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Illumination varies greatly both  across parts of a natural scene  and  as a function of time, whereas the spectral 
reflectance function of surfaces remains more  stable and  is of much greater relevance when searching for spe- 

cific targets. This  study investigates the  functional properties of postreceptoral opponent-channel responses, in 

particular regarding their stability against spatial and  temporal variation in illumination. We studied images 
of natural scenes obtained in UK and  Uganda with digital cameras calibrated to produce estimated L-, M-, and 

S-cone  responses of trichromatic primates (human) and  birds (starling). For  both  primates and  birds we cal- 

culated  luminance  and   red–green  opponent  (RG)  responses.  We  also   calculated  a  primate blue–yellow- 
opponent (BY) response. The BY response varies with changes in illumination, both  across time and  across the 

image, rendering this factor less  invariant. The RG response is much more  stable than the  BY response across 

such  changes in illumination for primates, less  so for birds. These differences between species are  due  to the 
greater separation of bird  L and  M cones in wavelength and  the  narrower bandwidth of the cone action spectra. 

This  greater separation also produces a larger chromatic signal for a given  change in spectral reflectance. Thus 

bird  vision  seems to suffer a greater degree of spatiotemporal “clutter” than primate vision,  but  also  enhances 
differences between targets and  background. Therefore, there may  be a trade-off between the  degree of chro- 

matic clutter in a visual system versus the degree of chromatic difference between a target and  its background. 

Primate and  bird  visual systems have found  different solutions to this trade-off. ©  2005  Optical Society  of 
America 

 
 
 

1. INTRODUCTION 

The  spectrum of light reaching an  observer’s eye from  an 

object is determined not just by the  reflectance function of 

the  object’s material but  also  by the  spectral properties of 

the  illuminant. The  illuminant typically varies markedly 

in intensity over time and  space  and  this is especially true 

of objects   of high   three-dimensional spatial complexity, 

such  as the  foliage  of a tree. An important task of vision  is 

therefore to be able  to detect the  invariant material prop- 

erties of the  surface (e.g.,  the  reflectance function) while 

being  invariant to the  highly variable illumination. It has 

been   suggested that  opponent-color vision   might  fulfill 

this task.1,2
 

The  work   of DeValois and   his  colleagues3–5  has   pro- 

vided  ample evidence that the  postreceptoral channels in 

monkeys consist of three opponent channels, which  can be 

thought of as  encoding the  red–green (RG),  blue–yellow 

(BY), and  light–dark (Lum)  aspects of a  scene.  There is 

also  ample evidence that human perception of color uses 

RG and  BY opponent channels, as  originally proposed by 

Hering.6   The   BY  (or  blue–green) opponent system  is 

found  in  many mammalian orders,7 but  the  paradoxical 

RG system has  much more  limited mammalian distribu- 

tion,  mostly in old-world monkeys and  apes. The  paradox 

is that the  amount of RG outflow  from  the  monkey retina 

is immensely greater than the  BY,8,9  and  yet  RG changes 

within the   natural world   are   relatively rare.10  In   the 

present paper, we explore the  manner in  which  such  op- 

ponent channels might sample natural images containing 

real  noise  such  as shadows and  specularities. We also  ex- 

plore  how  the  opponent channels respond in  an  environ- 

ment in  which  light changes naturally  in  intensity and 



 

 

 
“color” over  time as  a result of changes in  solar position 

and  atmospheric properties. 

Color vision  is proposed as a means of removing the 

camouflaging effects  of shadows in the  belief  that directly 

illuminated and  shadowed parts of an  object  will  differ 

only  in the  intensity of illuminant.11  However, shadowed 

areas do not  differ  solely  in the  intensity of illumination. 

The  “color” of the  natural illuminant is  not  constant. It 

varies over  the  time course of a day,  primarily in the  BY 

direction  of  color   space,12  although  the   light  filtering 

though a  tree canopy also  varies in  its  greenness.13  The 

light from  a cloudy  sky is bluer than direct sunlight. This 

means that on a sunny day,  any  shadowed area receives 

scattered light from  the  blue  sky,  which  has  a higher pro- 

portion of short wavelengths than direct sunlight. Shad- 

ows  are  therefore blue  in  comparison with areas of the 

same material lit  by  direct sunshine. Even on  a  cloudy 

day,  it has  been  shown that the  area of sky corresponding 

to  the  position of the  sun  is  more  yellow  than sky  more 

distant  from   the   sun’s   location,14   so   similar,  though 

smaller, effects  may  be expected on cloudy  days  as  well. 

Furthermore, the  shadowed areas may  receive illumina- 

tion  locally  reflected from  other objects  and, in  natural 

scenes, those other objects  are  likely  to be green foliage. 

The   BY  system may   therefore not   be  invariant  across 

shadow boundaries.15,16 If the  visual system is attempting 

to extract reflectance, and  therefore changes due  to illu- 

mination are  viewed  as  noise,  the  YB opponent system 

will  show  substantial illumination noise  both  as  a  func- 

tion  of space  and  time. 

