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Párraga et al: Discrimination of changes in natural images 

The effects of amplitude-spectrum statistics on foveal and peripheral 

discrimination of changes in natural images, and a multi-resolution 

model 

Abstract 

Psychophysical thresholds were measured for discriminating small changes in spatial 

features of naturalistic scenes (morph sequences), for foveal and peripheral vision, 

and under M-scaling. Sensitivity was greatest for scenes with near natural Fourier 

amplitude slope, perhaps implying that human vision is optimised for natural scene 

statistics. A low-level model calculated differences in local contrast between pairs of 

images within a few spatial frequency channels with bandwidth like neurons in V1. 

The model was "customised" to each observer's CSF for sinusoidal gratings, and it 

could replicate the “U-shaped” relationships between discrimination threshold and 

spectral slope, and many differences between picture sets and observers. A single-

channel model and an ideal-observer analysis both failed to capture the U-shape. 
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Introduction 

Classical psychophysical and electrophysiological studies with simple (usually 

sinusoidal grating) stimuli have resulted in an impressive understanding of channel 

characteristics of early vision. Yet, it is undoubtedly true that the stimuli viewed in 

everyday life are different and hugely more complex than gratings. Furthermore, the 

tasks carried out in everyday life are often more complex than simple grating 

detection and discrimination tasks. The present paper is motivated by a desire to learn 

about the relationship between the perception of “natural scenes” and the well-known 

properties of channels in early vision, as shown with sinusoidal gratings. 

It is now generally hypothesised that the organisation of the visual system and 

the tuning characteristics of individual channels or neurons are optimisations for 

dealing with the salient information in the natural visual world (Barlow, 1961, 

Laughlin, 1983, Marr, 1982). The function of red-green colour opponency has been 

interpreted in these terms (Osorio & Vorobyev, 1996, Párraga, Troscianko & 

Tolhurst, 2002, Regan, Julliot, Simmen, Vienot, Charles-Dominique & Mollon, 

2001), as has the contrast coding of single neurons or populations of neurons 

(Clatworthy, Chirimuuta, Lauritzen & Tolhurst, 2003, Laughlin, 1981, Tadmor & 

Tolhurst, 2000). The spatial organisation of V1 (primary visual cortex) neuron 

receptive fields seems to match the “statistics” of spatial features in the visual image 

(Hancock, Baddeley & Smith, 1992, Olshausen & Field, 1997, Srinivasan, Laughlin 

& Dubs, 1982, Van Hateren & Van Der Schaaf, 1998). However, such “visual 

ecology” generally looks at how the properties of single visual neurons rather than 

overall visual performance may be matched to the natural environment. We propose 

that, if the visual system really is optimised for the information in the natural 

environment, then visual detection and discrimination might be best when we use 

natural scenes as stimuli or, at least, stimuli with certain statistical characteristics of 

natural scenes (Geisler, Perry, Super & Gallogly, 2001, Knill, Field & Kersten, 1990). 

In order to test this proposal, we need to compare detection or discrimination 

performance with natural and unnatural stimuli. We use digitised monochrome 

photographs of natural scenes to represent “natural scene stimuli”. But, what is an 

unnatural stimulus? Natural scenes exhibit many statistical regularities (Geisler et al., 
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2001, Kersten, 1987), and the Fourier amplitude spectra of natural scenes show a 

remarkably stable relationship between the spatial frequency (f) and the amplitude of 

that spatial frequency component (their “second-order” statistics): 

− ffAmplitude )(  Eqn.1 

where  is the spectral slope of the scene and has values close to 1.2 on average 

(Burton & Moorhead, 1987, Carlson, 1978, Field, 1987, Párraga, Brelstaff, 

Troscianko & Moorhead, 1998, Párraga et al., 2002, Tolhurst, Tadmor & Chao, 

1992). Given that natural scenes generally have this property, it is possible to define 

the degree of naturalness of related stimuli according to how close the  of an image 

is to its natural, unperturbed value. It is possible to produce versions of images which 

have  modified by an amount ; such images may be regarded as increasingly 

“unnatural” as || increases. There have been several psychophysical investigations 

of visual discriminations using random-dot and digitised photograph stimuli whose 

amplitude spectra have been manipulated in such a way (Knill et al., 1990, Párraga & 

Tolhurst, 2000, Tadmor & Tolhurst, 1994, Thomson & Foster, 1997, Tolhurst & 

Tadmor, 1997). 

In this paper, we investigate what is intended to be a more naturalistic 

discrimination task than has been used before: detection of small spatial changes in 

stimuli generated by morphing between two natural-scene images (Benson, 1994). 

Such a task might, for instance, be the basis of identifying facial identity or 

expressions, or of distinguishing between two slightly different objects. We measure 

thresholds for discriminating morphed image sequences for stimuli having natural and 

unnatural second-order statistics, to ask whether human vision is optimised for natural 

statistics. Primarily, we wish to know whether performance in such tasks and the 

effects of changes in amplitude spectral slope or viewing eccentricity are explicable in 

terms of the low-level channel structure of the visual system, so well characterised 

with grating stimuli. 

There are a number of image-difference models designed to predict the 

visibility, e.g., of targets in natural scenes (Daly, 1993, Doll, McWorter, Wasilewski 

& Schmieder, 1998, Menendez & Peli, 1995, Rohaly, Ahumada & Watson, 1997, 

Watson, 1987, Watson, 2000). The basis of these models is to split the two images to 
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be compared into several spatial-frequency bands (compare Campbell & Robson, 

1968, Peli, 1990), weighted by the contrast sensitivity function (CSF) of the observer. 

For each equivalent pair of points in the images, one must find whether, at each 

spatial frequency, the difference in contrast between the image patches is at or above 

the contrast discrimination threshold. This knowledge is provided by knowing the 

contrast discrimination function (Legge & Foley, 1980). This information needs to be 

spatially pooled over the whole of the two images, and some process must exist that 

allows information from different spatial-frequency bands to be combined (Rohaly et 

al., 1997). Such models have been used to look at applied issues such as image quality 

(e.g. to evaluate image compression algorithms) or the visibility of small military 

targets; it is less clear whether they will be able to account for shape discrimination 

data in experiments such as those proposed here. In this paper, we investigate whether 

such a multiple frequency-band model can account for the magnitudes of thresholds 

for the naturalistic morph-discrimination task for stimuli with natural and unnatural 

second-order statistics, and whether it can account for differences of thresholds 

between different observers and different viewing eccentricities. 

A preliminary account of some aspects of this project has been published 

(Párraga, Troscianko & Tolhurst, 2000). Further work has appeared in Abstract form 

(Párraga, Tolhurst & Troscianko, 1999, Párraga et al., 2002, Párraga, Troscianko, 

Tolhurst & Gilchrist, 2000) 
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Methods 

The natural-image stimuli 

The experiments described here are similar in design to those described in our 

previous work (Párraga et al., 2000). The stimuli were produced from four achromatic 

images (128 by 128 pixels, 8 bits of grey level) containing the face of a man, the face 

of a woman matched for size; and a bull and a car on grey backgrounds. Two different 

morph sequences were created, one by “morphing” the two faces (called here man-to-

woman, courtesy of P.J. Benson) into a sequence of 41 slightly different faces, and 

another by “morphing” the bull into the car (called bull-to-car). Both morph 

sequences then consisted of a series of pictures varying in shape, contrast and texture 

in small incremental steps of 2.5% steps in the case of the man-to-woman series and 

of 0.5% steps in the case of the bull-to-car series. The difference in step size followed 

preliminary experiments which showed that the discriminable steps for the bull-to-car 

images were usually less than for the man-to-woman images. In both morph 

sequences, the salient features of the first original image were matched to those of the 

final original image (e.g. lamps and radiator of the car were matched to the eyes and 

nose of the bull, etc.). Each image could potentially have represented a real face or 

object; there were no “ghosts” like those produced in the blending technique of 

Tolhurst & Tadmor (Tolhurst & Tadmor, 2000). Fig.1a shows the original “bull”, 

original “car” and some of the intermediate morphed images. In Fig.8b, we also report 

some results collected with 2 further morph sequences: one of an exaggeratedly-

smiling face turning in 2.5% steps into an exaggeratedly-frowning one, and one of a 

lemon turning in 2.5% steps into a capsicum/pepper. 

These man-to-woman and bull-to-car image sequences were each used to 

make 7 new image sets which had the slopes of their Fourier amplitude spectra made 

steeper or shallower than in the original sequences by small increments or 

decrements. This was done by multiplying the Fourier amplitude spectrum of each 

image by a filter of the form: 

− ffWeight )(  Eqn.2 
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where f is spatial frequency and  takes one of 7 values: -1.2, -0.8, -0.4, 0.0, +0.4, 

+0.8, +1.2. A positive value is similar to “blurring” of the image (Fig.1b); a negative 

value represents image “whitening” or edge enhancement (Fig.1c), which is usually 

accompanied by a fall in overall contrast (Párraga et al., 2000, Tadmor & Tolhurst, 

1994). An increment of 0.0, of course, represents the original image sequence. 

After filtering the spectra of the images, the filtered images were obtained by 

inverse Fourier transformation. The original images had grey levels in the range 

0-255, but the filtering changed that range, especially for the negative slope 

increments, where the range became greater and included negative numbers. Since 

only positive light levels are possible and since the VSG display (see below) is 

capable of displaying only 256 grey levels at a time, it was necessary to scale the 

pixel values of the filtered images. The images in a single set of 41 (one pair of 

original photographs, and one spectral slope change) were scaled as one unit. First, a 

constant was added to or subtracted from all floating-point pixel values to make the 

smallest one in the set equal to zero. Then, the pixel values of each image were 

stretched or compressed so that 256 integer grey-levels encompassed the whole set, 

and the darkest pixel in the whole set was 0 while the brightest was 255. Different 

scaling factors were applied for the 7 spectral slope sets for each original image pair. 

