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Abstract

Function spaces whose definition involves the quantity f∗∗−f∗, which measures the
oscillation of f∗, have recently attracted plenty of interest and proved to have many
applications in various, quite diverse fields. Primary role is played by the spaces
Sp(w), with 0 < p < ∞ and w a weight function on (0,∞), defined as the set of
Lebesgue-measurable functions on R such that f∗(∞) = 0 and

‖f‖Sp(w) :=
(∫ ∞

0

(
f∗∗(s)− f∗(s)

)p
w(s) ds

)1/p
< ∞.

Some of the main open questions concerning these spaces relate to their functional
properties, such as their lattice property, normability and linearity. We study these
properties in this paper.

Keywords and phrases: Lattice property, normability, distribution function, decreasing
rearrangement.
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1 Introduction

In 1981, in order to obtain a Marcinkiewicz–type interpolation theorem for operators that
are unbounded on L∞, C. Bennett, R. De Vore, and R. Sharpley in [4], introduced a new
rearrangement-invariant space consisting of those measurable functions for which f ∗∗−f ∗
is bounded (where f ∗ is the decreasing rearrangement of f and f ∗∗(t) = t−1

∫ t

0
f ∗(s) ds)

which plays the role of “weak-L∞ ” in the sense that it contains L∞ and possesses appro-
priate interpolation properties. Moreover, since f ∗∗− f ∗ can be interpreted as some kind
of measure of the oscillation of f ∗, they proved that weak-L∞(Q), (Q is a cube in Rn) is,
in fact, the rearrangement–invariant hull of BMO(Q). Since then, the main ideas that
f ∗∗−f ∗ might be useful as a replacement for f ∗ in certain contexts, and that a natural way
to measure the oscillation of a decreasing function is provided by the quantity f ∗∗ − f ∗,
have been particularly fruitful, and have been applied in various problems. The principal
difficulty which one meets when dealing with the functional f ∗∗−f ∗ is that this expression
is not linear, this problem has been generally solved in two ways, obtaining equivalent
expressions in terms of f ∗∗ − f ∗ for the norms of classical spaces (usually generalizations
of the classical Lorentz spaces Lp,q, see for example [5], [14], [6], and the references quoted
therein) or obtaining some estimates for the difference f ∗∗ − f ∗ without any connection
with spaces (see [3] and [13]).

In 2003, J. Bastero, M. Milman and F. Ruiz (see [2]) combined both ideas in order to
prove a sharp version of the Sobolev embedding theorem. First using a natural extension
of the classical Lorentz spaces L(p,q)(Ω) (Ω is an open subset of Rn) introduced a new scale
of spaces (conditions) that interpolate between L∞ and the space weak-L∞ of Bennett-
DeVore-Sharpley, defined by1

L(∞, q)(Ω) = {f : t−1/q(f ∗∗(t)− f ∗(t)) ∈ Lq(Ω)},

and second, proving the following new form of the Pólya-Szegö symmetrization principle

f ∗∗(t)− f ∗(t) ≤ cn(∇f)∗∗(t)t1/n, f ∈ C∞0 (Ω) (1)

they stated that the L(∞; q) spaces are natural target spaces for sharp endpoint Sobolev
embedding theorems. In particular, when |Ω| <∞, they proved that (see also [17])

W 1,n
0 (Ω) ⊂ L(∞, n)(Ω) ⊂ BWn(Ω) (2)

where BWn(Ω) is the Maz’ya–Hansson–Brézis–Wainger space defined by the condition∫ 1

0

( f ∗(t)

log(e/t)

)ndt

t
<∞.

Notice that the first embedding of (2) follows readily from (1), and thus the proof of (2)
is reduced to an embedding result for rearrangement-invariant spaces.

M. Milman and E. Pustylnik in the recent paper [18], (see also [19]), extending the
methods developed in [2], to the case k > 1; obtained a unified method to prove the
Sobolev embedding theorem and the corresponding sharp borderline cases. They started
by showing that2

W
k,n/k
0 (Ω) ⊂ L(∞,

n

k
)(Ω)  BWn

k
(Ω). (3)

1See [20], [21] and [22] for the role of L(∞, q)(Ω) spaces in very actual problems of interpolation theory.
2The consideration of these spaces allows the authors treat the case p = n

k , q = ∞ in a unified form
with the other cases that appear in the literature.
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Moreover, sets of functions with finite quantities ‖f ∗∗ − f ∗‖E appear in this work for a
large spectrum of spaces E in a very natural context of optimal Sobolev embeddings. In
particular in the setting of rearrangement invariant spaces they extend results in [12] in
the sense that if Y is a rearrangement invariant space which satisfy some mild conditions,
then W k;Y

0 (Ω) ⊂ Yn(∞; k) = {f : t−k/n(f ∗∗(t) − f ∗(t)) ∈ Y } and, in fact, Yn(∞; k) is
not larger (and in many cases essentially smaller) than any rearrangement invariant space
X(Ω) such that W k;Y

0 (Ω) ⊂ X(Ω).
The fractional case of (3) have been considered in [16] by proving a rearrangement

inequalities that give a relation between the oscillation f ∗∗ − f ∗ and the modulus of
continuity of the function f , which is the suitable replacement for (1), in the fractional
case, and allow the authors to derive applications to embedding of Besov spaces, using
again a suitable function space E such that ‖f ∗∗ − f ∗‖E <∞ and following the method
developed in [18].

In this paper, given w, a non–negative Lebesgue measurable function on R+ (briefly a
weight), and given 0 < p <∞, we consider two types of weighted function spaces whose
definition involves the quantity f ∗∗ − f ∗:

1) The space Sp(w), defined by those measurable functions f such that f ∗(∞) = 0 and

‖f‖Sp(w) :=
(∫ ∞

0

(
f ∗∗(s)− f ∗(s)

)p
w(s) ds

)1/p

<∞,

and its weak version,

2) the space Sp,∞(w), defined by those measurable functions such that f ∗(∞) = 0 and

‖f‖Sp,∞(w) := sup
t>0

(
f ∗∗(t)− f ∗(t)

)
t
(∫ ∞

t

w(s)

sp
ds
)1/p

<∞.

Obviously, Sp(w) and Sp,∞(w) are invariant under rearrangement and Sp(w) ⊂ Sp,∞(w)
(see Corollary 2.1).

Obviously Sp(w) = {f : f ∗∗(t)− f ∗(t) ∈ Lp(w)}, so our spaces are a particular case of
the Milman-Pustylnik spaces by taking E = Lp(w) (see [18]).

Example 1.1 If w(t) = 1/tχ[0,1], then

‖f‖Sp(w) =
(∫ 1

0

(
f ∗∗(t)− f ∗(t))p dt

t

)1/p

and we obtain the function spaces considered in [17], [13] and [2]. Notice that (see Sub-
section 3.1.3 below)

S1(w) = L∞ with ‖f‖S1(w) = ‖f‖L∞ − ‖f ∗χ[0,1]‖L1 .

