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Abstract  36 

Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to 37 

the germ cells, that cannot be detected through the study of the karyotype. Although the 38 

importance of synaptic errors has been underestimated for many years, their presence is 39 

related to many cases of human male infertility.  40 

Synaptic anomalies can be studied by immunostaining of synaptonemal complexes 41 

(SCs), but in this case their frequency is probably underestimated due to the 42 

phenomenon of synaptic adjustment. They can also be studied in classical meiotic 43 

preparations, which, from a clinical point of view, is still the best approach, especially if 44 

multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm 45 

chromosome FISH studies also provide indirect evidence of their presence.  46 

Synaptic anomalies can affect the rate of recombination of all bivalents, produce 47 

achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or 48 

affect all bivalents in the cell. The frequency is variable, interindividually and 49 

intraindividually. The baseline incidence of synaptic anomalies is 6-8 %, which may be 50 

increased to 17.6 % in males with a severe oligozoospermia, and to 27 % in 51 

normozoospermic males with one or more previous IVF failures. The clinical 52 

consequences are the production of abnormal spermatozoa, that will produce a higher 53 

number of chromosomally abnormal embryos. The indications for a meiotic study in 54 

testicular biopsy are provided.  55 
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Introduction 56 

The incidence of constitutional chromosome abnormalities is about ten times higher in 57 

infertile males than in the general population (Zuffardi and Tiepolo, 1982; Van Assche 58 

et al., 1996 ). These anomalies include sex-chromosome aneuploidies, such as XXY and 59 

XYY, which are characterized by the production of  germ cells that are meiotically 60 

incompetent or partially incompetent, and give rise to a more or less severe meiotic 61 

arrest (Blanco et al., 2001), or structural rearrangements, which give rise to abnormal 62 

meiotic configurations, well known since the first decades of the XXth century 63 

(Sybenga, 1975). These rearrangements may segregate abnormally during the meiotic 64 

process and produce chromosomally unbalanced spermatozoa (reviewed by: Egozcue et 65 

al., 2000a; Egozcue et al., 2003). These anomalies are addressed in several articles of 66 

this issue, and will not be dealt with here. Thus, this review will be limited to meiotic 67 

anomalies present in infertile males with a normal karyotype, and only detectable 68 

through the study of meiosis, i.e., to anomalies that have been held as marginal for a 69 

long period of time. 70 

And yet, it has been known for many years that a variable number of infertile males 71 

may show synaptic errors which, by interfering with the normal meiotic process, may 72 

produce diploid or aneuploid spermatozoa, and affect the reproductive capacity of the 73 

carrier (review by Egozcue et al., 2000a). In fact, interest in this type of anomalies has 74 

been recently awakened by the results of immunofluorescent studies of synaptonemal 75 

complexes (Barlow and Hultén, 1996, 1998; Oliver-Bonet et al., 2003; Codina-Pascual 76 

et al., 2004; Sun et al., 2004a; Gonsalves et al., 2004), confirming older data obtained 77 

from meiotic chromosome studies (Egozcue et al., 1983) and from light and electron 78 

microscopic studies of silver-stained synaptonemal complexes (e.g., Hultén et al., 1974; 79 

Navarro et al., 1986; Vidal et al., 1987). 80 
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The first synaptic anomalies were described by Hultén at al. (1970) and by Pearson et 81 

al. (1970), and consisted in a reduction of the number of chiasmata at metaphase I 82 

(oligochiasmatic males). Later on, variants of this anomaly were described by 83 

Dutrillaux and Guéguen (1971), Skakkebaek et al. (1973), Templado et al. (1976) and 84 

Chaganti et al. (1980). 85 

These anomalies were considered to affect from 6-8 % of infertile males in whom 86 

meiosis was analyzed (Egozcue et al., 1983; De Braekeleer and Dao, 1991), but more 87 

recently, the study of better defined groups of patients suggests that the proportion may 88 

be quite variable. 89 

Meiotic studies in human infertile males have been very scarce in the recent past, 90 

because a testicular biopsy requires minor surgery, and also because most laboratories 91 

lacked the expertise needed to analyze meiotic configurations, especially in infertile 92 

males, in whom the number and quality of meiotic divisions may be quite low (Hultén 93 

et al., 1992; Hultén et al.,  2001; Sun et al., 2004a). However, with the progressive use 94 

of intracytoplasmic sperm injection (ICSI) using spermatozoa retrieved from the testis,  95 

testicular biopsies have become quite common, and the incidence of synaptic anomalies 96 

has been confirmed by many authors, although the series are still rather short, and the 97 

categories of the patients still ill defined (Hammamah et al., 1997; Lange et al., 1997; 98 