Insert Figure 1 about here: examples of morphed images 

On average, the slope ( in Eqn.1) of the amplitude spectrum of a natural 

image is about 1.2 (Tolhurst et al., 1992) but the 4 images used here had steeper 

slopes (approximately 1.3 to 1.5), which is our experience of “portrait-like” images of 

single objects on a blank background (in fact these sequences are the same as those 

used in Párraga et al., 2000, see Fig.2 of that paper to see a plot of its Fourier 

amplitude). The amplitude spectra of the originals were not necessarily exactly 

straight and the slopes of the images in a morphed set were not necessarily the same. 

We did not normalise within or between image sets in order, for instance, to ensure 

that pictures all had the same power. The left side of panel d in Fig.1 shows the root-

mean-square difference (ΔRMS) between the pixel values of first picture (reference) 

and the picture corresponding to 5% morph change (test) for each of the four morph 

sequences and the seven values of  used in this study. The right of Panel d shows 
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the same for the picture corresponding to 15% morph change. Here ΔRMS contrast 

difference is defined as: 

( )


−
=

i

ii

n

TR
RMS

2

 
Eqn.3 

where Ri represents the ith pixel of the reference picture and Ti represents the same for 

the “test” picture of the same morph sequence. We have shown elsewhere that the 

differences in apparent contrast between stimulus sets with different slope increment 

(evident in Fig.1) do not greatly influence the forms of the psychophysical results 

(Párraga et al., 2000, Tolhurst & Tadmor, 2000). Previously (Párraga & Tolhurst, 

2000, Tadmor & Tolhurst, 1994, Tolhurst & Tadmor, 2000), we have applied 

constraints to image sets, but with the result that none of the images ever has a strictly 

natural appearance. 

Experimental conditions 

Pictures were presented in the centre of a Sony Trinitron monitor screen 

driven by a Cambridge Research Systems VSG 2/4 Graphics Card. This had pseudo-

15-bit control (Pelli & Zhang, 1991) of the luminance of the pixels so that it was 

possible to compensate for first-order luminance nonlinearities in the display and still 

present stimuli (including very low contrasts sinusoidal gratings) to a full precision of 

256 grey levels. We did not attempt to account for the effects of pixel neighbours 

along the raster lines (Garcia-Perez & Peli, 2001, Klein, Hu & Carney, 1996, Pelli, 

1997, Pelli & Zhang, 1991, Schofield & Georgeson, 1999, Schofield & Georgeson, 

2000). The screen measured 36.0 by 29.5 cm and was viewed from 2 m, so that it 

subtended 10.26 by 8.41 deg. The 128 pixel square images usually measured 8.5 cm 

(2.43 deg) square, and each pixel measured 1.14 min; each “logical” image pixel 

occupied a 2 by 2 square of hardware display pixels. To avoid spurious cues resulting 

from edge effects, all pictures were smoothed at the edges with a Gaussian roll-off 

(SD=15 pixels). To make smaller versions of the images (“small foveal” experiments) 

the 128 by 128 pixel full-sized images (including the roll-off) were subsampled by the 

VSG “moverect” command, with the memory size of source and destination being 
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different. The small pictures consisted of 90 by 90 pixels, each measuring 0.57 min 

(the hardware resolution). 

The screen had a mean luminance of 85 cd/m2 in all parts not occupied by the 

stimuli. The brightest pixel in an image never exceeded a luminance of 170 cd/m2 

(double the screen background) while the darkest might nominally have been 0 cd/m2. 

The mean luminances of the stimulus images were not necessarily 85 cd/m2. The 

frame rate was 80 Hz. 

Observers viewed monocularly and freely for foveal viewing (Párraga et al., 

2000 used binocular viewing) but, for peripheral viewing, they fixated monocularly 

upon a red light-emitting diode (LED) at 3 or 6 degrees along the horizontal axis 

towards the side of the screen. In peripheral viewing, images were presented in the 

nasal hemifield. The better eye was chosen in all cases (the preferred eye for shooting 

or for looking through a telescope). 

There were four different experimental conditions: in condition 1, viewing 

was foveal and the images measured 2.43 deg square at the eye. In conditions 2 and 3, 

viewing was with the nasal hemifield, with the centres of the 2.43 deg square images 

at 3 deg and 6 deg into the nasal hemifield, respectively. In the fourth condition, 

viewing was again foveal, but the images were reduced in size by a factor of 0.37 to 

be 0.9 deg square at the eye. This reduction in image size was intended to “M-scale” 

(Drasdo, 1991, Levi, Klein & Aistebaomo, 1985, Rovamo & Virsu, 1979) the foveal 

images relative to the 6-deg peripheral ones. It is argued that stimuli can be scaled in 

size to compensate for putative differences in visual acuity and/or in cortical 

magnification between fovea and periphery. There are many different ways to 

calculate an M-scaling factor, depending upon assumptions and, perhaps, depending 

upon the kind of task (Levi et al., 1985, Tolhurst & Ling, 1988). We used a 

conservative estimate of 1:2.7 here (Rovamo & Virsu, 1979) whereas Tolhurst & Ling 

(Tolhurst & Ling, 1988) argued that actual cortical magnification rather than acuity 

would change 7.4 times rather than 2.7 times as we move from fovea to 6 deg 

peripherally. We shrank the foveal picture by a factor of 2.7 rather than magnifying 

the peripheral one by the same factor, since parts of a greatly-enlarged image centred 

at 6 deg would be less than 3 deg from the fovea, and discriminations might then be 

performed with less eccentric parts of the visual field. 
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Observers. All experiments were carried out on two main observers: CAP (one of the 

authors) was a well corrected myope, while KB (a naïve but experienced observer) 

had normal vision. The detailed modelling of the discrimination thresholds was 

carried out for these two observers. Most of the experimental observations were 

confirmed on up to 4 other naïve observers, who each completed many of the 

experiments; they were students at Bristol University, and all scored normally on a 

Snellen acuity test at the same viewing distance as used in the experiments. We also 

include for new analysis the results for 2 other observers who contributed to our 

previous report (Párraga et al., 2000), and Fig.8b shows data for the “good eye” of 

each of 6 amblyopic observers reported elsewhere (Tolhurst & Párraga, 2003). 

 

Experimental protocols 

The observers had to discriminate between the original (reference) and 

morphed (test) images belonging to the same morph sequence and with the same 

slope-increment in their amplitude spectra (and thus sharing similar second-order 

statistics) in a modified 2AFC procedure, using a conventional staircase technique. In 

a single trial, the observer was presented with three images sequentially (each 

presented for 500 ms with intervals of 200 ms between them). The second 

presentation was always known to be a copy of the reference image; this reference 

interval is needed in complex visual discriminations otherwise observers require very 

detailed memory of the various stimuli. The computer chose randomly whether to 

present a second copy of the reference for the first time interval and the test in the 

third time interval, or vice-versa. The observer had to decide whether the “odd one 

out” (morphed test image) was in the first or the third presentation in the trial, and 

indicated their choice to the computer by pressing either the left or the right mouse 

button. Auditory feedback was given as to whether the choice was correct. The same 

test and reference images were presented five times. If the response was correct all 5 

times, the task was made harder (by selecting a test picture closer to the reference in 

the morph sequence). If the observer made one or more errors in the sequence of five 

trials, then an easier morph image was chosen for the subsequent 5 trials. The upward 

and downward steps in the staircase were the same size, and stepsize remained 
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constant throughout the procedure. In fact, two independent staircases were 

interleaved randomly for each morph sequence, one starting from the bottom (difficult 

task) and becoming increasingly easier and another starting from the top (easy task) 

and becoming more difficult. After the staircases had stabilised, psychometric 

functions were fitted to the data pooled from the two staircases (typically 100 trials 

per staircase). 

In a typical experiment, 4 different morph sequences (with different spectral 

slopes, but from the same pair of original photographs) were randomly interleaved, 

and the observer’s thresholds for these were measured concurrently. For the man-to-

woman sequence, we performed two sets of experiments: one with the “man” as the 

reference, and one with the “woman” as the reference (called woman-to-man). 

Similarly, we used both “bull” and the “car” as the reference in different experiments 

(car-to-bull as well as bull-to-car). 

Each psychometric function was fitted with the integral of a normal 

distribution, which was constrained to lie between 50% (guess rate in a 2AFC) and 

98% (allowing for a 2% “finger error” – the chance that an observer might sometimes 

push the wrong response button by mistake). The discrimination threshold was taken 

as the percentage of morphing that would allow the observer to correctly identify the 

interval containing the morphed stimulus on 74% of the trials. The slope and position 

(threshold parameter) of this cumulative normal were estimated using a SIMPLEX 

routine, which maximised log-likelihood (Press, Flannery, Tekulosky & Vetterling, 

1986). Standard errors for the discrimination thresholds were estimated from the 

inverse of the second differential of the likelihood function at the maximum of the 

merit function (Edwards, 1972). We confirmed, by computer simulation of staircases, 

that these estimated standard errors did describe the range of estimated thresholds 

returned by multiple staircases. 

 

Sensitivity to sinusoidal gratings 

The observers’ Contrast Sensitivity Functions (CSF) were measured under 

analogous conditions: with vertical sinusoidal gratings in a square window of 2.43 
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deg for foveal, 3 deg eccentric and 6 deg eccentric viewing, and in a small square 

window of 0.9 deg for “small-foveal” viewing. Experiments were again performed 

monocularly, and there was a Gaussian roll-off around the four sides of the grating 

square. Thresholds were estimated using a 2AFC conventional staircase: the observer 

had to indicate in which of two 500 ms intervals a grating was presented. The 

contrasts of gratings of different spatial frequencies were increased or decreased every 

5 trials on the basis of how many correct responses were made (as above). A 

cumulative normal curve was fitted to the psychometric function to estimate contrast 

threshold by interpolation. 