Similarly,
‖f‖S1,∞(1/t) = sup

t>0

(
f ∗∗(t)− f ∗(t)

)
is the Bennett–DeVore–Sharpley space Weak–L∞.
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One of the principal difficulties which one meets when dealing with spaces defined
in terms of f ∗∗ − f ∗ is that this expression is not linear, thus functional properties like
normability, lattice property or linearity are difficult to prove.

The purpose of this paper is to study functional properties of the spaces Sp(w) and
Sp,∞(w). In particular, we investigate whether or not these spaces have the lattice prop-
erty, whether they are normable and whether they form linear sets (these problems were
posed explicitly in the last section of [18]). Embedding properties between the function
spaces Sp(w) and the classical Lorentz spaces Λp(v) and Γp(v) will be considered in the
forthcoming paper [8].

The paper is organized as follows: In Section 2, we provide some technical results
involving the functional f ∗∗ − f ∗. In Section 3, we characterize the weights w for which
Sp(w) (resp. Sp,∞(w)) is a lattice, is a normed space and obtain necessary conditions to be
a linear space. We actually prove that, in order to have the lattice property (and, likewise,
in order to be normable), it is necessary for each of the spaces Sp(w) and Sp,∞(w) to
coincide with an appropriate classical Lorentz space of type ‘Gamma’ (see the definitions
below). Finally, in Section 4, we describe the associate space of Sp(w) and Sp,∞(w).

As usual, the symbol f ' g will indicate the existence of a universal constant c > 0
(independent of all parameters involved) so that (1/c)f ≤ g ≤ c f , while the symbol f � g
means that f ≤ c g (resp. f � g, means that f ≥ c g). We write ‖g‖p to denote ‖g‖Lp

and given a weight w, we denote W (t) :=
∫ t

0
w(s) ds.

In what follows in order to avoid some complication with the notation and since our
results can be easily extended to Rn we assume that the underlying measure space is R.

2 Preliminaries and technical lemmas

Let L0 = L0(R) be the space of all (equivalence classes of) Lebesgue measurable functions
on R. Given f ∈ L0, its distribution function is defined, for t > 0, by

λf (t) = |{x ∈ R : |f(x)| > t}|

(where |·| denotes the Lebesgue measure) and the decreasing rearrangement of f is defined
by

f ∗(t) = inf{s > 0 : λf (s) ≤ t}, t > 0.

Also, f ∗∗ is the maximal function of f ∗, i.e.

f ∗∗(t) := Pf ∗(t),

where P is the Hardy operator on R+ := [0,∞) defined by Ph(t) := 1
t

∫ t

0
h(s) ds.

In the next lemmas, we collect some basic properties of the functional f ∗∗ − f ∗ that
will be useful in what follows.

Let us consider the cone

A =
{
f ∈ L1

loc(R+) positive, decreasing and such that f(∞) = 0
}
.

Given f ∈ A, let us define

Tf(t) :=
1

t

(
Pf
(1
t

)
− f

(1
t

))
, (4)
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For our later purpose, it is important to observe that, for every f ∈ L1
loc(R),

1

t

(
f ∗∗
(1
t

)
− f ∗

(1
t

))
= Tf ∗(t). (5)

Lemma 2.1 The operator T , defined by (4), is linear, satisfying

T : A→ A,

and such that

1) T ◦ T = Id.

2) T is self–adjoint.

In particular, every h ∈ A can be represented as Tf for some f ∈ A.

Proof: That Tf ∈ A if f ∈ A, is an easy consequence of the following formula relating
f ∗∗, f ∗ and λf .

f ∗∗(t)− f ∗(t) =
1

t

∫ ‖f‖∞

f∗(t)

λf (s) ds. (6)

To see (6), let [x]+ = max(x, 0) then for all y > 0 we have that∫ ∞

0

[f ∗(x)− y]+ dx =

∫ ∞

0

λ[f∗−y]+(s) ds =

∫ ∞

y

λf∗(s) ds =

∫ ‖f‖∞

y

λf (s) ds. (7)

Inserting y = f ∗(t) in (7) and taking in account that f ∗ is decreasing we get

t(f ∗∗(t)− f ∗(t)) =

∫ t

0

(f ∗(x)− f ∗(t)) dx =

∫ ∞

0

[f ∗(x)− f ∗(t)]+ dx =

∫ ‖f‖∞

f∗(t)

λf (s) ds.

To prove 1), we observe that a simple computation shows that Tf(t) is the derivative of

the function t→ t
∫ t−1

0
f(s) ds. Hence,∫ r−1

0

Tf(s) ds =

∫ r−1

0

∂

∂s

(
s

∫ s−1

0

f(u) du
)
ds =

1

r

∫ r

0

f(s) ds = Pf(r) (8)

and then,

T (Tf)(t) =
1

t

(
P (Tf)

(1
t

)
− Tf

(1
t

))
= Pf(t)− Pf(t) + f(t) = f(t).

Finally, to see 2), if f, g ∈ A, using (6), Fubini’s theorem and (8), we obtain∫ ∞

0

Tf(t)g(t) dt =

∫ ∞

0

(Pf(t)− f(t))g
(1

t

)1

t
dt =

∫ ∞

0

(∫ ‖f‖∞

f(t)

λf (s) ds
)
g
(1

t

) 1

t2
dt

=

∫ ‖f‖∞

0

λf (u)

(∫ ∞

λf (u)

g
(1

t

) 1

t2
dt

)
du

=

∫ ‖f‖∞

0

λf (u)

∫ 1/λf (u)

0

g(t) dt du

=

∫ ‖f‖∞

0

λf (u)

∫ 1/λf (u)

0

T (Tg)(t) dt du =

∫ ‖f‖∞

0

∫ λf (u)

0

(Tg)(t) dt du

=

∫ ∞

0

f(t)Tg(t) dt.
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Corollary 2.1 Sp(w) ⊂ Sp,∞(w).

Proof: Since t(f ∗∗(t)− f ∗(t)) is an increasing function of t, we have

t(f ∗∗(t)− f ∗(t))
(∫ ∞

t

w(s)

sp
ds
)1/p

≤
(∫ ∞

0

(f ∗∗(s)− f ∗(s))pw(s) ds
)1/p

,

and the result follows immediately.

Since, for any D ⊂ R with |D| = t,

‖χD‖Sp(w) = t
(∫ ∞

t

w(s)

sp
ds
)1/p

= ‖χD‖Sp,∞(w),

Sp(w) 6= {0} (resp. Sp,∞(w) 6= {0}) if and only if
∫∞

t
w(s)
sp ds < ∞. In particular, if

Sp(w) is non–trivial, it contains all characteristic functions of sets of finite measure. This
suggests the following definition:

Definition 2.1 The fundamental function ϕp,w of Sp(w) (resp. Sp,∞(w)) is given by

ϕp,w(t) := t

(∫ ∞

t

w(s)

sp
ds

)1/p

(t > 0).