The  purpose of this paper is  to  explore these issues 

more  formally. Specifically, does  the  RG opponent system 

provide a means of encoding the  spectral properties of ob- 

jects  such  as edible  fruit in an  invariant manner, over the 

course  of  a  day,   during  which   time  illumination  will 

change markedly? And  how  badly  affected is  the  BY op- 

ponent system by shadows and  daily  changes in the  illu- 

minant? This  proposal for a RG system as adapted to 

minimize illumination noise  complements proposals that 

the  primate RG opponent system is optimized for detect- 

ing  and  differentiating potentially edible  objects.17–21
 

We will also consider how some  of the  scenes in this pa- 

per  will be encoded by birds—specifically by starlings, 

Sturnus vulgaris, whose  receptor sensitivity is described 

by Hart et al.22 We do this because birds have a different 

set  of spectral sensitivities for their L and  M cones  com- 

pared with primates, and  are  thought to have a RG 

opponent-color mechanism.23  A comparison of the  neural 

encoding of trichromatic primates and  birds is expected to 

give  an  interesting insight into  the  design of both  sys- 

tems. 

Part of  this work   has   been   described  briefly 

elsewhere.24–26
 

 
 

2. METHODS 

A. Cameras  and Calibration 

We took photographs of natural scenes with Nikon digital 

cameras and  used  their uncompressed outputs to  calcu- 

late how  human long-,  medium-, and   short-wavelength 

(L,  M,  S)  cones  and  how  starling L and  M cones  would 

have responded at every  point in  a  scene.  This  required 

thorough characterization of each  camera’s nonlinear 

gamma function and  the  spectral activation functions of 

its  three (R,G,B)  sensors. 

The  cameras used  in  this work  were  a  Nikon  Coolpix 

950 (camera 1) and  a Nikon Coolpix  5700  (camera 2). All 

automatic settings were  turned off; these included image 

sharpening, selection of white balance, selection of expo- 

sure aperture, and  integration time. White balance was 

set  to “cloudy,” as was  the  case  during the  calibration pro- 

cess,  and  central-spot metering was  used. The  lens  aper- 

ture value was   manually fixed  to  allow   the   maximum 

available depth of focus  (f11.4  in  camera 1  and   f7.4  in 

camera 2) and  the  cameras’ built-in software was  free  to 

find   the   optimal integration time (shutter speed); the 

flash   was   disabled.  The   picture outputs  were   uncom- 

pressed .tif  images. Image sizes  were  1600 X 1200 pixels 

for  camera 1 and  2560 X 1920 pixels  for  camera 2. How- 

ever,  photographs taken with camera 2 were  subsampled 

by averaging odd and  even  rows  and  columns in order to 

reduce computer-processing time; this gave  an  effective 

resolution   of    1280 X 960 pixels.   The    cameras   were 

mounted on  tripods, and   a  remote shutter  release was 

used  to avoid  small camera movements and  registration 

problems between successive pictures  in  time-lapse  se- 

quences, in which  the  cameras were  programmed to take 

pictures at intervals of 4 min  of the  same scene.  Figure 1 

shows  a montage of some  of the  colored  photographs that 

we use  as  the  basis for analysis in this paper. 

To obtain the  LMS  cone  activations for  every  point of 

the  visual scene  from the  RGB pixel values in the  .tif files, 

we characterized the  cameras, using the  methodology de- 

scribed below,  in  terms of the  LMS  cone  representations 

of  humans
27,28   

(see   Fig.   2(A))   and   starlings  (see   Fig. 

2(B)).22 It will be noted that, by comparison with the  hu- 

man, the  starling (like  many birds) has  four  cones  whose 

action spectra are  narrower than in  the  human and  are 

more   evenly  spaced  across  the   visible spectrum.  One 

might surmise that birds would  have “better” color vision 

than a human. In  any  case,  the  L and  M cone  character- 

istics are  markedly different and  a comparison with hu- 

man vision   should  be  revealing.  We  concentrate  upon 

those cones  of the   starling that  correspond best   to  the 

LMS  sensitivities of primates, and  so we  have excluded 

those cones  sensitive to UV and  double cones.  We verified 

the  extent of the  error in our  polynomial RGB-to-LMS 

mapping as  follows: 

Characterization  of  a  camera  in   terms  of  LMS   re- 

sponses would  yield  exact  results only if the  spectral sen- 

sitivities of the  imaging system are  exact  transformations 

of the  LMS  cone  representations (e.g.,  one  could  trans- 

form  exactly from  camera RGB space  to LMS space  using 

a 3 X 3 transformation matrix). However, this condition is 

not normally satisfied by commercial camera manufactur- 

ers,  and  therefore our  color space  transformations will be 

approximations and  subject to error. There is also  the  is- 

sue  of device  metamerism, where theoretically, two differ- 

ent  surfaces under the  same illumination may  produce 

the  same camera response and  be modeled with the  same 

LMS values. To overcome these limitations of the  imaging 

device,  we took advantage of the  fact  that the  spectral re- 

flectance of most  natural surfaces (as well as natural illu- 

mination)     are       relatively     smooth     functions     of 
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Fig.  1.    (Color  online) This  montage shows  examples of the  digitized color  photographs that we analyze in  this paper. Photograph A 
features ripe  and  unripe tomatoes; the  opponent responses to tomatoes x, y, and  z are  examined later. Note  that x is shadowed while  y 
and  z are  illuminated by direct sunlight. Photographs B and  C are  examples of the  113 photographs of ripe  fruit taken from  the  Kibale 
dataset. Photograph D is one  of a time-lapse sequence taken at 4 min  intervals from  dawn till  dusk; note  the  gray  card  in  upper left, 
which  was  used  to take radiometric measurements of the  illuminant. These images are  the  regular output of the  cameras; they have not 
been  linearized or gamma corrected for display. In  D, thin blue  lines outline one  or more  fruits whose  pixels  were  compared with the 
surrounding area defined by the thin red  lines. 