Sarrate et al., 2004a). 99 

Synaptic disorders may be related to mutations of one or more genes involved in 100 

synapsis or in DNA repair mechanisms (Edelmann et al., 1996; Hassold 1996; 101 

Grotegoed et al., 1999; Baarends et al., 2001; Judis et al., 2004), to mechanical 102 

disturbances of the synaptic process, such as heterosynapsis (which is a rescue 103 

mechanism; Saadhallah and Hultén, 1986), bivalent interlocking or nucleolar fibers 104 

connecting independent bivalents (Guitart et al., 1987), all of which can induce a 105 
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meiotic arrest resulting in the production of azoospermia or severe oligozoospermia 106 

(Saadhallah and Hultén,1986; Navarro et al., 1990), or to milder forms of the anomaly 107 

(Templado et al., 1981) that could be related to an abnormal progression of meiosis in a 108 

compromised testicular microenvironment, especially when FSH values are elevated 109 

(Speed and Chandley, 1990; Finkelstein et al., 1998; Mroz et al., 1999; Egozcue et al., 110 

2000 b; Vendrell et al., 2003). 111 

 112 

Methods of study 113 

Synaptic anomalies can be analyzed through the study of synaptonemal complexes, at 114 

pachytene of meiosis I, or in meiotic chromosome preparations (metaphase I and 115 

metaphase II), using different technologies.  116 

Analysis of synaptonemal complexes (SCs) was initially carried out by combining light 117 

and electron microscopy (Navarro et al., 1981). This allowed characterization some of 118 

the mechanical synaptic disturbances previously described, and also demonstrated the 119 

existence of interchromosomal effects (Templado et al., 1984a; Navarro et al., 1991), 120 

consisting in the presence of synaptic defects (like the one shown in the immunostained 121 

image in Fig. 1a) in individuals who carried a balanced chromosomal rearrangement. 122 

However, the technique was time consuming, and was only applied to clinical work for 123 

a short period of time. 124 

More recently (Barlow and Hultén, 1996) the use of immunostaining of the SC elements 125 

and of the MLH1 recombination foci (Fig. 1b), and the individual identification of each 126 

SC using cenM-FISH or subtelomere labelling has contributed to a better understanding 127 

of the synaptic process and of its anomalies (Oliver-Bonet et al., 2003; Codina-Pascual 128 

et al., 2004; Sun et al., 2004a, 2004b; Gonsalves et al., 2004). 129 
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However, SCs and their MLH1 foci are better analyzed at mid pachytene, when pairing 130 

of homologues is complete, because the spreads are better, the SCs shorter, and spot 131 

counting is facilitated. But, by mid pachytene, synaptic adjustment has already taken 132 

place (Solari, 1980), the synaptic anomalies present in earlier stages may have 133 

disappeared, and thus may no be observed and not be taken into account when 134 

evaluating synaptic disturbances. The evanescence of a full inversion loop has been 135 

dramatically illustrated by Martínez-Flores et al. (2001). If such a complex structure as 136 

an inversion loop can become invisible at full pachytene, it is not difficult to imagine 137 

what may happen to small or even large synaptic splits. 138 

Meiotic studies using classical methods (Evans et al., 1964) have been used in most 139 

cases for the diagnosis of patients with meiotic anomalies (Egozcue et al., 1983; 140 

Egozcue et al., 2000b). The technique is cheap, fast, easy to perform and reliable, but 141 

the meiotic configurations are not always easy to interpret. The quality of the 142 

preparations is usually good (Fig. 2a), and meiotic anomalies are easily identifiable by 143 

experienced personnel. Unfortunately, the use of solid staining do not allow 144 

identification of the bivalents affected. Furthermore, the number and size of the affected 145 

bivalents usually varies from cell to cell (v. ultra), indicating that the anomaly is 146 

unspecific and has different targets for reasons still unknown, but which might be more 147 

or more often related to environmental problems than to specific mutations (Mroz et al., 148 

1999; Egozcue et al., 2000a). 149 

To try to identify and characterize the anomalies involved, Sarrate et al. (2004b) have 150 

recently used multiplex FISH (Fig. 2), which may be combined with the sequential use 151 

of other probes (Fig. 3). This method allows identification of each bivalent in metaphase 152 