 

The contrast at a point in a natural image 

We present a model to explain the magnitudes of the thresholds for 

discriminating between morphed natural scenes. The model is based on knowledge of 

primary visual cortex and has much similarity with others (Daly, 1993, Doll et al., 

1998, Rohaly et al., 1997, Watson, 1987, Watson, 2000). These models suppose that a 

visual image is initially processed in parallel by channels or neurons with different 

optimal spatial frequencies but all with much the same bandwidth of about 1 octave 

(Blakemore & Campbell, 1969, De Valois, Albrecht & Thorell, 1982, Movshon, 

Thompson & Tolhurst, 1978, Tolhurst & Thompson, 1981, Watson & Robson, 1981). 

Thus, as a precursor to modelling how the visual system compares two slightly 

different images, we first calculate the contrast at each point in an image, at each of 

several spatial frequency scales (Párraga & Tolhurst, 2000, Peli, 1990, Tadmor & 

Tolhurst, 1994, Tolhurst & Tadmor, 1997). We define contrast at the point [x,y] and 

in the frequency band F as: 

 ( )
( )
( )yxl

yxa
yxC

F

F
F

,

,
, =  

Eqn.4 

where aF (x,y) is a bandpass filtered version of the original image convolved with a 

circularly-symmetric filter with frequency response given by: 

 ( )
( )








 −
−=

2

2

2
exp



Ff
fAF  

Eqn.5 
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where f is spatial frequency, while  is the spread of the Gaussian frequency-response 

curves and is chosen to be 0.3F so that the bandpass filters have a bandwidth of about 

1 octave.  lF(x,y) is the result of convolving the original image with a circularly-

symmetric low-pass operator with frequency response given by: 

 ( )
( )









−=

2

2

2
exp



f
fLF  

Eqn.6 

Division of aF (the bandpassed convolution) by lF (the local mean luminance) is a 

model of the fact that the visual system encodes contrast rather than luminance per se 

(Shapley & Enroth-Cugell, 1984); the mean luminance is calculated over an area 

proportional to the period of F. Others (Brady & Field, 2000, Field, 1994, Van 

Hateren & Van Der Schaaf, 1998) model contrast encoding by taking the logarithm of 

the pixel values before applying linear filtering operations to images. Usually, we 

have calculated contrast at each point in an image within 5 spatial frequency bands, 

one octave apart. 

To model how the visual system compares two images, we calculate CF(x,y) 

for both images at all frequency scales, and then we compare the contrasts in the two 

images, point by point within each frequency band (see RESULTS for detail). In 

previous papers, we averaged the contrast across the image within each frequency 

band before comparing that single value with the single averaged-contrast value of 

another image. That may have been appropriate when the experimental variable 

changed the power or contrast over the whole image (Párraga & Tolhurst, 2000, 

Tadmor & Tolhurst, 1994, Tolhurst & Tadmor, 1997), but is inappropriate here where 

the differences between stimuli involve changes in the shape or contrast of spatially-

localised features. 

As well as the morphed images of natural scenes, we have modelled “images” 

of sinusoidal gratings of known Michelson contrast in order to be able to express 

contrast at each point in the morphed image as equivalent Michelson contrast: the 

contrast of optimal grating that would evoke the same “response” as that location of 

the image. This allows us to relate the contrasts in images to measurements of an 

observer’s contrast thresholds for detecting gratings and for discriminating differences 

in contrast between pairs of gratings. 
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Results 

Psychophysical results: Foveal viewing 

Fig.2 shows the discrimination thresholds for 8 different experiments with 

monocular foveal viewing (condition 1 – see Methods). The discrimination thresholds 

are expressed as the percentage morph that is just discriminable in a 2AFC, and are 

plotted along with +/- one standard error against the change in amplitude spectral 

slope. A spectral change () of zero corresponds to unblurred and unwhitened (i.e. 

natural) scenes. The left-hand panels of the Figure show the results for observer CAP 

on the four different morph sequences, and the right-hand panels show experiments 

on the same 4 morph sequences but on different observers. The photographs of the 

man and the woman were well matched so that successive 2.5% morph steps were 

difficult to discriminate; discrimination thresholds for all observers are in the range 

10-20% for a  of zero. The bull and car photographs (Fig.1a) were more different, 

so that a 2.5% morph step was more easily discriminable, and thresholds were 

actually measured with morph sequences that differed successively by only 0.5%. The 

discrimination thresholds are low: in the range 1.5-5% with the thresholds at the bull 

end of the sequence (third row of Fig.2) being lower than those at the car end (bottom 

row of Fig.2). 

Discrimination thresholds are low in the mid range flanking spectral slope 

changes near zero (“natural” scene statistics), and are highest at extreme negative 

values of  (image “whitening”) or at extreme positive values (image “blurring”). In 

7 out of the 8 examples, the lowest threshold is at a  of -0.4, zero or +0.4. This 

confirms our preliminary report (Párraga et al., 2000) and is similar to results with 

spectrally-blended image pairs (Tolhurst & Tadmor, 2000). The data, which follow a 

roughly “U-shaped” course, could often be described by second-order polynomials; 

the solid lines in Fig.2 shows the best-fitting 2nd -order polynomials, fitted by 

minimising 2 (Press et al., 1986). In the examples of Fig.2, the minima of the U-

shaped polynomials generally correspond to the region where the amplitude spectral 

slope is unmodified (natural scenes). 
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Insert Figure 2 about here – 8 exemplar foveal graphs 

In all, we performed 26 such experiments with monocular foveal viewing, 

involving up to 6 observers on some or all of the 4 morph sequences. Additionally, 2 

further observers (other than CAP) performed 5 binocular experiments between them 

for our previous study (Párraga et al., 2000). We attempted to learn how many of the 

experimental data sets could be described by some generic “U”-shape and where the 

minimum of that “U” might be; we fitted the 31 data sets with 2nd -order polynomials, 

and compared the goodness of fit with lower (straight line) and higher-order 

polynomials. The 2nd -order polynomial fit has 3 degrees of freedom, and 13 of the 

experiments had 2 less than 9.49 (the critical value for P = 0.05) with the median 

value being 10.47. The inclusion of the 2nd -order term compared to a 2-parameter 

straight line fit caused a large reduction in 2 (and a loss of 1 degree of freedom) in all 

but 3 of the 31 experiments; the median fall in 2 was 26.38. On the other hand, 

addition of a fourth parameter (a 3rd -order term) caused no significant improvement 

to the fit in 23 cases; the median fall in 2 caused by adding the 3rd -order term was 

only 1.49. The comparison of 1st , 2nd and 3rd order polynomial fits shows that the 

experimental data mostly fall on a function with a single minimum in the mid  

range. An example where a 2nd -order polynomial was not a good fit at P=0.05 and 

where addition of a 3rd -order term caused a near-significant improvement is shown in 

Fig.2 (CAP bull-to-car, see legend for 2 values). Overall, although a 2nd -order 

polynomial might not have been an ideal fit, 27 out of 31 experiments showed lowest 

thresholds for  values in the mid range. One of the 4 experiments that failed to 

conform can be seen in Párraga et al (Párraga et al., 2000: Fig.3, open triangles, 

bottom left panel). 

The minimum of the best fitting 2nd -order polynomial is an indication of the 

second-order image statistics at which observers are best able to discriminate the 

spatial structure of the images. The distribution of these minima for foveal viewing is 

shown as the open bars in Fig.5a. In almost all the experiments, discriminations were 

most acute for  values within +/-0.4 of “natural statistics”. The polynomials had 

minima with a median at a spectral slope increment of +0.096 and a mean of +0.049 

(S.E. 0.061), not significantly different from zero. 
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Given that the y axis units in Fig.2 (% morph) do not represent any universal 

(physical) measure of change in different sequences (for example, 10% change in the 

woman-to-man sequence might be equivalent to 2% change in the bull-to-car 

sequence) it is illustrative to replot some of the data in terms of ΔRMS as defined in 

the Methods section (Eqn.3). In particular, Fig.1d shows that ΔRMS changes most 

with % morph at =0, when the thresholds expressed as % morph are lowest. This 

raises the question whether the different thresholds at different  values result 

simply from differences in ΔRMS. Fig.3a shows the ΔRMS corresponding to the 

threshold values for four sets of experimental results (shown on the left side of Fig.2). 

The other panels in Fig.3 replot 3 of the experimental sets (filled circles) while the 

open circles show the discrimination thresholds that would be predicted if the 

observer were discriminating purely on the basis of RMS pixel change in each of the 

morph sequences. These model values were obtained by calculating the actual ΔRMS 

present in the just-discriminable image pair for Δα = 0, and then computing the % 

morph change that produced the same value of ΔRMS in all the other sequences.  

The plots in Fig.3 are representative of the rest of the dataset and show that 

ΔRMS alone cannot explain our psychophysical results. Although the ΔRMS metric 

makes the thresholds for the bull-to-car sequences similar in magnitude to the man-to-

woman and woman-to-man sequences, the ΔRMS values for the car-to-bull are rather 

different (Fig.3a). In some cases, especially for sequences that were “whitened” (Δα= 

-0.4 and Δα= -0.8 in panels b and d) it seems that changes in RMS pixel value do 

provide a clue for the observers to discriminate changes in the morphs. However, this 

is not true for any of the “blurred” sequences, where ΔRMS underperforms seriously. 