 
wavelength29–32 and  can  be represented by a small num- 

ber  of basis functions33 (this issue has  been  a  subject of 

discussion in the  literature).34,35
 

The  cameras’ RGB  pixel  values were  characterized in 

two stages. First, the  cameras were  pointed at a Macbeth 

ColorChecker  card   illuminated  by  a   tungsten-halogen 

light source (Osram HLX  64657FGX, 250 W).  The  light 

source was  supplied with constant current from  a  stabi- 

lized  DC power  supply (custom-made accurate to 30 parts 

per  million in current). We illuminated a white card  with 

this lamp and  measured the  CIE-Y  value with a spectro- 

radiometer (TopCon,   Model  SR1,  calibrated by  the   Na- 

tional Physical Laboratory, UK). Once both  pieces  of 

equipment were  warm, the  CIE-Y  value varied with a SD 

of less  than 0.25%  of the  mean. Several pictures (at  dif- 

ferent exposure durations) were  taken of the  card’s  lower 

row of gray  squares, and  their RGB values were  computed 

by  averaging the  central part (under- and  over-exposed 

values were  discarded) and  scaled by dividing by the  cor- 

responding integration time. The  spectral radiance of the 

same regions was  measured in the  range 380 – 760 nm  in 

10 nm  steps using the  TopCon  radiometer, allowing us  to 

relate each  sensor’s gray-level output to a physical mea- 

sure of the  total spectral energy stimulating them. The 

linearity of the  camera’s responses as  a function of inte- 

gration time was  corroborated by  a  set  of three neutral 

density filters (0.5, 1.0, and  2.0 log units) that forced  the 

camera to  adopt different shutter  speeds when photo- 



 

 

 

 

 

Fig.  2.    (A) Cone  sensitivities for humans, scaled to unity. (B) Cone  sensitivities for the  selected starling cones.  Note  that the  L and  M 
cones  are  much closer  to one  another for humans than they are  in the case  of the  starling. The  bandwidths of the  L and  M cones  also 
differ;  they are  narrower for the  starling. 

 
graphing the  white target. The  data allowed us to charac-  
terize the  nonlinear relation between scene  radiance and  
the  magnitude of the  pixel  values inherent in the  camera 

(we  did  this for  the  “cloudy”  setting) and  to  produce in-  *  *

 
 

verting functions for each  of the  RGB sensors that would 

linearize the  camera output. 

The  second stage consisted of measuring the  camera 

sensor’s spectral sensitivities by pointing the  cameras at 

a  white target (Kodak-Eastman “standard white”  cy- 

anoacrylate powder of approximately 99% reflectance, 

constant through the  visible spectrum) illuminated by the 

same  light  source.  Images  of  the   target  were   taken 

through a set  of 31 narrowband color filters (10 nm  band- 

width,  Ealing  Electronics, Watford, UK)  spanning the 

range  400 – 700 nm.   Spectral  radiance  was   measured 

through the  same filters by the  TopCon  radiometer, mak- 

    (4-6) 
 
 

where r , g , b are  the  camera’s spectral sensitivities. 

The   predicted camera  RGB  responses where then 

mapped to  LMS  activities using our  polynomial trans- 

form,  created using the  other half  of the  training data- 

base. 

The   relative error  of  the   polynomial transformation 

was  calculated for each  of the  samples of the  test dataset 

according to 
 

  

ing  it possible to  determine the  camera’s RGB  sensor ’s
 (7) 

 
spectral sensitivities. We used  a second-order polynomial 

model  to map  linearized RGB value triplets into  LMS 

triplets.36–41 This  characterization  technique differs from 

others in that it allows  us to find the  optimal colorimetric 

mapping for a given  set  of reflectances and  illuminations. 

For example, given  a typical set  of Northern European 

vegetation and  soil  reflectances42  and  natural 

illumination,43 it is possible to estimate both  the  camera 

response  values  and   the   LMS   values  for  the   natural 

scenes that we  investigate. For  the  Kibale forest photo- 

graphs we used  another database of illuminants and 

reflectance.44
 

We computed the  LMS  output by calculating the  prod- 

uct of the  cone sensitivities with half of the  samples in our 

training database using 
 

  
A 

 

 

                     (1,3) 
 

 

where l , m , s are  the  Smith and  Pokorny27,28 (or starling) 

cone  sensitivities, A is  the  wavelength, Q is  the  spectral 

reflectance of the  samples, and  I is the  spectral radiance 

of the  illuminant. 