Sometimes, it will be useful to get a description of ‖f‖Sp(w) in terms of the distribution
function of f , and, to this end, we need to work with the following operator, defined on
decreasing functions,

Ap(g)(t) :=

(∫∞
t
g(s) ds

g(t)

)p−1

ϕp,w(g(t))p. (9)

Lemma 2.2 If 0 < p <∞,

‖f‖Sp(w) =
(
p

∫ ‖f‖∞

0

Ap(λf )(t) dt
)1/p

.

Proof: Using (6) and Fubini’s theorem, we obtain

‖f‖p
Sp(w) =

∫ ∞

0

(f ∗∗(t)− f ∗(t))pw(t)dt =

∫ ∞

0

(∫ ‖f‖∞

f∗(t)

λf (s) ds
)pw(t)

tp
dt

= p

∫ ∞

0

(∫ ∞

f∗(t)

(∫ ‖f‖∞

u

λf (s) ds
)p−1

λf (u) du
)w(t)

tp
dt

= p

∫ ‖f‖∞

0

(∫ ∞

u

λf (s) ds
)p−1

λf (u)

(∫ ∞

λf (u)

w(s)

sp
ds

)
du

= p

∫ ‖f‖∞

0

(∫∞
u
λf (s) ds

λf (u)

)p−1

ϕp,w(λf (u))
p du.

The following class of weights will play an important role throughout the paper (cf. [1]).
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Definition 2.2 Given 0 < p <∞, we shall say that w satisfies the reverse Bp-condition,
w ∈ RBp, if there is a constant c > 0 such that∫ r

0

w(s) ds ≤ c rp

∫ ∞

r

w(s)

sp
ds (r > 0).

Via the change of variables t→ 1/t, one gets

w ∈ RBp ⇐⇒ tp−2w
(1
t

)
∈ Bp;

we recall that v ∈ Bp if

rp

∫ ∞

r

v(s)

sp
ds ≤ c

∫ r

0

v(s) ds.

Moreover ‖Pf‖Λp(v) ' ‖f‖Λp(v) for all f ∈ Λp(v) if and only if v ∈ Bp (see [1]).

We end this section by recalling the definition of the classical Lorentz spaces:

Λp(w) =
{
f ∈ L0 : ‖f‖Λp(w) =

(∫ ∞

0

f ∗(s)pw(s) ds
)1/p

<∞
}
.

and

Γp(w) =
{
f ∈ L0 : ‖f‖Γp(w) =

(∫ ∞

0

f ∗∗(s)pw(s)ds
)1/p

<∞
}
.

and the weak type space

Γ∞(w) =
{
f ∈ L0 : ‖f‖Γ∞(w) = sup

t>0
f ∗∗(t)w(t) <∞

}
.

3 Functional properties.

As said in the introduction, we study, in this section, several functional properties of the
spaces Sp(w) and Sp,∞(w). In particular, we consider the problem of characterizing when
Sp(w) (resp. Sp,∞(w)) satisfies one of the following properties:

1) to be a lattice,

2) to be a normed space.

Furthermore, we obtain a necessary condition for Sp(w) and Sp,∞(w) to be a linear
space.

We shall use the symbol h↘ to denote that h is decreasing on R+, and if a Lebesgue-
measurable function h is only defined on R+, we shall denote by the same letter h, the
extended function defined on R by h(x) = 0 if x < 0.
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3.1 The space Sp(w).

3.1.1 The Lattice property.

It is our aim in this section to investigate when Sp(w) has the lattice property, i.e. when
there is a constant c > 0, such that

g ∈ Sp(w) and ‖g‖Sp(w) ≤ c‖f‖Sp(w), whenever g ∈ L0, f ∈ Sp(w) and |g| ≤ |f | a.e.

Before formulating our main results, it will be convenient to present two preliminary ones:

Proposition 3.1 Let 0 < p <∞. If Sp(w) has the lattice property, then

1) ϕp,w is quasi–increasing, i.e. there is c > 0, such that

ϕp,w(x) ≤ cϕp,w(y), whenever x ≤ y.

2) Sp(w) ⊂ Γ∞(ϕp,w).

Proof: 1) Observe that if x ≤ y, then χ[0,x] ≤ χ[0,y], and therefore

ϕp,w(x) = ‖χ[0,x]‖Sp(w) ≤ c‖χ[0,y]‖Sp(w) = cϕp,w(y).

2) Given f ∈ Sp(w), and r > 0, let us consider f ∗ and f ∗χ[0,r). Since (f ∗)∗ = f ∗,
f ∗ ∈ Sp(w) and, obviously,

‖f ∗‖Sp(w) = ‖f‖Sp(w).

On the other hand, since f ∗χ[0,r) ≤ f ∗, and

‖f ∗χ[0,r)‖p
Sp(w) =

∫ r

0

(f ∗∗(s)− f ∗(s))pw(s) ds+
(∫ r

0

f ∗(s) ds
)p
∫ ∞

r

w(s)

sp
ds

≥
(1

r

∫ r

0

f ∗(s) ds
)p

ϕp,w(r)p,

we have, by the lattice property, that

‖f‖Γ∞(ϕp,w) = sup
r>0

(1

r

∫ r

0

f ∗(s) ds
)
ϕp,w(r) ≤ sup

r>0
‖f ∗χ[0,r)‖Sp(w) ≤ c‖f‖Sp(w).

Remark 3.1 A function ψ is called pseudoconcave if it is equivalent on R+ to a concave
strictly positive function. It is a well-known result (see, e.g. [15], Theorem 1.1 of Chapter
2) that ψ is pseudoconcave if and only if there is a constant c such that

ψ(s) ≤ cψ(t) and ψ(t)/t ≤ cψ(s)/s

whenever 0 < s < t <∞.
Thus, if ϕp,w is quasi–increasing, it follows readily that it is pseudoconcave and hence,

there is a decreasing function v such that

ϕp,w(t) ' ϕp,w(0+) +

∫ t

0

v(s) ds.
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Theorem 3.1 Let 0 < p < ∞. Then, Sp(w) has the lattice property if and only if there
is c > 0, such that, for every decreasing functions g1 ≤ g2,∫ ∞

0

Ap(g1)(t) dt ≤ c

∫ ∞

0

Ap(g2)(t) dt, (10)

where the operator Ap is defined as in (9).

Proof: Assume first that Sp(w) is a lattice. Let g1, g2 be decreasing such that g1 ≤ g2

and let f1 and f2 satisfy λf1 = g1 and λf2 = g2. Then λf1 ≤ λf2 , and hencef ∗1 ≤ f ∗2 . Now,
since Sp(w) is a lattice,

‖f1‖Sp(w) ≤ c‖f2‖Sp(w),

which, by Lemma 2.2, is equivalent to (10).
Conversely, if f, g ∈ L0 with |f | ≤ |g| and g ∈ Sp(w), we have, since λf ≤ λg,∫ ∞

0

Ap(λf )(t) dt ≤ c

∫ ∞

0

Ap(λg)(t) dt,

and Lemma 2.2 applies.