I, and characterization of the bivalents affected, but is also useful in the analysis of 153 

metaphase II figures, which are often difficult to interpret (Hultén et al.,1992, Hultén et 154 
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al., 2001), but important to analyze, because they reflect the normal segregation or the 155 

malsegregation of chromosomes in anaphase I, as a result of the synaptic anomalies 156 

present in metaphase I. Furthermore, the use of multiplex FISH (M-FISH) allows 157 

detection of structural meiotic rearrangements that may take place during 158 

spermatogenesis with an unknown frequency, in line with the few cases previously 159 

described (Templado et al., 1984b). These rearrangements are probably more frequent 160 

between the X and the Y chromosomes (unequal crossing-over) (Sarrate et al., 2004a); 161 

these exchanges could never be detected without the use of M-FISH. Unfortunately, the 162 

method is very expensive and time-consuming, and for the time being its use will have 163 

to be limited to research into this problem. 164 

Finally, sperm chromosome studies by FISH reflect the results of chromosome and 165 

chromatid segregation during meiosis I and II, and might help to determine the risk of 166 

producing an abnormal pregnancy in patients with synaptic anomalies. However, the 167 

number of probes that can be used is still low, and most of them do not correspond to 168 

the bivalents affected by synaptic problems.  169 

 170 

Classification of synaptic anomalies 171 

The synaptic anomalies described can be limited or extensive, affect one single bivalent, 172 

several bivalents or most of them, and produce totally asynaptic or partially asynaptic 173 

bivalents. They can also affect all meiotic divisions analyzed or coexist with a normal 174 

cell line, in different proportions. The most common anomalies observed in meiosis I 175 

are: 176 

1. Precocious separation of the sex chromosomes (Fig. 2a). This anomaly (Egozcue 177 

et al., 2000a) is characterized by the absence of MLH1 recombination foci in the 178 

X and Y chromosomes in pachytene spreads. The reduction of recombination 179 
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between the sex chromosomes is correlated with a decrease in the number of 180 

recombination foci in autosomal bivalents (Codina-Pascual, unpublished). 181 

2. Totally achiasmatic small bivalents. This anomaly is frequent, and usually 182 

affects only small bivalents (Egozcue et al., 2000a). The number of achiasmate 183 

bivalents is variable, not only from patient to patient, but also from cell to cell. 184 

Surprisingly, preliminary data obtained using multiplex fluorescent in situ 185 

hybridization (M-FISH) suggest that these achiasmate bivalents involve mainly 186 

members of the F group (pairs # 19 and 20) and not members of the G group 187 

(pairs # 21 and 22) as might have been expected (Sarrate et al., 2004a; 2004b).  188 

3. Partially achiasmate bivalents. These are also variable in number, not only in 189 

different patients, but also in different cells from the same patient, and are 190 

usually medium sized (group C) (Fig. 1b), but may occasionally be large (groups 191 

A and B) (Fig. 2). The most common effect of the reduction of the number of 192 

recombination sites is the presence of a single chiasma in a bivalent that should 193 

usually have two or more chiasmata (Fig. 2).  Preliminary studies suggest that 194 

pair # 9 may be the one most frequently involved in this anomaly. Partially 195 

achiasmate bivalents are the most common meiotic anomaly observed in 196 

infertile males. 197 

4. Totally achiasmate bivalents. This is a very unfrequent anomaly, and affects 198 

most if not all bivalents. Chromosome fragmentation is usually present 199 

(Templado et al., 1976), and the fragments may aggregate to produce 200 

pseudochromosomes or pseudobivalents (Fig. 4). 201 

The incidence of each one of these synaptic errors has never been estimated, 202 

although the most frequent anomalies are by far the presence of small achiasmate 203 

bivalents and the presence of medium-sized partially achiasmate bivalents. 204 
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Occasionally, and as previously described in the Orthoptera (Suja et al., 1989) 205 

asynaptic gametocytes may produce megalospermatocytes (Johannisson et al., 2003) 206 

or megalospermatids (Escalier, 2002), which is a most unusual finding, but is 207 

obviously related to synaptic errors. 208 

 209 

Incidence 210 

To determine the real incidence of synaptic anomalies in infertile males is difficult, 211 

because the possible influence of meiotic anomalies on the reproductive record of 212 

these patients has not been considered as it deserved. However, some published or 213 