At the  same time we calculated the  camera’s response 

to the  same reflectances and  illuminations using 

 
 

where L̂ , M̂  , Ŝ  represent the  mapped cone  activities. The 

mean error (Err) was  0.034  (SD = 0.034 , n = 1095)  for  the 

Northern  European dataset  and   0.016   (SD = 0.0159 , n 

= 783) for the  Ugandan dataset for human (unity) cones. 

For  starlings the   mean errors were   0.056  (SD = 0.05 , n 

= 783) and  0.01  (SD = 0.01 , n = 1095)  for the  Northern Eu- 

rope  and  Ugandan datasets, respectively. 

 
B. Datasets 

We use  two  main datasets in  our  analyses, one  of which 

consists of 113  images of fruit taken in  Kibale Forest, 

Uganda (Fig.  1(B)  and  1(C)).  This  area features in  some 

important studies of optimization of primate vision  to fru- 

givory  and  folivory18,19 because of its  large population of 

foraging primates. The  images within this dataset were 

taken with camera 1. Figure 1(A),  taken with the  same 

camera, is part of the  British garden dataset used 

previously.21
 

The  second main dataset  is  a  time-lapse sequence ( 

4 min  intervals) taken from  dawn till  dusk in  a  British 

garden, in the  village of Garndiffaith (South Wales), of a 

scene  in  which  edible  fruits have been  situated amongst 

foliage.   These were   taken  with camera 2.  Photographs 

near the  beginning or end  of the  sequence were  excluded 

where the  exposure duration exceeded 2 s since  the  con- 

ditions were  then too  dark for  the  camera to  provide a 

noise-free image. At the  same time, the  TopCon  radiom- 



 

 

 
eter was used  to make measurements (1 – 2 min  intervals) 

of the  total radiance and  of the  spectrum (380 – 720 nm, 

10 nm  intervals) of a 2° patch gray  card  at the  top  left  of 

the  composition (Fig. 1(D)). A time-lapse animation of the 

opponent responses and  spectral measurements can  be 

downloaded from  the   following   website along   with the 

raw  images: http:// llpsy223.psy.bris.ac.uk/george/ 

timelapse/. 

 
C. Modeling  and Calculation of Opponent  Signals 

Following calculation of the  LMS activation at each  pixel, 

we  established the  opponent activity using the 

MacLeod–Boynton45 formulas. Equations  (8)–(10)  define 

the  calculations for the  Lum,  RG, and  BY, opponent chan- 

nels,  respectively, as 
 

Lum = L + M ,  (7') 

 
RG = L/Lum,  (8) 

 
BY = S/Lum.  (9) 

 

It will  be  noted that our  present formulation of the  RG 

signal [Eq. (9)] is directly proportional to the  one we have 

used  before46,47: 
 

RG = (L − M)/Lum.  (8a) 
 

Noise  within the  L, M, and  S cones  was  simulated48  fol- 

lowing  estimates derived from  reported thresholds43: 
 

n = s* exp(y) ,  (10) 
 

where s is the  L, M, or S signal estimated from  our  cali- 

brated cameras; n is the  noisy  signal; and  y is a random 

variable with a  standard  deviation matching the  Weber 

fractions for  the  S,  M, and  L channels (8.7%,  1.9%,  and 

1.8%,  respectively, with 1°, 0.2 s stimulus at the  level  of 

10X  absolute threshold). 

 
D. Distinguishing Fruit from Leaves 

To illustrate how well an  opponent signal might help 

separate a fruit from  surrounding leaves, we calculate d' 
values [Eq.  (11)], where the  x and  y values represent the 

activation levels  for the  signal (fruit) and  noise  (leafy  sur- 

round),  respectively, in  a  particular  opponent channel. 

The  metric is  intended to  show  how  much the   signals 

from  fruit and  background overlap rather than to suggest 

whether one could  tell  that a fruit was  different from 

background, given  enough measurements 
 

 
 
  (11) 

 

3 . RESULTS 

A. Examining  Opponent  Channel  Activation for Directly 

Illuminated and Shadowed Fruit 

The  potential role  for RG opponency in helping primates 

to find  ripe  fruit is shown in  Fig.  3. Figure 1(A) shows  a 

photograph of tomatoes (some  ripe,  some  not)  against a 

background of leaves; the  scene  was  illuminated by direct 

sunlight, so it contains many shadows [one of the  ripe  to- 

matoes (x) is shadowed]. Figures 3(A) and  3(B) show gray- 

level representations of the  signals generated in the  oppo- 

nent  channels. In  both   the   RG  and   BY  channels, the 

individual tomatoes are  obvious  as  separate entities, but 

the  ripe  tomatoes are  distinguished only  from  all  else  in 

the  RG channel. All ripe  tomatoes (whether in shadow or 

not)   have the   same RG  signal magnitude  (solid   black 

curves Fig. 3(C)). For the  BY signals the  shadowed tomato 

has  a signature different from  those under direct illumi- 

nation (Fig.  3(D),  solid  black  curves). The  plots  in  Figs. 