Insert Figure 3 about here -- RMS and d’ predictions 

Ideal observer analysis 

Fig.3b,c,d also show the thresholds predicted by an ideal observer analysis 

(open triangles). The estimate of the ideal observer performance was calculated in two 

stages. First, observer CAP eye’s CSF was measured for sinusoidal gratings, and a 

corresponding “point-spread function” calculated (as the inverse Fourier transform). 

Each picture in the morph sequences was then convolved with this point circularly-
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symmetric spread function and the value of d’ (Geisler, 2003, his equation 16) was 

calculated for every pair of reference-test pictures using the equation:  
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tr
d
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Eqn.7 

where ri and ti represent the ith pixel of the convolved reference and test images. It has 

also been suggested to us that it would be more appropriate to square the denominator 

of Equation 7 (in agreement with a light-adaptation observer); however, this made 

very little difference to the forms of the plots in Figure 3. 

The criterion for discrimination in any particular experiment was defined as 

the value of d’ corresponding to the just discriminable pair of pictures in the “natural” 

condition (=0). The triangles in Fig.3b,c,d correspond to the % morph change 

necessary so that d’ reaches the criterion in all  conditions. The ideal observer 

analysis predictions badly underperform on the “whitened” (<0) side but do better 

on the “blurry” (>0) side. This is the opposite of what occurred with RMS pixel 

difference threshold, and can be explained in terms of the nearly complete removal of 

useful information produced by both whitening the pictures and convolving them with 

the point-spread function (blurring). In summary, Fig.3 show that the experimental 

results obtained for one observer (CAP) cannot be explained in simple terms by either 

detection of RMS pixel changes or signal-to-noise measures (such as d’) and a more 

complex model is needed. The same applies to the other morph sequences and 

observers. 

 

Psychophysical results: Peripheral viewing 

Fig.4 shows four examples of the discrimination threshold data for two of the 

morph sequences obtained for two subjects (KB and CAP) with monocular peripheral 

viewing: with images centred 3 deg eccentric (open circles) and 6 deg eccentric (filled 

circles). For comparison, the solid curves are the 2nd -order polynomials fitted to the 

equivalent foveal data (3 of the lines can be found in Fig.2). The two upper graphs 

show the most usual behaviour: a general increase in the discrimination thresholds as 
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the stimuli are presented more peripherally. The bottom graphs are less typical, either 

because discrimination thresholds do not seem to change when the stimuli are 

presented peripherally (bottom left) or the threshold increment is larger than general 

(bottom right). Very often, the thresholds for a  value of -1.2 (extreme image 

“whitening) were very high (e.g. open circles, top graphs) and, indeed, some of the 

data points for 6 deg eccentric viewing are not shown in the graphs (= -1.2 filled 

circles) because the thresholds were so high that they could not be measured. In 

summary, discrimination thresholds for peripheral morph stimuli are generally 

elevated, especially at extremely negative values of  (image whitening). However, 

the data do seem to continue with the trends shown in Fig.2, although some curves are 

less obviously “U-shaped”. 

Insert Figure 4 about here -- 4 examples of peripheral expts 

 

We fitted 2nd -order polynomials to the peripheral data. Analysis of the 

positions of the minima of the “U-shaped” curves reveals little difference when the 

stimuli are shown foveally and at 3 deg eccentricity. The solid black bars in Fig.5 

show the distributions of the minima (Fig.5a) and the mean and standard error of the 

minima (Fig.5b) for 3 deg viewing, for comparison with foveal viewing (open bars). 

Sometimes the polynomials were fit only to the 6 data in the range of  from -0.8 to 

+1.2 since a very high threshold at  of -1.2 would distort the fit, causing the 

minimum to shift towards higher  values. The grey bars in Fig.5 show the 

distribution and summary of the minima for 6 deg eccentric viewing. It was often 

necessary to ignore high or absent thresholds at  of -1.2 or even -0.8 in order to get 

a reasonable fit of a 2nd -order polynomial to the remaining data; these high values 

distorted the polynomials so that their minima occurred at  values that were 

obviously too positive. Even after removing the high threshold values, the minima for 

6 deg viewing are still significantly shifted towards positive values (see the filled 

symbols in 3 of the 4 panels of Fig.4). The mean of the minima is at a positive slope 

increment of 0.25 (significantly different from zero; S.E. = 0.10; t = 2.5; n =16; P < 

0.05). 
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Insert Figure 5 about here – distributions of the minima 

 

M-scaling of the stimuli. For two observers (KB and CAP), we examined the effects 

of putative M-scaling on the thresholds for peripheral viewing. An elevation of 

threshold for peripheral viewing might perhaps be compensated by making the 

peripheral images larger. In fact we reduced the size of the foveal images by a factor 

of 2.7 (Rovamo & Virsu, 1979) to accomplish M-scaling (see Methods). Fig.6a shows 

the measured contrast sensitivity functions for sinusoidal gratings for observer CAP 

using both M-scaled (0.9 deg square images) gratings viewed foveally and 2.43 deg 

square gratings viewed peripherally. Contrast sensitivity (the inverse of the lowest 

Michelson contrast needed for the observer to detect a sinusoidal grating) is plotted 

against the spatial frequency expressed as cycles/picture, and not as cycles/degree. 

The shape and position of the two CSFs are very close showing that the M-scaling 

factor can indeed compensate for the observer’s differences in grating acuity. 

Fig.6b and c show two examples of the effects of M-scaling on morph 

discrimination thresholds for the same observer. The filled symbols are the thresholds 

for morph discriminations with 6 deg eccentric viewing of 2.43 deg square images 

(the filled symbols in Fig.6c can be found in Fig.4); the solid lines are the 2nd -order 

polynomials fitted through the results for foveal viewing of the same 2.43 deg square 

images, showing that peripheral viewing generally raises thresholds. The open circles 

in Fig.6b and c show the foveal thresholds for discriminating changes in M-scaled 0.9 

deg square images. Reducing the foveal images in size by a factor of 2.7 has indeed 

elevated the discrimination thresholds, as expected. As is also common with the 6 deg 

data, the foveal thresholds for  of -1.2 sometimes became unmeasurable when the 

images were small. M-scaling has compensated over part of the  range in Fig.6b, 

but not at the most negative values of . In the experiment in Fig.6c, M-scaling has 

not compensated nearly enough. Overall, M-scaling has moved the foveal results 

towards the 6 deg peripheral ones, but generally has not compensated nearly enough. 

The discrimination thresholds produced for the size-reduced stimuli were still fitted 

by the same kind of “U-shaped” template as the rest of the results, but with the 

minima positioned to the right side of the plot (mean value of  = 0.266, S.E. = 
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0.045, n=9), sharing some characteristics with the 6 deg eccentricity data. The minima 

are at an  value significantly different from zero (t = 5.91; P << 0.01). 

Insert Figure 6 about here -- M scaling 

 

A spatial frequency channel model for natural-scene discrimination 

We have applied a multiple-channel model (Rohaly et al., 1997, Watson, 

1987) to estimate the visibility of differences between the test and reference pictures 

for all the experiments performed by the two main observers (KB and CAP) in all 

viewing conditions, as well as a more limited analysis of the results of the other 

observers. The band-limited contrast (Peli, 1990) was calculated at each [x,y] location 

in the test and reference images at each of several one-octave spatial frequency bands, 

F, to give CF(x,y) (see Methods, Eqn.4). Subsequent calculations were performed on 

the central 68 by 68 pixels (out of 128 by 128) of the contrast-arrays. If two pictures 

are slightly different, then we would expect that the contrast would be slightly 

different in the two pictures at one or more locations, and in one or more spatial-

frequency bands. The model must determine whether these differences in contrast are 

sufficient to allow the observer to discriminate between the pictures. 

The first stage is to estimate how each contrast difference at each location and 

in each frequency band might contribute individually to discrimination. We calculate 

the absolute value of the difference in contrast between the two pictures under 

comparison at each location and in each frequency band:- 

 ( ) ( ) ( )yxCyxCyxC FjFjF ,,, 0,,, −=  Eqn.8 

where j is the picture number (1-40) of the test stimulus and j=0 represents the 

reference picture. Then, we estimate how much each value of C might contribute 

towards the visibility of the difference between the pictures, by evaluating each C 

value against the familiar “dipper function” for contrast discrimination for sinusoidal 

gratings (Legge, 1981, Legge & Foley, 1980, Nachmias & Sansbury, 1974). Each 

value of CF(x,y) is treated as if it is the contrast increment of a sinusoidal grating of 

frequency F to be compared against a reference or pedestal grating whose Michelson 
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contrast, ),(, yxC jF , is the average of the paired contrast values in the two pictures at 

that location and frequency band. 

 ( ) ( ) ( )yxCyxCyxC FjFjF ,,5.0, 0,,, +=  Eqn.9 

The observers’ contrast discrimination functions for gratings were estimated 

indirectly by adjusting the position on the x-axis (contrast reference) and y-axis 

(contrast difference) of a “dipper function” template (Fig.7a) for contrast 

discrimination according to the observers’ contrast detection thresholds measured for 

a similar grating (Párraga & Tolhurst, 2000). Thus, the model dipper functions were 

determined from each observer’s contrast sensitivity functions (CSFs) at each of the 

viewing eccentricities and picture sizes. Any differences between observers’ abilities 

to discriminate between pictures or any effects of different eccentricities should 

hopefully be accounted for by differences in their CSFs. 

Fig.7a shows the general shape of the dipper template. Note that the linear, 

“Weber” part of the function has a slope of only 0.7 on log/log axes in our 

experiments (Legge, 1981). Given a value of ),( yxCF
, we determine from the dipper 

function for frequency F the theoretical just-noticeable difference in contrast for real 

gratings, ( )( )yxCD FF , . A measure of the visibility of the contrast difference in the 

two pictures at that location is then given by: 

 ( ) ( )
( )( )yxCD

yxC
yxV

FF

F
F ,

,
,


=  

Eqn.10 

When expressed as a logarithm, this is the distance of a calculated contrast value 

above or below the dipper template. 