The case 1 ≤ p <∞.

Theorem 3.2 S1(w) has the lattice property if and only if ϕ1,w is quasi–increasing. More-
over, there is a decreasing weight v such that, if ϕ1,w(0+) = 0, S1(w) = Λ1(v), and if
ϕ1,w(0+) 6= 0, then S1(w) = Λ1(v) ∩ L∞.

Proof: By Proposition 3.1, if S1(w) has the lattice property, ϕ1,w is quasi–increasing.
Conversely, since

A1(g)(t) = ϕ1,w(g(t))

and ϕ1,w is quasi–increasing, Theorem 3.1 applies.
On the other hand, by Lemma 2.2,

‖f‖S1(w) =

∫ ‖f‖∞

0

ϕ1,w(λf (u)) du '
∫ ∞

0

f ∗(t)v(t) dt+ ϕ1,w(0+)‖f‖∞,

where, by Remark 3.1,

ϕ1,w(t) ' ϕ1,w(0+) +

∫ t

0

v(s) ds.

Let us see now that, for p > 1, the relevant information of Proposition 3.1 is contained
in the embedding Sp(w) ⊂ Γ∞(ϕp,w).

Theorem 3.3 Let 1 < p <∞. The following statements are equivalent:

1) Sp(w) has the lattice property.

2) Sp(w) ⊂ Γ∞(ϕp,w).

3) w ∈ RBp.
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4) Sp(w) = Γp(w).

Proof: 1) ⇒ 2) is Proposition 3.1–2).
2) ⇒ 3) We first claim that

sup
r>0

ϕp,w(r) sup
g↘

∫∞
0
g(s)χ[0,1/r](s) ds

(
∫∞

0
g(s)psp−2w

(
1
s

)
ds)1/p

<∞. (11)

Then, using (8), (5), and the change of variables t → 1
s
, we have, for every f ∗ ∈ A

(therefore for every f ∈ Sp(w)) and every r > 0,∫ r

0
f ∗(s) ds

‖f‖Sp(w)

=
r
∫ r−1

0
Tf ∗(s) ds( ∫∞

0

(
Tf ∗(s))psp−2w

(
1
s

)
ds
)1/p

.

Let c be the constant of the embedding in 2), that is,

c = sup
f 6≡0

sup
r>0

ϕp,w(r)f ∗∗(r)

‖f‖Sp(w)

.

Fix r > 0. Then, by our hypothesis and Lemma 2.1,

c ≥ ϕp,w(r) sup
f∈Sp(w)

1
r

∫ r

0
f ∗(s) ds

‖f‖Sp(w)

= ϕp,w(r) sup
h∈A

∫∞
0
h(s)χ[0,1/r](s) ds

(
∫∞

0
h(s)psp−2w

(
1
s

)
ds)1/p

.

Now, in order to complete the proof of (11), we only have to consider the situation when
g is a constant function (since every g ↘ can be represented as a sum of h ∈ A and
a constant). But then, we obviously have

ϕp,w(r) sup
g≡C

∫∞
0
g(s)χ[0,1/r](s) ds

(
∫∞

0
g(s)sp−2w

(
1
s

)
ds)1/p

=
(∫∞

r
w(s)
sp ds∫∞

0
w(s)
sp ds

)1/p

≤ 1,

and (11) follows.
On the other hand, a result of Sawyer (see [23] Theorem 1) ensures that

sup
g↘

∫∞
0
g(s)χ[0,1/r](s) ds

(
∫∞

0
g(s)psp−2w

(
1
s

)
ds)1/p

'
(∫ 1/r

0

( t∫ t

0
sp−2w

(
1
s

)
ds

)p′−1

dt
)1/p′

,

where as usual 1/p+ 1/p′ = 1.
Summarizing, we have proved that

ϕp,w(r)
(∫ 1/r

0

( t∫ t

0
sp−2w

(
1
s

)
ds

)p′−1

dt
)1/p′

≤ c,

i.e.

1

r

(∫ ∞

1/r

w(s)

sp
ds
)1/p(∫ r

0

( t∫ t

0
sp−2w

(
1
s

)
ds

)p′−1

dt
)1/p′

≤ c, r ∈ (0,∞).

Finally, since ∫ ∞

1/r

w(s)

sp
ds =

∫ r

0

sp−2w(
1

s
) ds,

11



we get that

1

r

(∫ r

0

sp−2w
(1
s

)
ds
)1/p(∫ r

0

( t∫ t

0
sp−2w

(
1
s

)
ds

)p′−1

dt
)1/p′

≤ c,

which, by [23], Theorem 4, is equivalent to sp−2w(1
s
) ∈ Bp; that means w ∈ RBp.

3) ⇒ 4) Since w ∈ RBp ⇔ sp−2w(1
s
) ∈ Bp and Tf ∗ is decreasing, we get(∫ ∞

0

(f ∗∗(s)− f ∗(s))pw(s) ds
)1/p

=
(∫ ∞

0

(
Tf ∗(s))psp−2w(

1

s
) ds
)1/p

'
(∫ ∞

0

(1

s

∫ s

0

Tf ∗(u) du
)p

sp−2w
(1
s

)
ds
)1/p

,

and, by (8),(∫ ∞

0

(1

s

∫ s

0

Tf ∗(u) du
)p

sp−2w
(1
s

)
ds
)1/p

=
(∫ ∞

0

(∫ 1/s

0

f ∗(u) du
)p

sp−2w
(1
s

)
ds
)1/p

=
(∫ ∞

0

f ∗∗(s)pw(s) ds
)1/p

= ‖f‖Γp(w).

4) ⇒ 1) is obvious.

The case 0 < p < 1.

In this case, the embedding Sp(w) ⊂ Γ∞(ϕp,w) does not give us any relevant infor-
mation about the lattice property of Sp(w), since, actually, the above embedding follows
from the fact that ϕp,w is quasi–increasing. To see this, let ŵ(s) = sp−2w(1/s), and let us
write V (r) =

∫ r

0
ŵ(s) ds. Then, it is known (see [9] Theorem 4.2) that,

Λp(ŵ) ⊂ Γ∞(V 1/p).

Using now the monotonicity of Tf ∗ and (8), we have

‖f‖Sp(w) ≥ sup
r

(1

r

∫ r

0

Tf ∗(t) dt
)(∫ r

0

ŵ(t) dt
)1/p

= sup
r

(∫ 1/r

0

f ∗(t) dt
)(∫ r

0

ŵ(t) dt
)1/p

= sup
r

(1

r

∫ r

0

f ∗(t) dt
)
r
(∫ ∞

r

w(t)

tp
dt
)1/p

= ‖f‖Γ∞(ϕp,w).