3(E) and  3(F) show  the  d' value for the  ripe  fruit regions 

(x, y, and  z) compared to  their immediate surround (ex- 

cluding other ripe  fruit). Clearly, the  d' values are  greater 

for the  RG channel than they are  for the  BY channel, il- 

lustrating the  benefit of the  RG channel for frugivory. But 

why  has  the  RG channel performed so well?  Clearly the 

primary reason for the  success of the  RG channel is that 

the  system contrasts red  and  green activity. Another rea- 

son  for  the  strong performance of the  RG  system is  the 

proximity of the  L and  M cones;  by  having these cones 

close to one another the  RG opponent channel becomes in- 

sensitive to variations in illumination, both  over time and 

across space. This  issue is explored in Subsection 3.B. 

The  relatively poor performance of the  BY channel 

compared with the  RG channel is perhaps unsurprising. 

The  color of the  illuminant is not  constant, either during 

the  day  (see  below)  or even  within a scene.14,15 The  light 

that falls  directly on an  object  in  bright sunlight will  be 

“white”  or  yellow,  but  the  light falling on  shadowed  ob- 

jects  will  have come from  the  blue  part of the  sky  or will 

be reflected from  local objects  (probably green ones).  Con- 

sequently the  BY system will  respond very  differently to 

the   shadowed fruit  compared with the   directly  illumi- 

nated fruit. Conversely, the  Amax  values for the  L and  M 

cones  are  so close  that their responses to a varying illu- 

minant will correlate to a very  high  degree. 

 
B. Changes  in the Illuminant During a Day. 

Subsection 3.A has  shown that at an  instant in time, the 

BY opponent system seems disrupted by spatial disconti- 

nuities in illumination. In  this section we look at tempo- 

ral  changes in  the  illuminant and  how  the  BY and  RG 

systems are  affected. Figure 4 shows  the  results of an  ex- 

periment where we measured the  radiance spectrum (see 

Section 2) of a gray  card  placed in an  open  garden; mea- 

surements were  made every  1 – 2 min  from  dawn to dusk 

on an  autumn day  when the  weather was  mostly cloudy. 

Figure 4(A) shows  examples of normalized spectra, i.e., 

the radiance in each  wavelength is divided by the  total ra- 

diance at all  wavelengths in  a  particular recording.  T1 

represents the  spectrum at dawn; here the  illuminant has 

a  reddish tint.  T2  shows   how  the   illuminant becomes 

bluer as clouds  became thicker. Over  the  course of the  day 

the  spectrum of the  illuminant has  changed substantially, 

depending on weather conditions and  the  elevation of the 

sun  in the  sky.  Figure 4(B) shows  calculations of how the 

primate RG chromatic opponent signal from the  gray  card 

(solid  curve) and  the  BY opponent signal (dotted curve) 

would  have changed. Despite the  spectral changes in illu- 

mination, the  RG signal is fairly stable, as we would  hope 

from  an  opponent chromatic mechanism.  However, the 

BY signal is affected more  substantially, which  is bound 



 

 

 

 

 

Fig.  3.    Top row,  gray-level representations  of the activation in  the  primate (A) RG- and  (B) BY opponent channels calculated for the 
image of tomatoes in Fig.  1(A). Middle row,  histograms of pixel  activity levels  for the  ripe  fruit (x, y, z) and  the  area surrounding each 
fruit; note  the  largely separate distributions for fruit (black  curves) and  the  surround (gray  curves) in the  RG channel [plot  (C)]. In the 
BY channel the distribution for the  shadowed fruit (x) is similar to that of its surround [plot (D)]. Bottom row, d' values for each  ripe-fruit 

region compared with its  surrounding (nonripe fruit and  leaves) area in the  RG channel [(plot  E)] and  the  BY channel [(plot  F)]. 

 
 

to  reduce the  likelihood of the  BY system producing in- 

variant responses from  differently colored  objects  at dif- 

ferent times of day.  In  contrast to the  primate RG signal 

the   equivalent  activation  for   the   bird   (dotted-dashed 

curve) varies to  a  greater extent because of the  greater 

separation of the  bird  L and  M cones (standard deviations 

for these RG signals were  0.004  for primate and  0.009  for 

bird,  while  the  primate BY signal had  a standard devia- 

tion  of 0.034. 

 
C. Opponent  Encoding  of Fruit and Foliage  at Different 

Times  of Day 

At  the   same time  these  radiance  measurements  were 

made, we took  time-lapse photographs with camera 2 of 



 

 

 

 

 

Fig. 4.    Summary of spectral radiance measures of sunlight during the day November 23, 2004, in a British garden (Fig. 1(D)); time zero 
was  07:50  GMT.  (A) Plots of the  normalized spectra at T1 and  T2; these times are  indicated as  vertical lines on (B). The  average of the 
normalized spectra is also  shown. (B), The  primate RG (solid  curve) and  By (dotted curve) chromatic opponent signals [Eqs.  (8) and  (9)] 
of the  light reflected from  the  gray  card  are  plotted against time. The  starling RG signal is also  plotted (dotted–dashed) curve. 

 
the  scene  depicted in Fig.  1(D). The  illuminant measure- 

ments of Fig. 4 are  thus a description of the  illuminant at 

one location within this scene.  From the  sequence of pho- 

tographs, we  determined how  the  luminance signal and 

the  primate RG and  BY chromatic opponent signals gen- 

erated by each  of the  fruits would  change during the  day; 

we also  examined how the  bird  RG signal from  each  fruit 

would  change. We also examined the  light reflected from a 

region of interest around each  fruit—this was a region the 

same shape as  the  fruit but  with five times the  area (see 

Fig.  1(D)).  The  fruit itself   was  obviously excluded from 

the  surround region of interest,  and, where there were 

two  fruits close  together (regions 3 and  6), the  neighbor- 

ing  fruit was  also  excluded from  the  analysis of the  sur- 

rounding area. 