Pooling rules. 

The second stage in the model is to pool the many cues, V, provided at 

different locations and different frequency bands to give an overall assessment of 

whether or not the two pictures differ sufficiently for discrimination to be made. In 

general, we might expect that, if the values of V were mostly greater than 1 (open 

circles schematically in Fig.7a), the pictures would be clearly distinguishable. If the 

values of V were generally less than 1 (squares in Fig.7a), then the pictures should not 

be discriminable. Threshold might perhaps be achieved if the values of V fell on the 
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dipper itself (filled circles). One very unlikely hypothesis (a “winner-take-all”) is that 

discrimination would be possible provided that just one value VF(x,y) out of all the 

frequency bands and many locations exceeds the appropriate model dipper function. 

A more realistic model would imagine that cues from different locations and 

frequency bands are pooled in some way, although the manner of pooling is debatable 

(Rohaly et al., 1997). We consider two possible pooling rules. Firstly, we examine a 

rule in which the 68 by 68 V values in each frequency band are converted to 

logarithms (the y-axis of Fig.7a is logarithmic) and averaged. The several frequency 

bands are kept separate, and discrimination will take place when this measure 

(averaged log(V)) in any one of the frequency bands exceeds a certain “threshold” 

level. We will call this “rule 1”. 

Fig.7b and c show an implementation of this rule to the images constituting 

the woman-to-man sequence (b) and car-to-bull sequence (c) for observer CAP 

(foveal viewing of =0 images). The graphs show, for five separate spatial 

frequency bands, how the “rule 1” averaged-log(V) increases as the test picture 

(abscissa) is made more different from the reference. The values for the woman-to-

man sequence rise more slowly with percentage morph change than for the car-to-bull 

sequence, as might be expected given the degree of similarity between the faces and 

the dissimilarity between car and bull. An ordinate value of zero represents the point 

when the logarithms of the individual discriminability cues V are equally spaced 

above and below the dipper for that spatial frequency. Perhaps, the observer will be 

able to discriminate the pictures when the averaged cue just exceeds zero in at least 

one spatial frequency channel. This would be 12% morph in the woman-to-man 

sequence (frequency band 8 cycles/pic) and 4.5% for the bull-to-car sequence 

(frequency band 8 cycles/pic, although closely followed by 16 cycles/pic). These 

values are quite similar to the observer’s actual thresholds for these stimuli (10.0% 

and 3.4%). 

Figure 7 near here- schematic dipper, and metric vs. picture number 

Fig.8 shows a more detailed attempt to validate this pooling rule. In Fig.8a, we 

plot the experimentally-measured thresholds against those predicted by this simplistic 

model for 29 of the stimulus/observer combinations of the present experiments, for 
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foveal viewing of the =0 stimulus sets. The correlation between measured and 

predicted thresholds is convincing (r = 0.57, n=29, P=0.001). Fig.8b shows additional 

foveal measurements with =0 (see Figure legend) mostly involving experiments on 

the good eyes of 6 amblyopic observers (Tolhurst & Párraga, 2003). Again there is a 

convincing correlation (r = 0.64, n = 18, P<0.01). Fig.8c and d show similar plots for 

all 28 threshold measurements (7 spectral slopes for each of 4 picture sets) for 

monocular foveal viewing by CAP and KB respectively. The correlation coefficients 

are 0.88 (P<0.001) and 0.65 (P<0.001). 

The reasonable correlation coefficients suggest that a development of this 

simplistic model will be able to relate the thresholds for discriminating between 

complex natural scenes to the simple thresholds for detecting sinusoidal gratings. 

Fig.8 also shows weighted least-squares regression lines, which allow the fit to be 

dominated by the data with the smallest standard errors. The slopes are close to unity 

and the intercepts close to zero (see Figure legend). However, it is important to note 

that the regression lines are not the same as lines of equality, and there is much 

systematic scatter of the results about the regression lines. This shows that this model 

and/or pooling rule are too simplistic. Indeed, we tested the model with “pictures” of 

the sinusoidal gratings which were used to set up the model. We asked the model to 

compare gratings of a given contrast with ones whose higher contrast should have 

been just discriminable according to the theoretical dipper function. The averaged-

log(V) value ranged from about -0.05 to -1.7 depending upon the spatial phase of the 

gratings, rather than being exactly zero. We will address this in the Discussion. 

Figure 8 near here – measured vs predicted thresholds, rule 1 =0 

A more likely hypothesis derives from the proposed probability summation in 

the detection of simple visual stimuli (Graham & Robson, 1987, Graham, Robson & 

Nachmias, 1978, King-Smith & Kulikowski, 1975, Robson & Graham, 1981, 

Tolhurst, 1975, Watson, 1979). For instance, the modelling in Fig.7c suggests that two 

frequency bands might attain threshold together, and this would imply that the 

relevant images should be more discriminable than those in Fig.7b where only one 

frequency band attains threshold. We use a weighted average of all the V cues, 

weighted across all locations and all frequency bands, so that there is a single metric 
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for a given pair of pictures rather than one measure per frequency band. We use a 

Minkowski sum with power of 4 (Rohaly et al., 1997), and we call this “rule 4”. The 

power of 4 derives from empirical description of the amount of probability summation 

seen in grating detection experiments (see Discussion) and relates to the steepness of 

the psychometric function (Quick, 1974, Robson & Graham, 1981).  

 ( )( )4

4

4 ,=
F x y

F yxVV  Eqn.11 

We have no preconception of what value V4 might take at threshold, but it was about 

8.06 for pictures of gratings paired with ones of higher contrast that should have been 

just-discriminable according to the theoretical dipper function, irrespective of the 

spatial phase of the gratings. 

Modelling the effects of spectral slope change and eccentricity 

For each of observers KB and CAP, we measured their contrast sensitivity 

functions for gratings under the 4 foveal or eccentric viewing conditions, to produce 8 

different versions of the discrimination model. We then examined whether the model 

was capable of explaining the forms of the experimental results: how threshold 

depends upon the amount of the increment or decrement in the slopes of the amplitude 

spectra of the images. Fig.9 shows some examples of the procedures. 

Fig.9a and b show how well the model fitted using “rule 1”. The different lines 

show the model predictions presuming that discrimination will just be possible at 

different criterion values of averaged-log(V). A single criterion value is used at a time 

to fit the 7 experimental data points. Obviously, as the threshold criterion increases 

from -0.2 through zero (Fig.7b and c) to +0.3, so the predicted thresholds are higher; 

but the forms of the predicted curves also change. The model curves are “U”-shaped 

like the experimental values, and the “U” becomes sharper as the threshold criterion is 

raised. Although the models do not fit especially well, they do reflect that the 

observer’s threshold curve was flatter foveally than at 6 deg, that the observer’s 

thresholds were lower foveally than peripherally, and that threshold did rise 

considerably at  of -1.2 peripherally. For each set of experimental results, we ran 

the model with both “rule 1” and “rule 4”, and we adjusted the threshold criterion 
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(averaged-log(V), or V4) to produce the best fit of the model, minimising the weighted 

residual sum of squares ( RSSE ) between the model and the experimental results: 

  
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Eqn.12 

where the weight Wi is the inverse of the squared standard error of each experimental 

measurement, and n is the number of data points fitted (7). This is essentially 2 

(Press et al., 1986). We then defined an adjusted index of goodness-of fit, A̂ , as: 
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where p is 1 when the model is allowed to search for the threshold criterion that 

minimises A̂ , but is zero for “rule 1a” (see below) when the model is forced to use 

an averaged-log(V) threshold criterion of exactly zero. Seven points were considered 

in all cases (n=7). When the observer’s measurements were missing (i.e. 

discrimination thresholds ≥ 100% of the morph sequence), the thresholds were 

considered to be 100% and error bars of 50% were assumed. The same was applied to 

the model’s results (e.g. when the model predicted thresholds ≥ 100%, they were 

considered to be equal to 100%). This allows us to take into account the cases when 

the model correctly predicted unmeasurably-high discrimination thresholds. The 

smaller is A̂ , the better the fit. Fig.9c and d show further experimental results for 

observer KB, and the best fitting versions of the appropriate model under “rule 1” 

(solid lines) and “rule 4” (dashed lines). The two rules differ slightly in which aspects 

of the results they each best fit. 

Insert Figure 9 about here – Modelling  summary figures 

Ten more sets of experimental results are presented in Fig.10, along with the 

corresponding model predictions for “rule 1” (solid lines) and “rule 4” (dashed lines). 

In fact, two versions of rule 1 are shown: the thick lines (“rule 1a”) show how the 

model fared when it was constrained to use an averaged-log(V) criterion of zero 

(Fig.8), while the thinner line allows the model to search for the averaged-log(V) 

criterion that minimises the weighted residual error (“rule 1b”). The selection of 

results in Fig.10 is intended to show the range of behaviour of the results and the 
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model, including two observers (CAP and KB), the bull/car sequences (the 

man/woman are illustrated in Fig.9) and the four experimental viewing conditions 

(Foveal, 3 deg, 6 deg and Foveal-Small pictures). In some cases, the models under 

“rule 1a” and “rule 1b” are very close (see panels a, b, g and h) but, in others, “rule 

1a” overestimates the observer’s performance and can produce a radically different 

form (e.g. panel j). Although individually some of the fits may not look very good, it 

is true that the model curves generally capture the different forms of the results: 

whether a particular graph is flattish, or is pronouncedly “U”-shaped, or whether it 

shows a sudden rise of threshold at  of -1.2 in the periphery. It is interesting that 

the models (Fig.10e and f) are capable of explaining the differences in the results for 

the two observers at 6 deg eccentricity, which were shown in Fig.4d and Fig.4c 

respectively. On the other hand, Fig.10g and h show that the rise in threshold at  of 

-1.2 is captured by the model for only one of the observers. 