Lemma 3.1 Let us assume that Sp(w) has the lattice property. Then,

‖f‖Sp(w) �

(∫ ‖f‖∞

0

up−1ϕp,w(λf (u))
pdu

)1/p

.

12



Proof: Let f ∈ Sp(w). Let Ij = (2j, 2j+1] and let us define

h1(s) = λf (2
j+1), s ∈ Ij and h2(s) = λf (2

j), s ∈ Ij.

Then, if f1 is such that λf1(s) = h1(s), since λf1(s) ≤ λf (s) implies f ∗1 ≤ f ∗, we have

f1 ∈ Sp(w).

Now h2(s) = h1(s/2) and hence if

f2(t) = λh2(t) = |{s : h2(s) > t}| = |{s : h1(s/2) > t}| = 2|{s : h1(s) > t}| = 2f1(t),

we get
f2 ∈ Sp(w).

Moreover, since Sp(w) is a lattice,

‖f‖Sp(w) ' ‖f1‖Sp(w) ' ‖f2‖Sp(w).

Now, by Lemma 2.2, and since 0 < p < 1,

‖f2‖p
Sp(w) '

∫ ‖f2‖∞

0

( λf2(u)∫∞
u
λf2(s) ds

)1−p

ϕp,w(λf2(u))
p du

≤
∑
j∈Z

∫ 2j+1

2j

( λf (2
j)

λf (2j)
∫ 2j+1

u
ds

)1−p

ϕp,w(λf (2
j))pχ[0,‖f2‖∞](u) du

'
∑
j∈Z

2jpϕp,w(λf (2
j))pχ[0,‖f2‖∞](2

j) �
∫ ‖f‖∞

0

up−1ϕp,w(λf (u))
pdu.

Theorem 3.4 Let w be a positive and locally integrable weight. Then, Sp(w) has the
lattice property if and only if w ∈ RBp.

Proof: Using the same argument that in the proof of part 3) ⇒ 4) of Theorem 3.3, we
get that if w ∈ RBp then

Sp(w) = Γp(w),

and Sp(w) has the lattice property.
Conversely, if Sp(w) has the lattice property, we have, using that w is locally integrable,

that ϕp,w(0+) = 0. To see this, observe that if ϕp,w(0+) = λ > 0, then

λp

t
� ϕp,w(t)

t

p

= tp−1

∫ ∞

t

w(s)

sp
ds,

where the first inequality follows from the fact that ϕp,w is quasi–increasing. Therefore,∫ r

0

w(s) ds+ rp

∫ ∞

r

w(s)

sp
ds '

∫ r

0

tp−1

∫ ∞

t

w(s)

sp
ds dt �

∫ r

0

λp

t
dt = ∞.

By Remark 3.1, we know that there is a decreasing weight v such that

ϕp,w(t) '
∫ t

0

v(s) ds.

13



thus, using Lemma 3.1,

‖f‖Sp(w) �
(∫ ∞

0

up−1ϕp,w(λf (u))
pdu

)1/p

'

(∫ ∞

0

up−1
(∫ λf (u)

0

v(s) ds
)p

du

)1/p

,

or, equivalently,
Λp(V p−1v) ⊂ Sp(w),

where V p−1(r) =
( ∫ r

0
v(s) ds

)p−1
.

Let us now consider the function

F (x) =
(
Qχ[0,r)(x)

)1/p−1

=
(

log
r

x

)1/p−1

χ[0,r)(x),

where Qf(x) :=
∫∞

x
f(s)/s ds. Since

(QF (x))p ' Qχ[0,r)(x),

we get

‖QF‖p
Λp(V p−1v) =

∫ ∞

0

(QF (x))pV p−1(x)v(x) dx '
∫ ∞

0

Qχ[0,r)(x)V
p−1(x)v(x)dx

=

∫ ∞

0

χ[0,r)(x)P (V p−1v)(x)dx '
∫ r

0

V (x)p

x
dx

'
∫ r

0

xp−1

∫ ∞

x

w(s)

sp
dsdx '

∫ r

0

w + rp

∫ ∞

r

w(s)

sp
ds <∞.

On the other hand, since F = F ∗, we have

(QF )∗∗ −QF = P (QF )−QF = (P +Q)F −QF = PF,

which implies that

‖F‖Λp(w) ≤ ‖PF‖Λp(w) = ‖QF‖Sp(w) � ‖QF‖Λp(V p−1v),

i.e., there is a constant A ≥ 1 such that∫ r

0

(
log

r

x

)1−p
w(x) dx ≤ A

(∫ r

0

w(s) ds+ rp

∫ ∞

r

w(s)

sp
ds
)
.

Now, taking c = exp(−(1 + A)1/(1−p)) we get (log r
x
)1−p − A ≥ 1 if 0 < x < rc, thus∫ rc

0

w(x) dx ≤
∫ rc

0

((
log

r

x

)1−p − A
)
w(x) dx ≤ A

(∫ r

cr

w(s) ds+ rp

∫ ∞

r

w(s)

sp
ds
)

� rp

∫ ∞

cr

w(s)

sp
ds+ rp

∫ ∞

r

w(s)

sp
ds � (cr)p

∫ ∞

cr

w(s)

sp
ds,

i.e. w ∈ RBp.

Proposition 3.2 The space Sp(1/t) does not have the lattice property if 0 < p < 1.

14



Proof: By Proposition 3.1, Sp(1/t) ⊂ Γp,∞(1) = L∞; and if Sp(1/t) had the lattice
property, by Lemma 3.1 also L∞ ⊂ Sp(1/t).

Let 1 < α < 1/p, and consider the decreasing function

h(t) =
1

t(1− log t)α
χ[0,e−1].

Then, the function

f(t) =
1

t

(
Ph
(1
t

)
− h
(1
t

))
is also decreasing and belongs to L∞, since

‖f‖∞ = lim
t→0+

f(t) = lim
t→∞

t(Ph(t)− h(t)) = lim
t→∞

∫ ∞

h(t)

λh(t) =

∫ ∞

0

λh(t) dt

=

∫ ∞

0

h(t) dt <∞.

However, f 6∈ Sp(1/t); since, by Lemma 2.1,

h(t) =
1

t

(
Pf
(1
t

)
− f

(1
t

))
.

Thus,

‖f‖p
Sp(1/t) =

∫ e−1

0

( 1

t(1− ln t)α

)p
tp−1 dt = ∞.

3.1.2 Normability

Now, we consider the problem of characterizing when Sp(w) is a normed space, i.e. when
there is a norm ‖ · ‖ on Sp(w) and positive constants c1 and c2 such that

c1‖f‖ ≤ ‖f‖Sp(w) ≤ c2‖f‖, f ∈ Sp(w).

Our main result states that, for p ≥ 1, normability is equivalent to the lattice property
and hence, Theorem 3.2 and 3.3 can be used to describe the spaces Sp(w).