Figure 5(A)  shows   how  the  d'  scores  for  the  primate 

(black   curves) and   starling (gray   curves)  RG-opponent 

signals vary   as  the  illuminant changes during the  day. 

The  d' scores  are  shown only  for two  of the  fruit in  Fig. 

1(D); the  results for the  others were  similar. The  d' score 

for  the  primate is  consistently higher than it is  for  the 

starling.  However, note   that  plums actually reflect UV 

light so that a starling (with  UV-sensitive cones) may  well 

use  this as an added aid to detection. As one would  expect 

from  the  stability of the  illuminant in RG opponent space 

(Fig. 4), the  d' values for both  fruit remain fairly constant 

all  day.  By contrast, the  d' scores  for  the  tomato in  the 

primate BY-opponent system change markedly during the 

day,  as  one  might expect given  the  instability of the  illu- 

minant in BY opponent space  (Fig. 4). It is at first  surpris- 

ing that the  d' scores  for the  plum are  so constant. Figure 
5(C) shows  how this can  be; it plots  the  actual BY signals 

from  plum, tomato, and  their leafy  surrounds during the 

day.  All signals, especially from  the  plum, do vary  as  ex- 

pected.  However, the   plum signal  and   the   leafy   back- 

ground signal covary  so that d' remains roughly constant. 

In  this case,  the  BY opponent system might allow  a con- 

stant level  of detection for the  plum, but  the  changing BY 

signal would  mean that its  “color” and  identity might be 

confused as  the  illuminant changes during the  day. 

Figure 6  presents the   mean d'  score   for  each   fruit 

against its  surround over the  course of the  day. A high  av- 

erage d' score  could  be considered evidence that the  op- 

ponent channel was  successful at contrasting the   fruit 

from  the  surround areas under many variations of the  il- 

lumination. The  primate RG signals provide the  best  dis- 

crimination, consistently surpassing the  starling RG sig- 

nals. The primate BY signals vary  more  during the  day as 

a consequence of the  varying illuminant (see  Fig.  3) and 

as  fruits become   illuminated  directly or  have shadows 
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Fig.  5.    Plots (A) and  (B) show  the d' values for the  RG and  BY 

signals, respectively, for a tomato in Fig. 1(D) and  for a plum as a 
function of the  time of day.  The  d' values for both  fruit are  very 

stable in the RG opponent system despite the  changes in illumi- 
nant (see Fig. 4) during the day. The d' values for the  plum in the 

BY system are  also  surprisingly stable. Plot  C shows the  actual 
BY signals generated from  the  plum, the  tomato, and  their leafy 
surrounds during the day.  The  BY signals do vary  considerably 
(consistent with Fig. 4), but  the  signals from  plum and  leafy  sur- 
round co-vary,  so that the  d' value stays fairly constant. 

 
 

cast  on  them. The  variation during the  day  is  shown in 

Fig.  6 by the  sizes  of the  standard deviation bars which, 

in most  cases  are  2–3 times larger for the  (smaller) BY d' 
values than for the  (larger) RG d' values. 

 

 
D.  Opponent   Encoding   of  Fruit  and  Foliage 

Photographed in Kibale Forest 

We  performed similar  analyses  on  each   of  113  photo- 

graphs of fruit taken in Kibale Forest in Uganda.25 Two of 

these photographs are  shown as  Figs.  1(D)  and  1(E).  In 

each  image we traced a region of interest (ROI) around a 

single isolated fruit or cluster of fruit; isolated fruits were 

chosen so  comparisons between fruit and   the   surround 

area would  not  be  confounded by  the   presence of fruit 

within the  surround. All pixels  within the  ROI constituted 

“the  fruit.” To give the  surround pixels, the  fruit ROI was 

iteratively rescaled and  recentered until the  number of 

pixels  in the  surround region was  five times greater than 

that of  the   fruit  region—this operation excluded those 

pixels  that constituted the  fruit. The distribution of signal 

values (Lum,  RG, or BY) within the  fruit region was  com- 

Fig.  6.     (A) Averaged d'  scores   for  each  fruit versus the sur- 

rounding area in the  Lum  channel. (B) shows  the  mean d' scores 

for  each  fruit and  surround region, i.e.,  the  leftmost black  bar 
shows  the average of the  topmost trace in Fig. 5. (C) d' scores  for 

the  primate BY channel. Note  the  y scale  for the  Lum  channel is 
an order of magnitude smaller than for the  RG and  BY channels. 
The error bars represent the standard deviations of the d' scores. 

Solid   bars  are   for  primate  channels; open   bars  for  starling 
channels. 
 

 
pared with the  distribution of corresponding signal values 

from   the   surrounding  background area  (generally  of 

green leaves). 

