z =x. Because G € MB (G, Z) N
Rp, then G € MB (G, Z). Since G ¢ MB (G,~ Z)NRp then MB (G, Z) ¢
MB (@,N Z) N Rp. Let B be the element in the range with minimal
L,—distance to Z with the property that MB (B, Z) ¢ M B (E, ~ Z) NRp.

This implies that
MB(B,Z)\B = MB (B,{~ Z}) NRp. (9)

Let A € MB(B,Z)\B be such that MB (A, B) = {A, B}. Condition (9)

implies that A € Rp and M B (Z, E) NRp = A. This proves the Claim.

Let A,B € Rr and Z € {{z}, D} be such that conditions (C.1), (C.2),
and (C.3) of Claim 1 hold. Then we can generate, by an additive preference
with top on A U {~ Z}, the orderings A ~' B =' A, A =2 A =2 B, and
A =3 A =3 B, by an additive preference with top on BU{~ z}, the orderings
B>*A>*Aand B ~®> A %% A, and by an additive preference with top

on B, the ordering A =% B =% A. Therefore, we have a free-triple on the
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elements of the range A, B, and A, implying that here exists i € N such that
Wit =Wyt = {{i}}.

Case 2: Assume that for every D € Rp such that y € D, there exists B # D
such that B € MB (D, {0}) N Rp.

Let D be such that
MB (D, {y}) "'Rr = {D} (10)

and let B be such that
MB (B,{0})"Rr = {B}. (11)

If y € B then we are back to Case 1. Therefore, assume that y ¢ B. For
each z € B we can apply Case 1 and obtain that there exists ¢ € NV such that
Wyt =W = {{i}}.

Subcase 2.1: Assume that {z,y} € Rp. We claim that M B ({y}, B)NRr =
{B}. To see it, assume that there exists C' # B such that C € MB({y}, B)N
Rp. If y € C then C € MB(D,{y}) N Rr contradicting (10). If y ¢ C then
C C B, contradicting the fact that C' # B because M B(B,{0})N"Rr = {B}.
Moreover, since MB ({y},D) N Rr = {D} and MB ({y},{z,y}) N Rr =
{z,y} we can generate all orderings on D, B, {x,y} (with these three subsets
on the top); therefore, there exists i € N such that W = W, = {{i}}.
Subcase 2.2: Assume that {z,y} ¢ Rp. First suppose that M B ({y},B) N
Rr = {B}. Since MB ({y},D)N"Rpr ={D}and MB ({y},{z})"Rr = {z}
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(remember, by (10) we know that y € Rp) we can generate all orderings
on D, B, and {z} (with these three subsets on the top); therefore, there
exists i € N such that W;* = W, = {{i}}. Suppose that M B({y}, B) #
{B}. We claim that D = B U {y} and therefore M B({y}, B) = {B, D}.
To see it, let C € MB({y},B). If y € C then, by (10), C = D and
C =DuU{y}. If y ¢ C then C C B and, by (11), C = B. Now, if
MB ({y},B) N Rr = {B,D} we can also generate all orderings on D, B,
and {x} with two preferences: one with top on y (orderings D =' B =! {z},
D =% {z} »? B, and {z} »* D »* B) and the other with top on {0}

(orderings {z} =* B =% D, B =% D =° {z}, and B =% {z} =% D). u

Proof of Theorem 1 To prove necessity, let F: A" — 2K be a strategy-
proof social choice function and let {By, ..., B;} be the minimal Cartesian
decomposition of Rr, which exists by Proposition 3.

(1.1) Assume that z,y € Z, € AC(B,) = {Z1, Z>}. Since {By, ..., B;} is
minimal we have that Z; N Z; = {0}. Assume that W, # W;"; that is, there
exists I € W such that I ¢ W;". Consider any P such that 7(F;) N B, = Z,
for all i € I and 7(P;) N B, = Z, for all j € N\I. Then, z € F(P) and
y ¢ F(P) contradicting that x and y belong to the same active component
of By,.

(1.2) Assume z € X, y € Y, and AC(B,) = {X,Y}. To obtain a contra-
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diction assume there exists D € W;* and N\D € W;". It is easy to find P
such that z,y € F(P) contradicting that = and y belong to different active
components of B,,.

(1.3) Follows from (4.1) of Proposition 4 and Proposition 5.

Sufficiency follows from (4.2) of Proposition 4, since it is clear that all
social choice functions defined on each of the sections are onto the active

components of the section and strategy-proof. [ |
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Footnotes

Tt is easy to check that the proof of Proposition 2 in [5] which covers the
case of separable preferences also applies to the smaller domain of additive

preferences.

2 Given two families of subsets of objects X and ) we denote by X + )

the sum of the two; namely,
X+Y={XuYe2¥| XcXandY € Y}

3 Actually, identifying the alternatives of a social choice problem as points
in a grid can give us some interesting insights. In particular, many problems
can be rewritten as ones where alternatives are strings of 0 or 1 vectors. For
example, the setting of Barbera, Sonnenschein, and Zhou [7] can be viewed
as defining rules to choose among the vertices of a hypercube. This point of
view has been expressed and used in [2], [3], and [8]. It is the object of recent

work by Nehring and Puppe [12].

* In an earlier paper ([5]) we had already used the same embedding or
identification of alternatives with unit vectors in order to prove the Gibbard-
Satterthwaite Theorem. In the earlier paper, this was a corollary of a different
characterization than the one we offer here. As a result, our arguments in
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the present paper, which apply Theorem 1, are simpler and more direct than

in the previous case.
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