To this end, let us introduce some notation that we shall use later. Given r ∈ R, we
denote by τr the translation operator

τrf(x) := f(x+ r), x ∈ R,

and the symmetric operator is defined by

f̃(x) := f(−x).

Notice that
(τrf)∗ = (f̃)∗ = f ∗.

Lemma 3.2 If Sp(w) is a quasi–normed space, then ϕp,w is quasi-increasing.
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Proof: Let 0 < y ≤ x and consider the functions χ[0,x] and χ[0,x+y]. Then,

ϕp,w(y) = ‖χ[0,x+y] − χ[0,x]‖Sp(w) ≤ c
(
ϕp,w(x+ y) + ϕp,w(x)

)
,

and since

ϕp,w(x+ y) = (x+ y)
(∫ ∞

x+y

w(s)

sp
ds
)1/p

≤ 2x
(∫ ∞

x

w(s)

sp
ds
)1/p

= 2ϕp,w(x),

we have
ϕp,w(y) ≤ cϕp,w(x).

Theorem 3.5 Let p ≥ 1, the following statements are equivalent:

1) Sp(w) is a normed space.

2) Sp(w) is a quasi–normed space.

3) Sp(w) has the lattice property, and then

(a) If p = 1, there is a decreasing weight v such that, S1(w) = Λ1(v) if ϕ1,w(0+) =
0, and , S1(w) = Λ1(v) ∩ L∞ if ϕ1,w(0+) 6= 0.

(b) If p > 1
Sp(w) = Γp(w).

Hence, Sp(w) is also complete.

Proof: Obviously 1) ⇒ 2) and 3) ⇒ 1).
2) ⇒ 3) If p = 1, by the previous lemma, ϕ1,w is quasi–increasing, and then Theorem 3.2
applies.

If p > 1, as claimed in Theorem 3.3, we need to prove the embedding

Sp(w) ⊂ Γ∞(ϕp,w).

Given f ∈ Sp(w) and r > 0, let

f ∗r (t) = f ∗(r)χ[0,r)(t) + f ∗(t)χ[r,∞)(t) and f ∗,r(t) = (f ∗(t)− f ∗(r))χ[0,r)(t).

Since (f ∗r )∗(t) = f ∗(r)χ[0,r)(t) + f ∗(t)χ[r,∞)(t), a simple computation shows that

(f ∗r )∗∗(t)− (f ∗r )∗(t) =
(
f ∗∗(t)− f ∗(t)− r

t
(f ∗∗(r)− f ∗(r))

)
χ[r,∞)(t).

Thus,

‖f ∗r ‖Sp(w) ≤
(∫ ∞

r

(
f ∗∗(t)− f ∗(t)

)p
w(t) dt

)1/p

≤ ‖f‖Sp(w).

Also, since (f ∗,r)∗(t) =
(
f ∗(t)− f ∗(r)

)
χ[0,r)(t), we get that

(f ∗,r)∗∗(t)− (f ∗,r)∗(t) =
(
f ∗∗(t)− f ∗(t)

)
χ[0,r)(t) +

r

t

(
f ∗∗(r)− f ∗(r)

)
χ[r,∞)(t).
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And, using that t(f ∗∗(t)− f ∗(t)) is increasing,

‖f ∗,r‖Sp(w) =
(∫ r

0

(
f ∗∗(s)− f ∗(s)

)p
w(s) ds+

(
(f ∗∗(r)− f ∗(r))r

)p ∫ ∞

t

w(s)

sp
ds
)1/p

≤
(∫ ∞

0

(f ∗∗(s)− f ∗(s))pw(s) ds
)1/p

= ‖f‖Sp(w).

On the other hand, since Sp(w) is a quasi–normed space, f̃ ∗ − τr(f
∗
r ) ∈ Sp(w) with

‖f̃ ∗ − τr(f
∗
r )‖Sp(w) ≤ 2c‖f‖Sp(w),

and the function
H =

(
f̃ ∗ − τr(f

∗
r )− f̃ ∗,r

)
belongs to Sp(w) with

‖H‖Sp(w) ≤ c(c+ 1)‖f‖Sp(w).

But, since

(f̃ ∗ − τr(f
∗
r )− f̃ ∗,r)(t) =


−f ∗(t+ r) if t ≥ 0,

0 if − r < t < 0,
f ∗(−t) if t ≤ −r,

we have λH = 2λf∗χ[r,∞)
, and using Lemma 2.2 and the fact that ϕp,w is increasing, we

deduce that f ∗χ[r,∞) ∈ Sp(w). Therefore, f ∗χ[0,r] = f ∗ − f ∗χ[r,∞) ∈ Sp(w) with

‖f ∗χ[0,r]‖Sp(w) ≤ c2(c+ 1)‖f‖Sp(w),

and we now finish the proof as in Proposition 3.1−2).

Proposition 3.3 Let p > 0, and suppose that Sp(w) is a Banach space. Then p ≥ 1.

Proof: Assume that 0 < p < 1. As in [7], we are going to find a sequence of functions
{fk}, satisfying

‖fk‖Sp(w) = 1 but
1

N

∥∥∥ N∑
k=1

fk

∥∥∥
Sp(w)

→
N→∞

∞.

Choose a decreasing sequence {rk}k such that∫ ∞

1
rk

w(s)

sp
ds = 2−pk.

Let fk = 2krkχ[0,1/rk]. Then

‖fk‖p
Sp(w) = (2krk)

p 1

rp
k

∫ ∞

1
rk

w(s)

sp
ds = 1.
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But, if for N fixed, we let FN = 1
N

∑N
k=1 fk, an easy computation shows that

‖FN‖Sp(w) =
1

N

(N−1∑
k=1

( k∑
j=1

2j
)p
∫ 1

rk+1

1
rk

w(s)

sp
ds+

( N∑
j=1

2j
)p
∫ ∞

1
rN

w(s)

sp
ds
)1/p

=
1

N

{N−1∑
k=1

( k∑
j=1

2j
)p(∫ ∞

1
rk

w(s)

sp
ds−

∫ ∞

1
rk+1

w(s)

sp
ds
)

+
( N∑

j=1

2j
)p
∫ ∞

1
rN

w(s)

sp
ds
}1/p

≥ 1

N

( N∑
k=1

(
2k+1 − 2

)p(
2−kp − 2−(k+1)p

))1/p

≥ cp
1

N
N1/p →

N→∞
∞.

3.1.3 Linear property

In general, the linearity of Sp(w) does not imply that ϕp,w is quasi–increasing. Effectively
if w(t) = 1

t
χ[0,1] then

S1(w) = L∞ with ‖f‖S1(w) = ‖f‖L∞ − ‖f ∗χ[0,1]‖L1 and ϕ1,w(t) = 1− t, (0 ≤ t ≤ 1).

To prove this claim, given ε > 0, write∫ 1

ε

(1

t

∫ t

0

f ∗(s) ds− f ∗(t)
)dt
t

=

∫ 1

0

f ∗(s)
(∫ 1

max(ε,s)

dt

t2

)
ds−

∫ 1

ε

f ∗(t)
dt

t

=
1

ε

∫ ε

0

f ∗(s)ds−
∫ 1

ε

f ∗(s)ds.