Insert Figure 10 about here – More modelling  summary figures 

Table 1 shows the values of the adjusted index of goodness-of-fit of the 

models to the monocular results for the 16 experimental conditions for observers KB 

and CAP. The Table shows that “rule 1b” provides the best fit (lowest values of A̂ ) 

in 43% of KB’s experiments and 62% of CAP’s, while “rule 4” comes second (with 

31% of all experiments). The average values of the goodness-of-fit measure are 2.81 

and 2.98 for “rule 1b” for KB and CAP respectively, and 3.22 and 4.67 for “rule 4”. 

“Rule 1a” (with no degrees of freedom) comes surprisingly close (KB 5.22; CAP 

4.22). This confirms the experience of Rohaly et al (Rohaly et al., 1997) that 

differences in the pooling rule in a multi-resolution model do not have a great effect. 

There seems no pattern as to whether one rule might, perhaps, fit one eccentricity or 

one morphed image set better than another rule. The “rule 4” modelling of CAP’s 

eccentric viewing results generally predicted that thresholds should be very high at 

 values of -1.2 and -0.8; thus, when CAP’s thresholds were indeed high, the model 

gave a low A but, when his thresholds were moderate, the A values became 

unusually large. 

Insert Table 1 about here – model goodness-of-fits 
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Table 2 lists the values of the threshold criteria needed for best fit of the 

models for CAP and KB. The criterion values of averaged-log(V) needed for the best 

fit of “rule 1b” were 0.0249 for KB (average of 16 experiments, S.D. = 0.213) and 

0.0670 for CAP (average of 16 experiments, S.D. = 0.161). The average values are 

close to our first naïve model which presumed that the threshold criterion might be 

zero, and might confirm the proposition that a complex image discrimination task can 

be interpreted in terms of simple grating thresholds; however, the standard deviations 

of these values are not small. The criterion values of V4 needed for the best fit of “rule 

4” were 40.99 for KB (average of 16, S.D. = 11.96) and 39.66 for CAP (average of 

16, S.D. = 11.65). These values are substantially greater than that calculated for a 

grating at its contrast discrimination threshold (8.06). 

Although the models explain the changes in form of the discrimination 

functions at different eccentricities, their success at explaining differences in 

threshold magnitudes is only partial. For a single picture set and a single observer, 

different values of V4 were needed for the best fit of the model to the results for 

different viewing eccentricities. The different magnitudes of the thresholds, as 

predicted by the model, depend partly on differences in the observer’s CSF at 

different eccentricities, but also on unexplained differences in the criterion V4 needed 

for the best fit. For instance, for observer CAP viewing the car-to-bull images, the 

criterion V4 needed for best fit was 62.06 for 3 deg viewing (Fig.10c, dashed line), but 

only 29.94 for “small-foveal” viewing (Fig.10g); the criterion values are different, 

even though the observer’s thresholds at  of zero are similar (9.47% and 10.05%). 

Here, the success of the model’s fit seems to rely on a large difference in a parameter 

(V4) whose values we are still unable to explain. On the other hand, CAP’s results for 

foveal viewing (Fig.10a, dashed line) and 6 deg viewing (Fig.10e) were fit with very 

similar values of V4 (38.50 and 43.36 respectively), even though the observer’s 

thresholds at  of zero differed markedly: 3.40% foveally and 19.64% peripherally. 

In this case, at least, the very different forms and magnitudes of the thresholds at the 

two viewing conditions are explained by differences in the observer’s grating CSF for 

the two conditions. 

The criterion values of V4 for the two observers are very similar on average 

and are correlated (r = 0.54; n = 16; P = 0.032). This is most interesting for 6 deg 
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eccentric viewing of the car-to-bull images (Fig.4c, d -filled circles, and Fig.10e,f -

dashed lines) where the observers’ thresholds were very different but the V4 values 

were almost the same (KB 40.10; CAP 43.36). The differences in the observers’ 

thresholds in this experiment must have been due to the differences in their 6 deg 

CSFs (CAP’s sensitivity was 5-7 times lower than KB’s at frequencies above about 

10 c/picture). The “rule 4” V4 values were highly correlated with the “rule 1b” 

averaged-log(V) values (KB r = 0.88; CAP r = 0.68) although the averaged-log(V) 

values for the two observers were poorly correlated (r = 0.24). The significant 

correlations imply that the model behaves in consistently different ways for some 

image/eccentricity combinations. Indeed, the woman-to-man images required 

substantially lower values of V4 (KB 28.64; CAP 28.11) than the other 3 image sets, 

and the small-foveal viewing condition needed smaller V4 values (KB 30.79; CAP 

30.11) than the other 3 viewing conditions (compare Ripamonti, Tolhurst, Lovell & 

Troscianko, 2005). 

Insert Table 2 about here – model criterion values 

A single-channel model. We also modelled CAP’s foveal data with a single-channel 

model; the single circularly-symmetric channel had a CSF identical to that of the 

observer. We used “rule 1b” and “rule 4” and all four morph sequences. For three of 

the image sequences, the single channel model produced a definitely worse fit of the 

data, with GoF value between 13% and 200% higher. Only in the bull-to-car 

sequences, did the single channel version of the model seem to fit the data better than 

the multiple-channel model, giving some 50% better GoF values on average. In 

general, the single channel model failed to explain the large rise in threshold found for 

negative values of  ("whitened” images). 

 

Discussion 

We have measured thresholds for discriminating small morphed spatial 

changes in naturalistic stimuli, and we have examined how those thresholds are 

affected when we distort the images’ amplitude spectra from their natural state. In 

almost all individual experiments, the observers were best able to discriminate the 
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morphed changes when the amplitude spectra were close to having “natural 

statistics”; in fact, there was a broad threshold minimum consistent, perhaps, with the 

wide range of naturally-occurring spectral slopes (Tolhurst et al., 1992). This is 

similar to the results of (Tolhurst & Tadmor, 2000) who used spectrally-blended 

natural images rather than morphed ones.  

In order to make morphed sequences, it is necessary to begin with parent 

images of well defined objects (preferably against a blank background). Such images 

can be natural (view an object on a hill against a blank sky) but their amplitude 

spectra fall at one extreme of the natural range: the slopes of the spectra of our parent 

images were steep. The blending technique of (Tolhurst & Tadmor, 2000) is not so 

constrained, and their similar results were obtained with parent images much more 

similar to the average values for natural images. On the other hand, the blending 

technique makes intermediate images which may have naturalistic statistics but which 

are not representations of everyday natural objects or scenes – the blended images 

have “ghosts” of the parent images. Every image in the morphed sequence is 

potentially realisable as an object, though we admit that a hybrid car/bull is not likely; 

in practice, the observers’ threshold for the car/bull sequences were very small, so that 

the observers were looking at subtle differences in bulls or subtle differences in cars. 

That the observers were able to perform the discrimination tasks best when the 

images had near-natural amplitude spectra might be taken as experimental evidence 

for the popular contention (Barlow, 1961, Laughlin, 1983, Marr, 1982) that the visual 

system is optimised for processing stimuli with natural statistics. Although very 

influential, this hypothesis is supported by only a little psychophysical evidence that 

vision is actually “best” in any sense with natural stimuli (Geisler et al., 2001, Knill et 

al., 1990, Tadmor & Tolhurst, 1994, Tolhurst & Tadmor, 2000) . Although there is 

much theoretical evidence that information encoding might be most efficient when 

images have natural statistics, it is not necessarily the case that processing of non-

natural statistics will therefore be inefficient. Furthermore, any relative inefficiency in 

encoding of non-natural scenes might not be reflected as an elevation of a simple 

discrimination threshold. “Inefficiency” might be exhibited in something very 

difficult to measure, such as removal of neural resources from some other (perhaps 

non-visual) function or an increased amount of metabolic energy needed for a task! 
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However, we would be surprised if efficient encoding at low-levels of the visual 

system did not confer some advantage in visual performance. 

Unfortunately, the changes that we have imposed on the amplitude spectra in 

order to confer different degrees of unnaturalness do change the overall visibility and 

contrast of the images. Changes in image contrast do not grossly change the form of 

the results (Párraga et al., 2000), and our analysis of the RMS pixel differences 

between images at threshold (Fig.3) suggests that the observers are not using some 

simple image metric for detection. However, it may be that the characteristic “U”-

shaped graphs we present are influenced by relatively low-level changes in visibility 

of some spatial-frequency bands. An experimental “proof” of the hypothesis that 

vision is optimised for natural statistics might try to distort the image statistics in a 

way that does not immediately compromise visibility. For instance, one might try to 

distort the “higher-order” statistics characteristic of natural images (e.g. Geisler et al., 

2001, Thomson & Foster, 1997) rather than the lower, second-order (amplitude-

spectra) statistics (Knill et al., 1990).  

We might be able to argue that our results imply that foveal vision (see Fig.5, 

open symbols) is optimised for natural image statistics, since thresholds are lowest 

when the amplitude spectra are undistorted (Tolhurst & Tadmor, 2000). However, this 

same argument then raises the question why peripheral vision should not be similarly 

optimised: at 6 deg eccentricity, thresholds are minimal for images that are blurred 

compared to natural ones (Fig.5 grey symbols). This shift in the minimum was 

matched by M-scaling the foveal stimuli to match the supposed cortical magnification 

at 6 deg eccentricity. The thresholds for making the morph discrimination were 

generally higher in the periphery than in the fovea, but this was a result that could not 

be replicated by M-scaling of the foveal stimuli; M-scaling did raise foveal 

thresholds, but not nearly enough to match the high peripheral ones. Perhaps, our 

choice of M-scaling factor was too conservative (see Tolhurst & Ling, 1988), 

reflecting simple acuity tasks rather than tasks requiring more neural processing. We 

estimated the values of S (inverse of the eccentricity at which the task becomes twice 

as difficult as in the fovea) for our discrimination tasks. Our results show that S= 0.12 

deg-1 for the man/woman sequences and S= 0.43 deg-1 for the car/bull sequences. 