For   each   of  the   113   photographs,  we  calculated  d' 
scores   for  the  primate Lum,   RG,  and  BY channels and 

Lum  and  RG for the  starling. Figure 7 summarizes these 

analyses. Clearly the  values given  by the  RG system (Fig. 

7(B)) are  much higher than those given  by either the  Lum 

(Fig.  7(A))  or  the  BY (Fig.  7(C))  systems, implying that 

the  RG system would  be substantially better at allowing 

identification of  food  than the   other two  systems. The 

white blocks  in  Figs.  7(A)  and   7(B)  show  that putative 

starling Lum  and  RG systems would  behave similarly to 

human ones.  So regardless of species, the  RG channel is 

most  successful at achieving a strong separation between 

fruit and   leafy   background. The   d'  scores   for  the   RG 

channel are  once again slightly better for primate than for 

starling and  have a magnitude similar to that reported in 

Subsection 3.D. 

 
E. What Factors  Led to the Discrepancy in the d' Scores 

for the Primate  and Starling  RG Channel? 

In all three datasets reported above,  the  d' scores  for the 

human RG  channel were  consistently greater than they 

were  for  the  starling RG  channel. The  starling and  pri- 

mate L and  M cones  differ  in  two  respects (see  Fig.  2): 

First the  primate cones  are  more  closely  spaced, second 

the  bandwidths of the  action spectra of the  cones  also  dif- 

fer (for the  human cones  the  bandwidth is approximately 



 

 

01651 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  7.    113 photographs of fruits in the  Kibale Forest (Uganda) 
were   analyzed as  in  Fig.  3.  The  values of the three opponent 
channels for both  human and  starling were  measured for all the 
pixels  within a  ROI  comprising the outline of a  ripe  fruit, and 
were   compared with the   values in  a  region of the   leafy  back- 
ground surrounding the  fruit. The  bar  charts show  the  mean d' 
scores  for (A) the luminance signal, (B) the  RG opponent signal, 
and  (C) the BY opponent signal. Solid  bars are  for primate oppo- 
nent systems; open  bars in A and  B are  for putative starling sys- 
tems. Note  that the  y scale  for the  Lum  channel bars is an  order 
of magnitude smaller than for the  BY and  RG bars. 

 
40 nm while  for the  starling this is 20 nm). In order to un- 

derstand the   significance of  these  differences, we  have 

calculated the  RG d' scores  for all  fruit versus surround 

regions in  the  time-lapse photographs while  varying the 

characteristics of simulated L and  M cones  whose  band- 

the  L and  M cones were  modeled with normal probability- 

density functions using a least-squares fit. The Amax of the 

M cone  was  fixed at 543 nm  while  the  Amax  of the  L cone 

was   varied  from   553 – 633 nm   in  steps of  10 nm.   The 

bandwidths of the  action spectra of the  L and  M  cones 

were  varied together from 10 – 80 nm in steps of 10 nm.  d' 
scores  were  computed for each  combination of L cone  po- 

sition and  cone bandwidth. 

The  d' scores  are  presented in Fig.  8, along  with sym- 

bols  indicating the  actual cone  action spectra of humans 

and   starlings. The  Fig.  8  surface plot  reveals that  the 

relative  improvement in  d'  scores   for  the   human  RG 

channel over  the  starling RG channel is due  to both  the 

proximity of the  L and  M cones and  to the  increased band- 

width of the  human cones.  This  simulation was  repeated 

for  the  Kibale photo  dataset reported in  Subsection 3.D 

and  the  results correlated closely.  We  estimated the  de- 

gree  of error likely  in  the  polynomial transformation  of 

camera RGB values to the  L value of our moving red cone. 

This  error was  never greater than 12% for the  red  cone in 

the  positions tested [see Eqs.  (1–7) for details of the  error 

calculation]. 

 

 
4. DISCUSSION 

The  basic   question underlying this paper concerns the 

functional roles  of the  opponent-color systems, both  in pri- 

mates and  in a bird  species (starling) that has  rather dif- 

ferent color vision.  When  De Valois  and  his  co-workers3,4 

obtained evidence for  the  existence of postreceptoral  op- 

ponent channels, little was  known about the  relationship 

between these and   the   structure of the   visual environ- 

ment and  the  visual tasks that need  to be performed on it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 8.    Time-lapse photographs were  reanalyzed as in Fig. 3 while  varying the  position of the  L cone and  the  bandwidth of the L and  M 
cones.  The  d' scores  represent the mean d' score  for all  fruit and  region pairings over  all  time intervals. The  symbols show  how  the 

difference in d' scores  reported for starlings and  primates is due  to the  distance between the  cones  and  the  bandwidth of their action 

spectra. 