Hence

‖f‖S1(w) = lim
ε→0

(
1

ε

∫ ε

0

f ∗(s)ds−
∫ 1

ε

f ∗(s)ds

)
= ‖f‖L∞ − ‖f ∗χ[0,1]‖L1 .

Theorem 3.6 Let 0 < p < ∞. If Sp(w) is a linear space, then there exist positive
constants α, β such that

ϕp,w(r) � ϕp,w(2r) for all r ≤ α and r ≥ β. (12)

Proof: Suppose that (12) is not satisfied, then, following Theorem 1.4 of [11], we can find
a decreasing function h ∈ A such that h ∈ Λp(sp−2w(1/s)) and h(t/2) 6∈ Λp(sp−2w(1/s)).

Let f = Th. Using (8), it follows readily that(∫ ∞

0

(f ∗∗(s)− f ∗(s))pw(s) ds
)1/p

=
(∫ ∞

0

h(s)psp−2w(
1

s
) ds
)1/p

and hence, f ∈ Sp(w). On the other hand,(∫ ∞

0

(f ∗∗(2s)− f ∗(2s))pw(s) ds
)1/p

=
(∫ ∞

0

h(
s

2
)psp−2w

(1
s

)
ds
)1/p

,
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and consequently, f(2t) 6∈ Sp(w).

Let F (x) = f̃(2x) + f(x), then

λF (t) = λf (t)/2 + λf (t) = 3/2λf (t)

and by Lemma 2.2,

‖F‖p
Sp(w) '

∫ ‖F‖∞

0

(∫∞
u
λF (s) ds

λF (u)

)p−1

ϕp,w(λF (u))p du

=

∫ ‖f‖∞

0

(∫∞
u
λf (s) ds

λf (u)

)p−1(3λf (u)

2

)p
∫ ∞

3λf (u)

2

w(s)

sp
ds du

≤
(3

2

)p
∫ ‖f‖∞

0

(∫∞
u
λf (s) ds

λf (u)

)p−1

λf (u)
p

∫ ∞

λf (u)

w(s)

sp
ds du

' ‖f‖p
Sp(w).

Thus F ∈ Sp(w), and since Sp(w) is linear, f̃(2t) ∈ Sp(w) or equivalently f(2t) ∈ Sp(w)
which is not possible.

Remark 3.2 The converse in the above theorem is not true, since it is known (see [2]
and [17, Theorem 3.1]) that if p > 1, Sp(1/t) is not a linear space, while, however,
ϕp,1/t(r) = (1/p)1/p satisfies condition (12).

3.2 The space Sp,∞(w)

In this section we describe those weights w, for which Sp,∞(w) has the lattice property
and is a normed space.

The following lemma can be proved in the same way as Proposition 3.1.

Lemma 3.3 Let 0 < p <∞. If Sp,∞(w) has the lattice property, then

1) ϕp,w is quasi–increasing.

2) Sp,∞(w) ⊂ Γ∞(ϕp,w).

In particular, since the converse embedding always holds, we get that

Sp,∞(w) = Γ∞(ϕp,w).

Theorem 3.7 Let 0 < p <∞. The following are equivalent:

1) Sp,∞(w) has the lattice property.

2) Sp,∞(w) ⊂ Γ∞(ϕp,w).

3) w ∈ RBp.

4) Sp,∞(w) = Γ∞(ϕp,w).

19



Proof: 1) ⇒ 2) is Lemma 3.3.
2) ⇒ 3) By hypothesis,

ϕp,w(r)

r
sup

f∈Sp,∞(w)

∫ r

0
f ∗(s)ds

supt>0(f
∗∗(t)− f ∗(t))ϕp,w(t)

≤ c.

Since

sup
t>0

(f ∗∗(t)− f ∗(t))ϕp,w(t) = sup
s>0

1

s

(
f ∗∗
(1
s

)
− f ∗

(1
s

))( ∫ s

0

up−2w
(1
u

)
du
)1/p

= sup
s>0

Tf ∗(s)
(∫ s

0

up−2w
(1
u

)
du
)1/p

,

we can write the above expression as

ϕp,w(r)

r
sup

f∈Sp,∞(w)

r
∫ r−1

0
Tf ∗(s) ds

sups>0 Tf
∗(s)(

∫ s

0
up−2w

(
1
u

)
du)1/p

≤ c.

Since by Lemma 2.1 every h ∈ A can be represented as Tf for some f ∈ A.

ϕp,w

(1
r

)
sup
g∈A

∫ r

0
g(s) ds

sups>0 g(s)(
∫ s

0
up−2w

(
1
u

)
du)1/p

≤ c. (13)

Since if g = c is a constant function, the above expression is less than or equal to one,
and since every h ↘ can be represented as a sum of g ∈ A and a constant, we can take
the supremum in (13) over all decreasing functions.

On the other hand, Theorem 3.3 of [9] states that

sup
h↘

∫ r

0
h(s) ds

sups>0 h(s)
( ∫ s

0
up−2w

(
1
u

)
du
)1/p

=

∫ r

0

dx

(
∫ x

0
up−2w

(
1
u

)
du)1/p

.

Hence, we have proved that∫ r

0

dx

(
∫ x

0
up−2w

(
1
u

)
du)1/p

≤ c

ϕp,w(1
r
)1/p

=
cr

(
∫ r

0
up−2w( 1

u
) du)1/p

,

which is equivalent to up−2w( 1
u
) ∈ Bp (see [24] Theorem 2.8).

3) ⇒ 4) Since by hypothesis sp−2w(1
s
) ∈ Bp, Theorem, 3.1 of [24] states that the

Hardy operator is bounded on Γ∞(v), where v(r) =
( ∫ r

0
sp−2w(1

s
) ds
)1/p

, and now since
1
s
(f ∗∗(1

s
)− f ∗(1

s
)) is decreasing, the result follows in the same way as Theorem 3.3.

4) ⇒ 1) is evident.

The following result is the counterpart of Theorem 3.5 for Sp,∞(w) spaces and can be
proved in the same way.

Theorem 3.8 Let 0 < p <∞, the following statements are equivalent

1) Sp,∞(w) is a quasi–normed space.
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2) Sp,∞(w) is a normed space.

3) w ∈ RBp.

4) Sp,∞(w) = Γ∞(ϕp,w).

And thus, in any of these cases, Sp,∞(w) is also complete.

We end this section with an analogue of Theorem 3.6 whose proof is the same using
now as starting point Theorem 1.6 of [11].

Theorem 3.9 Let 0 < p < ∞. If Sp,∞(w) is a linear space, then there exist positive
constants α, β such that

ϕp,w(r) � ϕp,w(2r) for all r ≤ α and r ≥ β.