These values of S are of the same order of magnitude as those measured for grating 
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acuity tasks (and 0.38 in Klein & Levi, 1987, 0.41 in Virsu, Näsänen & Osmoviita, 

1987). 

 

A model of visual discrimination 

We have been developing a relatively simple multiple spatial-frequency 

channel model of the low-level discrimination process, similar to other algorithms 

such as DCTune (Watson, 1983, Watson, 1987, Watson, 1993), VDP (Daly, 1992, 

Lubin, 1993) and the model of Rohaly et al (Rohaly et al., 1997). Our implementation 

has previously had some success in modelling the detectability of changes in the 

amplitude spectra of natural scenes (Tolhurst & Tadmor, 1997). Discrimination 

models are needed for several reasons (e.g. Ferwerda & Pellacini, 2003, Mitchell, 

Moorhead, Gilmore, Watson, Thomson, Yates, Troscianko & Tolhurst, 2000). First, 

they can help assess the quality of image displays, in which veridical representation of 

scenes may be necessary (e.g. in aeroplane pilots’ training, quality control, 

surveillance, etc). Second, and conversely, they can help assess the quality of 

simulated natural images, to avoid excessive rendering which would be unlikely to 

make any real extra impact on image quality, thus saving time, bandwidth and 

processing power. Third, they provide important clues about the function of visual 

mechanisms; a model based closely on, say, visual cortex neuronal properties would 

allow us to evaluate whether our immense knowledge of such neurons is actually 

adequate to explain vision in the real world.  

Our model is based on evidence, both physiological (De Valois et al., 1982, 

Movshon et al., 1978) and psychophysical (Blakemore & Campbell, 1969, Campbell 

& Robson, 1968, Legge & Foley, 1980), for the existence of multiple channels tuned 

to spatial frequency. The spatial contrast sensitivity function (the overall CSF) is 

presumed to be the envelope of many narrowly-tuned frequency selective channels. In 

the model, the differences in contrast (Peli, 1990, Tadmor & Tolhurst, 1994) between 

two images are calculated within a number of spatial-frequency channels designed to 

have the same spatial-frequency bandwidth as simple cells in the visual cortex (about 

1-1.5 octaves). We presume that simple cells in several independent spatial-frequency 
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bands sample the reference and test stimuli point-by-point, and that each cell then 

signals any local differences in the spatial structure of the two stimuli. 

Each cell contributes some cue to the overall discrimination, and the size of a 

difference cue is determined from the “dipper” function for discriminating between 

contrasts of sinusoidal grating. The cues from the many cells must be combined to 

give an overall indication of how discriminable two images are. We have considered 

two ways in which these many cues might be pooled. In “rule 1”, we presumed that 

discrimination would just be possible when the average of the individual cues 

(expressed as logarithms above or below the dipper) reached some criterion value. 

This is rather simplistic, but it does lead to a straightforward prediction about the 

magnitudes of the discrimination thresholds in the complex scenes (see below). “Rule 

1b” is a variant which allows the model to search for the threshold criterion that 

minimises the goodness of fit. We also used Minkowski summation with an exponent 

of 4 (Quick, 1974, Watson, 1987) by analogy with models of probability summation 

in the detection thresholds for sinusoidal gratings. In fact, psychometric functions 

may be shallower for discrimination than for detection (Bird, Henning & Wichmann, 

2002, Chirimuuta & Tolhurst, 2005) but the choice of a pooling rule appeared to have 

surprisingly little effect on the goodness of the model fits to the experimental results 

(Table 1), as also found by Rohaly et al when they changed the magnitude of the 

Minkowski exponent (Rohaly et al., 1997). In “rule 1”, all cues count towards the 

average, even those that are miniscule; in “rule 4”, discrimination is determined by a 

subset of cells, those giving the largest cues.  

We "customise" the model to include each observer's CSF for sinusoidal 

gratings in the different foveal and peripheral viewing conditions. In most cases, the 

customised model is able to explain the overall “U”-shaped form of the results, 

including the finding that the thresholds for the car/bull sequences are lower than for 

the man/woman sequences. When we customise the model to use the observers’ 

peripheral CSFs for sinusoidal gratings rather than the foveal CSF, the model 

generally explains that the thresholds for making morphed discriminations are higher 

in periphery than in the fovea, but not that the minimum of the “U” is shifted for 6 

deg peripheral viewing. When we customise by using the CSFs of different observers, 
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the model can explain some of the differences in the form of the results between 

different observers.  

Thus, it is fundamental to the model that the magnitudes of the thresholds for 

complex, natural-image discriminations will depend upon the magnitudes of the 

contrast-detection thresholds for sinusoidal gratings. In our experience, such 

modelling is capable of predicting thresholds for one stimulus or one observer relative 

to another; it is harder to make an absolute prediction. To move the relative thresholds 

into the correct absolute range, we lose a degree of freedom to a free parameter – the 

“threshold criterion” (Table 2). However, for the pooling “rule 1a”, we were able to 

make a simplistic assumption without losing this degree of freedom and, thence, an 

absolute prediction of the thresholds for morph discriminations. Fig.8 shows that this 

naive model of pooling is remarkably good at predicting the absolute magnitudes of 

morph discrimination thresholds from grating detection thresholds. In general, “rule 

1a” performed creditably (Table 1) compared to “rule 1b” and “rule 4”, despite its 

having one fewer degrees of freedom. 

 

The threshold criterion values given by the model 

Consider that we have two images which are just different enough to be at 

psychophysical discrimination threshold. These might be two images from our 

morphed sequences, or two gratings of slightly different contrast. The model 

compares the two paired images and returns with one or more “numbers” that ideally 

represent the perceptual difference between the images. We would presume that any 

pair of images, if they were just at threshold, would return the same values – the 

threshold criterion. However, this was not the case. 

First, the threshold criterion values calculated for sinusoidal gratings of 

different contrast were very different from the values calculated for pairs of 

naturalistic images. In “rule 1”, where the visibility cues are averaged across the 

whole image, the threshold criterion changed dramatically with the spatial phase of 

the grating. This was an arithmetic artefact; as spatial phase changed, so the miniscule 

visibility cues near the zero-crossings of the grating changed. They may have changed 

several orders of magnitude, but were always tiny; their role in the arithmetic was 
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significant because they were expressed as logarithms. “Rule 4” relies only on cells 

giving the largest cues, and so these artefactual differences in tiny cues were not a 

problem. However, the stable “rule 4” criterion values for grating discrimination were 

much less than those calculated for the morphed images. The model suggested that, 

compared to grating discrimination, our ability to discriminate between morphs was 

poor. 

Second, different criterion values were needed to explain the discrimination 

thresholds for the different sequences of morphed images and the different 

eccentricity viewing conditions. The values needed for the two modelled observers 

were similar and correlated (see Table 2). The “rule 4” criterion value for the man-to-

woman sequence was 42.67 (averaged across 4 viewing conditions and the 2 

observers). This was very similar to the averaged criterion value for the bull-to-car 

(46.65) and for the car-to-bull (41.70) sequences, and this similarity represents a 

success of the model since the discrimination thresholds for the man-to-woman 

morphs were very different from those in the two car/bull sequences. However, the 

failure of the modelling is also illustrated: the averaged criterion value for the woman-

to-man sequences was substantially lower (28.71), even though the woman-to-man 

thresholds were almost the same as those for the man-to-woman sequence.  

There are, thus, consistent failures in the detailed implementation of the 

discrimination model both for naturalistic images and for gratings. The big 

inconsistency between the modelling of grating discrimination and morph 

discrimination implies that we have not correctly modelled the differences between 

narrow-band and broad-band stimuli. Perhaps, probability summation does not work 

as uniformly across spatial location and spatial-frequency scale as we have modelled. 

For instance, our natural scene stimuli are likely to have multiple, spatially-separated 

cues to discrimination, and an observer may not be able to locate or attend to all of 

them. Or, there may be different kinds of cue such as changes in object shape, contrast 

and texture; the model will detect all of these cues but, for some reason, the observer 

may fail to perceive some of them. We also ignore any effects of eye movements in 

our relatively small, briefly-presented, pictorial stimuli. 
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Future development of the discrimination model 

We have experimented with, e.g., changing the bandwidth of the contrast operators, 

the position and form of the CSF, the value of the Minkowski exponent and the form 

of the dipper function, but have had no systematic improvement in the way that the 

model fits experimental data or any resolution of the inconsistencies in threshold 

criterion values. Indeed, the model is rather tolerant of detailed changes, as is shown 

by the fact that a single-channel model is only slightly less effective than the multiple-

channel model. To obtain an insight into the workings of the model and the effects of 

its various components (bandwidth of the channels, shape and position of the “dipper” 

function and the CSF), we explored how the model’s predictions changed as the 

model parameters were altered. For simplicity, we chose to test only the least complex 

version of the model (Rule1a) applied only to the woman-to-man sequence using 

observer CAP’s foveal CSF (Párraga et al., 1999). Changes in the spatial frequency 

bandwidth of the channels from 0.5 octaves to 1.5 octaves produced relatively little 

change in the predicted thresholds, while bandwidths of 1.9 octaves and more 

produced higher thresholds especially for “whitened” (Δα<0) sequences, with 

adjusted goodness of fit (GoF) indices some 200% higher than in the 1 octave case. A 

“dipper” function with unity slope (consistent with Weber’s Law) produced higher 

predicted thresholds on the “blurred” side (Δα>0) leading to a GoF coefficient some 

300% higher than those obtained with the “biological” dipper shown in Fig.7a. 