 

 

 
The  results  presented here suggest a  major role  for 

color  channels in  informing the   system about material 

(reflectance) properties of objects. This  in  itself  is  not  a 

new  story; many others have discussed color vision  along 

these lines.11,16,17 Our  results are  in  keeping with a low- 

level  “cleaning up” of the  information incident in the  reti- 

nal  image: removing shadows, compensating for changes 

in illumination, and  thus allowing a cleaner object-based 

segmentation to  be  carried out.16 It is  worth comparing 

this  with the   shadow  problem  in  lightness  perception 

(monochrome vision).  Here  the   work   of  Gilchrist and 

others49,50 suggests that a strategy for removing illumina- 

tion  changes needs to be high  level,  since  it needs to know 

about scene  3D geometry: the  “coplanar ratio principle” of 

Gilchrist makes this explicit. On the  other hand, color vi- 

sion  can  remove shadows much more  simply; see  for ex- 

ample the  work  of Olmos  and  Kingdom.16  This  in  itself 

suggests a major role for color information in early vision. 

But  how is this role  distributed between the  two color- 

opponent systems (RG  and   BY)  in  primate vision,   and 

how does this vary  compared with a different species? The 

first  point of note  here is that the  BY system does  a sur- 

prisingly imperfect job of removing shadows, since  these 

often  have a blue  tint due  to the  inhomogeneity of solar/ 

sky illumination. The BY system is best  thought of as car- 

rying out  an  approximate segmentation of the  scene  into 

areas of different spectral reflectance, but  this segmenta- 

tion   is  confounded with  shadow/illumination  effects.   It 

therefore follows that a dichromatic mammal (as most  or- 

ders  of mammal are  likely  to be) will  be able  to function 

well in situations in which  light is relatively “flat” and/or 

the  chromatic target is  large/strongly colored.   Foraging 

will  work  well  in  simple viewing conditions, but  a visual 

search will  become  less  efficient as  shadows increase, or 

target salience decreases. Also since  the  output of the  BY 

system is larger than that of the  RG, it will operate better 

when  the   individual  receptors  are   operating  at  lower 

signal-to-noise ratios (say at lower  luminance levels).  This 

ability to work  at lower  light levels  would  present advan- 

tages to an  animal foraging primarily at dawn and  dusk. 

The  RG system in primates seems to be much less  con- 

founded by capricious changes in illumination and  will re- 

main efficient at such  search tasks for much longer, since 

(in primates at least) it has  two important properties that 

the  BY system does not  have. First, it is optimally set  up 

to  distinguish  edible   fruit/leaves  from   inedible  leaves. 

Second, it ignores shadows and  changes in  illumination 

except just after dawn and  just before  sunset. It is  this 

combination of properties that gives  trichromatic  mam- 

mals a foraging advantage. The  work  presented here pre- 

dicts   that  differences in   foraging  success  in   primate 

dichromats and  trichromats should depend on the  type  of  

illumination prevailing at the  time. Indeed, a  recent ex- 

perimental study has  shown that trichromatic primates 

are   more   efficient at  selecting ripe   fruit than 

dichromats.51
 

However, we know  that primates are  not  the  only crea- 

tures with a RG-opponent system. Birds, which  have cone 

spectral sensitivities that  are   different from  primate  L 

and  M cones,  also have RG opponency.23 Indeed, we might 

infer that birds would  have better color  vision  than we 

have, since  they have four  cone types with narrower acti- 

vation spectra that  are   more   evenly spaced across the 

spectrum.  However, our  conclusions are   somewhat sur- 

prising: In some  sense, the  even  spacing of the  cone peaks 

is  not  always an  advantage, nor  is  the  narrower band- 

width of the  starling cones. 

How does  a bird  RG system compare with the  primate 

one?  Our  results suggest that a  bird’s  RG-opponent sig- 

nals from  a single surface would  be more  confounded by 

shadows and  changes in natural lighting conditions than 

would  a  primate’s. The  bird  RG  is  confounded by  such 

changes almost as much as the  primate’s BY system. This 

difference arises  because primate  L  and   M  cones  have 

peak  absorptions at  very   close   wavelengths,  so   that 

gradual changes over the  width of the  spectrum will have 

less  differential effect  on the  cones.  The  greater spectral 

separation of L and  M cones  in  the  starling retina (like 

the  large spacing of the  S cones  from  the  L or M cones  in 

the  primate) has  the  consequence that invariance to shad- 

ows and  changes in illumination is compromised. Areas of 

the  image such  as dappled foliage,  which  appear uniform 

to  a  primate RG  system, may  appear less  uniform to  a 

starling RG system. However, we predict that, if one were 

to equate the  cone capture ratios of a target against a sur- 

round for humans and  starlings, then humans would  be 

less  impaired by  the  incursion of shadows into  the  sur- 

round in a search task. 

Many questions remain to  be  settled. Are  there tasks 

for which  the  BY system is particularly good and  the  RG 

system pretty  useless? Some  data, not  presented here, 

suggest that  the   discrimination  of  Rayleigh-scattered 

light from  direct sunlight (i.e.,  sky  versus solar disk)  is 

well  detected by mammalian BY vision.  Thus, the  detec- 

tion  of distance over hundreds of meters or more  might be 

well encoded by BY opponent channels. Such  work  awaits 

experimental verification. 

In  general, we have provided more  questions than an- 

swers. It is relatively easy  to run mathematical models of 

detection across images of foliage  and  fruit; much harder 

to gather relevant behavioral data. However, we suggest 

that the   results of this paper provide some  indications 

about the  functional role  of the  peculiar color vision  sys- 

tems in primates and  one other species. 
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