4 The associate space

In this section we describe the associate space of Sp(w) and Sp,∞(w).

Definition 4.1

Sp(w)′ =
{
g : sup

f∈Sp(w)

∫ ∞

0

f(t)g(t) dt

‖f‖Sp(w)

<∞
}
. (14)

(Sp,∞(w)′ is defined in the same way considering in (14) Sp,∞(w) instead of Sp(w)).

Obviously, Sp(w)′ is a normed space, and

‖g‖Sp(w)′ = sup
f∈A

∫ ∞

0

f(t)g∗(t) dt

‖Tf‖Λp(sp−2w(1/s))

<∞.

Theorem 4.1 Let 0 < p <∞ and 1/p+ 1/p′ = 1.

1) If p > 1 and
∫∞

0
w(s)
sp ds < +∞, then Sp(w)′ = Γp′(v) ∩ L∞, where

v(t) =
w(t)

tp
( ∫∞

t
w(s)
sp ds

)p′
.

and if
∫∞

0
w(s)
sp ds = +∞, then Sp(w)′ = Γp′(v), with v as before.

2) If p ≤ 1,

‖g‖Sp(w)′ ' sup
t>0

g∗∗(t)( ∫∞
t

w(s)
sp ds

)1/p
.
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Proof: First of all, notice that if g∗(∞) 6= 0 then g 6∈ Sp(w)′ since, on the contrary, for
all r > 0,

‖g‖Sp(w)′ ≥

∫ r

0

g∗(t) dt

‖Tχ[0,r]‖Λp(sp−2w(1/s))

≥ rg∗(∞)

r
(∫ ∞

r

w(s)

sp
ds
)1/p

→
r→∞

∞.

Then, by Lemma 2.1,

‖g‖Sp(w)′ = sup
f∈A

∫ ∞

0

f(t)g∗(t) dt

‖Tf‖Λp(sp−2w(1/s))

= sup
f∈A

∫ ∞

0

Tf(t)Tg∗(t) dt

‖Tf‖Λp(sp−2w(1/s))

= sup
h∈A

∫ ∞

0

h(t)Tg∗(t) dt

‖h‖Λp(sp−2w(1/s))

' sup
h↘

∫ ∞

0

h(t)Tg∗(t) dt

‖h‖Λp(sp−2w(1/s))

,

where in the last equivalence we have used the fact that the supremum over all nonnegative
and decreasing functions is attained for

h(x) =
(∫ ∞

x

Tg∗(t)∫ t

0
sp−2w(1/s) ds

dt
)p′−1

if 1 < p <∞

(see [23]) and on characteristic decreasing functions χ[0,r] if 0 < p ≤ 1 (see [10]).
Then, if p > 1 (see [23]),

‖g‖Sp(w)′ '

∫ ∞

0

(Tg)∗∗(t)p′ tp
′
tp−2w(1/t)( ∫ t

0
sp−2w(1/s) ds

)p′


1/p′

+

(∫ ∞

0

sp−2w(1/s) ds

)−1/p ∫ ∞

0

Tg(t) dt,

which, by (8), is equivalent to

‖g‖Sp(w)′ '

∫ ∞

0

g∗∗(t)p′ w(t)( ∫∞
t

w(s)
sp ds

)p′
dt

tp


1/p′

+

(∫ ∞

0

w(s)

sp
ds

)−1/p

‖g‖∞.

and 1) follows. For the case p ≤ 1, we apply the Carro–Soria duality result (see [10]), to
obtain

‖g‖Sp(w)′ ' sup
t>0

(Tg)∗∗(t)
t( ∫ t

0
sp−2w(1/s) ds

)1/p
' sup

t>0

g∗∗(t)( ∫∞
t

w(s)
sp ds

)1/p
.

Theorem 4.2 Let w be a weight, and let us define

u(t) =
(∫ t

0

sp−2w
(1
s

)
ds
)−1/p

.

Then
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1. If u is locally integrable and
∫∞

0
w(s)
sp ds < +∞, then Sp,∞(w)′ = Λ1(Tu) ∩ L∞.

2. If u is locally integrable and
∫∞

0
w(s)
sp ds = +∞, then Sp,∞(w)′ = Λ1(Tu).

3. If u is not locally integrable, then Sp,∞(w)′ = {0}.

Proof: First of all, notice that using the same argument as in the previous theorem, it is
easy to see that if g∗(∞) 6= 0 then g 6∈ Sp,∞(w)′, and again, by Lemma 2.1,

‖g‖Sp,∞(w)′ = sup
f∈A

∫ ∞

0

Tf(t)Tg∗(t) dt

sup
t>0

Tf(t)
(∫ t

0

sp−2w
(1
s

)
ds
)1/p

= sup
h∈A

∫ ∞

0

h(t)Tg∗(t) dt

sup
t>0

h(t)
(∫ t

0

sp−2w
(1
s

)
ds
)1/p

.

Obviously,

‖g‖Sp,∞(w)′ ≤ sup
h↘

∫ ∞

0

h(t)Tg∗(t) dt

sup
t>0

h(t)
(∫ t

0

sp−2w
(1
s

)
ds
)1/p

≤
∫ ∞

0

Tg∗(t)u(t) dt.

Conversely, given R > 0, let
uR(t) = u(t)χ[0,R](t).

Now, if u is locally integrable, we get that uR ∈ A, and then

‖g‖Sp,∞(w)′ ≥ sup
R>0

∫ ∞

0

uR(t)Tg∗(t) dt

sup
t>0

uR(t)
(∫ t

0

sp−2w
(1
s

)
ds
)1/p

=

∫ ∞

0

Tg∗(t)u(t) dt,

and, by Lemma 2.1∫ ∞

0

Tg∗(t)u(t) dt =

∫ ∞

0

Tg∗(t)
(
u(t)− u(∞)

)
dt+ u(∞)

∫ ∞

0

Tg∗(t) dt

=

∫ ∞

0

g∗(t)T
(
u− u(∞)

)
(t) dt+ u(∞)‖g‖S1(1/t)

=

∫ ∞

0

g∗(t)Tu(t) dt+ u(∞)‖g‖S1(1/t)

= ‖g‖Λ1(v) + u(∞)‖g‖∞,

which proves 1 and 2.
To see 3, given 0 < R < 1, let us consider the function

uR(t) = u(R)χ[0,R](t) + u(t)χ[R,1/R](t).

Since uR ∈ A,

‖g‖Sp,∞(w)′ ≥ sup
0<R<1

u(R)

∫ R

0

Tg∗(t) dt+

∫ 1/R

R

u(t)Tg∗(t) dt

sup
t>0

uR(t)
(∫ t

0

sp−2w
(1
s

)
ds
)1/p

≥ sup
0<R<1

∫ 1/R

R

u(t)Tg∗(t) dt =

∫ ∞

0

Tg∗(t)u(t) dt,
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and, since we are assuming that u is not locally integrable, the last integral is finite if and
only if g = 0.
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