Altering the shape of the observer’s CSF (by increasing the model’s sensitivity to 

higher spatial frequencies) did have the effect of over-predicting thresholds in the 

“whitened” side of the plot, presumably because high spatial frequencies do play a 

dominant role there. However, using a ”flat” CSF with the same sensitivity at all 

frequencies made the GoF coefficients only 30% higher. Shifting the observer’s CSF 

down three times (lower sensitivity) produced a GoF coefficient about 300% higher. 

Making the opposite change only produced a marginal improvement in GoF. In 

summary, no single parameter seems to be responsible for the GoF. 

Presumably, more features of the experimental results could be explained 

more reliably if the model were better matched to the known behaviour of real V1 

neurons. Indeed, we have ignored orientation tuning (Campbell & Kulikowski, 1966, 

Hubel & Wiesel, 1959) which is one of the most obvious features of channels and V1 
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neurons; however, we have implemented orientation tuning (unpublished 

observations) to model other experiments (e.g. Ripamonti et al., 2005) and we have 

yet to find a situation where its inclusion leads to different conclusions. Nor have we 

yet modelled contrast normalisation or non-specific suppression (Foley, 1994, Heeger, 

1992, Watson & Solomon, 1997) which Rohaly et al (Rohaly et al., 1997) suggest is 

crucial to successful modelling of broad-band naturalistic stimuli. Such normalisation 

would reduce both the magnitude of the “pedestal” and of the “increment” by the 

same factors in the putative contrast discriminations which we model as underlying 

the discrimination between morphed images. However, since the “Weber” part of the 

dipper function does not have unity slope on log-log co-ordinates, even proportionate 

changes in effective contrast would affect discrimination. Furthermore, we would 

expect the form of the dipper to be changed by normalisation (Chirimuuta & Tolhurst, 

2005, Foley, 1994). 

The present model clearly needs refinement but, even in its present simplistic 

form, it is capable of explaining many of the differences in thresholds between 

observers, between eccentricities and between picture sets. The latter is important, 

since it gives us confidence that experiments on a few examples of natural images 

may be representative of a much wider array. Morphing allows us to generate images 

that could represent real faces or real objects, but only certain sorts of image can be 

morphed; all of our present images are based around single portraits/objects filling the 

bulk of the stimulus area, seen against a uniform background. Perhaps, with 

experiments and modelling on a wider variety of stimulus images, we will be able to 

trace and correct the inconsistencies in the present model. 
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 Figures 

 

Figure 1: a) Some examples of the morphed images that were the basis for the stimuli 

used in this study. A photograph of a bull (left, 0% morph) is gradually morphed into 

a photograph of a car (right, 100% morph). Some intermediate morphed images are 

shown: morphed 20%, 40%, 60% and 80% along the scale from “car” to “bull”. b) 

The graph shows schematically how the amplitude spectrum of an image (dotted line) 

has its slope (initially  on log/log co-ordinates) increased by an increment  to give 

a new image with steeper slope (solid line). To the right is a sequence of images from 

the bull-to-car sequence (0% to 20% morph in 1% steps) after the slopes of all their 

amplitude spectra has been increased by 0.8. c) The same as b except that a decrement 

of 0.8 in spectral slope is applied (note the reduction in perceived contrast). d) The 

root-mean-square pixel difference between the reference image and the 5% morph 

(left) or the 15% morph (right) for the 4 morph sequences is plotted against the 

spectral slope increment of the particular sequence. 
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Figure 2: Discrimination thresholds for monocular foveal viewing of the 4 main sets 

of morphed images. Threshold is plotted as % morph needed for discrimination 

against the change of amplitude spectral slope. +/- 1 standard error is shown. The 

solid curves are the best-fitting 2nd -order polynomials, fitted by minimising 2 (i.e. 

the residual sum of squares weighted by the standard errors of the experimental 

measurements), which is less than 5 for all fits, except 13.08 for CAP bull-to-car and 

6.66 for KB bull-to-car; adding a 3rd -order term cause a reduction in 2 by less than 

3.0 in all cases, except 3.18 for CAP bull-to-car and 3.17 TW man-to-woman. Results 

for observer CAP on all 4 morph sets are shown on the left; for several other 

observers on the right. 



Párraga et al: Discrimination of changes in natural images 

- 42 - 

 
Figure 3: a) The four experimental datasets from the left of Fig.2 are replotted to 

show threshold measured as RMS pixel difference. b-d) Three of those datasets are 

plotted separately as filled circles. The solid lines and open circles show predictions 

of the thresholds if the observer had been detecting a fixed change in RMS pixel 

value. The dotted lines and open triangles show an ideal observer prediction of the 

thresholds. 
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Figure 4: Four examples of the effects of monocular peripheral viewing on the 

magnitudes and forms of the results. The open symbols show the discrimination 

thresholds (+/- 1 standard error) when the observer fixated 3 deg from the centre of 

the 2.43 deg square images; the filled symbols are for 6 deg eccentric viewing. The 

solid curves are the best fitting 2nd -order polynomials fitted to the equivalent foveal 

results; 3 of these lines can be found in Fig.2. Data for two observers and two morph 

sequences are shown. Note the break in the ordinate in the top right panel, and note 

that some data are missing at  of -1.2 because the thresholds were too high to 

measure. 
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Figure 5: a) A summary of the results for foveal and peripheral viewing of 2.43 deg 

square images, showing the distributions of the spectral slope where a fitted 2nd -order 

polynomial was at a minimum. Foveal – open symbols; 3 deg peripheral – black 

symbols; 6 deg peripheral – grey symbols. b) The means of the 3 distributions (for 

foveal and 2 peripheral eccentricities) are shown +/- one standard error. The means 

for foveal and 3 deg viewing are within 1 S.E. of zero. The mean for 6 deg viewing is 

significantly different from zero (t = 2.5; P < 0.05). 
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Figure 6: a) The effects of M-scaling on the contrast sensitivity to sinusoidal 

gratings: open circles and connecting dashed lines measured with foveal viewing of 

square patches of gratings measuring 0.9 deg square; filled symbols and connecting 

solid lines measured with 6 deg eccentric viewing of gratings 2.43 deg square. Note 

that the CSFs overlap when spatial frequency is expressed in cycles per picture. b) 

and c) Two examples of the effects of M-scaling on thresholds for discriminating 

morphed images. Open symbols are for small foveal images, filled symbols are for 

normal sized 6 deg peripheral ones; solid line is the 2nd -order polynomial fitted to the 

foveal thresholds for normal-sized images. 
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Figure 7: a) A schematic of the “dipper function” template used in the model; the 

template is moved on the x and y axes so that the y-axis intercept and the x-axis value 

of the dip are the same as the observer’s detection threshold for gratings of that spatial 

frequency. The open circles show schematic data for pictures that should be easily 

discriminated; the squares show data for pictures that should not be discriminable, 

while the filled circles show data for a pair of pictures that might be just at threshold. 

b) The average of the logs of the visibility values V in each frequency band is plotted 

against the percentage morph change between the reference image (0%) and each test 

image. Results for observer CAP viewing foveally the =0 set of woman-to-man 

images. The horizontal line at an average cue of zero indicates one hypothesis as to 

when the contrast-difference cues might become visible. c) The same as b except for 

the car-to-bull images. Note that two frequency bands cross the zero-criterion line 

together. 
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Figure 8. a) Discrimination thresholds for monocular foveal viewing of the =0 

stimuli in all four image series used in this paper (all observers). The experimentally-

measured threshold (+/- one standard error) is plotted against the threshold predicted 

from the observers’ CSFs using “rule 1a”. 29 stimulus/observer combinations. The 

weighted least-squares regression line is shown which accounts for the different 

standard errors on the different measurements (slope = 0.81, intercept = 1.49%). b) 

The circles show a similar analysis for 6 amblyopic observers using their good eye to 

view the car-to-bull and bull-to car series, while the triangles show predictions for 2 

of the amblyopes viewing morph sequences of facial expressions (Tolhurst & Párraga, 

2003); the squares show data for observers KB and CAP viewing a morphed sequence 

of a lemon turning into a pepper. Total data = 18. Weighted regression slope = 0.99, 

intercept = 0.062%. c), For observer CAP, monocular foveal viewing, 28 measured 

and predicted thresholds are shown for each of 7  amplitude spectrum slope 

increments and four different picture sets. Weighted regression slope = 0.78, intercept 

= 0.75%. d), the same for observer KB. Weighted regression slope = 0.96, intercept = 

0.72%. 
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Figure 9. a) Fitting “rule 1” to the foveal results of KB woman-to-man images, for 

different values (-0.2 to +0.3) of the threshold criterion, averaged-log(V). The circles 

show the experimental measurements with their standard errors. The thick line shows 

the model when the threshold criterion is zero (“rule 1a”). b) The same, but for 6 deg 

peripheral viewing. c) the best-fitting model curves for “rule 1b” (solid line) and “rule 

4” (dashed line) for KB viewing the man-to-woman images foveally. d) The same for 

6 deg peripheral viewing. 
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Figure 10. Ten examples of model fits to the experimental results of two observers 

under 4 different viewing conditions. The circles show the experimental 

measurements with their standard errors. Three models are shown for each: “rule 1a” 

(thick solid lines), “rule 1b” (thin solid lines), and “rule 4” (dashed lines). 

 

 