unpublished data are available to offer an overview of this problem. 214 

The incidence of synaptic anomalies is quite different depending on the 215 

methodology of analysis employed. By using immunostained SCs in 216 

oligozoospermic patients, Codina-Pascual (unpublished) found no significant 217 

differences in the rate of synaptic defects between patients and controls. These data 218 

underline the difficulty of using full pachytenes to establish the incidence of 219 

synaptic anomalies, due – as discussed above – to the phenomenon of synaptic 220 

adjustment. On the other hand, Gonsalves et al. (2004) found that 10% of patients 221 

with a non-obstructive azoospermia had a reduced recombination rate, while this 222 

anomaly affected 50% of patients with a “maturation arrest”. This is not surprising 223 

taking into account that patients with meiotic arrest (oligozoospermia) show a much 224 

higher incidence of synaptic anomalies (17.5%) than non-obstructive azoospermic 225 

patients (5.9%) (Egozcue et al., 2000b). 226 

On the other hand, in 1983 Egozcue et al. studied a series of 1100 “infertile males” 227 

which included from azoospermic to normozoospermic patients. The incidence of 228 

synaptic anomalies was 6-8 %, a figure later confirmed by De Braekeleer and Dao 229 
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(1991). Later on, Egozcue et al. (2000b) studied 103 males with a severe 230 

oligoasthenozoospermia (< 1.5 x 106 motile sperm/ml) and found an incidence of 231 

meiotic anomalies of 17.6 %. More recently, in a still preliminary study, Egozcue et 232 

al. (2004) studied 60 normozoospermic males with a long history of sterility or with 233 

previous IVF failures, and surprisingly the incidence of synaptic anomalies was 234 

27%. Taking into account their clinical record, out of the 103 patients studied by 235 

Egozcue et al. (2000b), 100 were sterile and three had had one abortion. In the series 236 

of 60 normozoospermic patients, Serra et al. (2004) found 17 patients with long 237 

term sterility, 21 with an embryo factor after IVF (low embryo quality, abnormal 238 

cleavage, developmental arrest,…), 11 with no fertilization at IVF and 23 with 239 

repeated IVF failures. The total adds to more than 60 patients because some of them 240 

had more than one of the problems indicated. These data are, by far, inconclusive, 241 

because they refer to short series, but underline the fact that synaptic anomalies are 242 

frequent in infertile males with a severe oligozoospermia or 243 

oligoasthenozoospermia, or in cases of normozoospermic males with previous IVF 244 

failures.     245 

  246 

Clinical consequences 247 

The clinical consequences of synaptic anomalies are difficult to evaluate, because as 248 

stated before this is a field that has been mostly ignored by clinicians and 249 

researchers. However, some general data are available concerning the possible 250 

clinical consequences of synaptic anomalies. 251 

1. Abnormal sperm: in the only five patients with synaptic anomalies in whom 252 

sperm chromosomes were analyzed by FISH  (Arán et al., 1999), using probes 253 

for chromosomes 18, X and Y, diploidy (0.53 %) was significantly increased 254 
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when compared to controls (0.25 %; P< .01). No increases of sex chromosome 255 

or autosomal disomies were observed. However, Marina (unpublished) has 256 

compared the results of meiotic studies and sperm chromosome studies by FISH 257 

in 60 patients with different spermograms. In 18 cases (30 %) meiosis and FISH 258 

were normal, and in 17 cases (28.3 %) meiosis and FISH were abnormal, for a 259 

total of 58.3 % of coincidence. However, in 25 cases (41.6 %) FISH results were 260 

normal, but meiotic results were abnormal. Since, as discussed above, many of 261 

the meiotic anomalies observed cannot be detected by the set of probes 262 

employed (13, 18, 21, X and Y), sperm chromosome studies by FISH do not 263 

cover, at present, a chromosome spectrum wide enough to detect all the effects 264 

of synaptic anomalies. Another possibility might be the selective elimination of 265 

aneuploid cells as suggested by Blanco et al. (2001; 2003). 266 

2. Fertilization, pregnancy, implantation and abortion rates: No significant 267 

differences were detected  when comparing infertile males with synaptic 268 

anomalies and controls (Arán et al., 2003) but the work gave no indication about 269 

the birth rate. 270 

3. Normal embryos: Patients with synaptic anomalies produced more 271 

chromosomally abnormal embryos than controls. In a recent study based on data 272 

from preimplantation genetic screening (PGS) of  embryos from individuals 273 

with synaptic anomalies (Arán et al., 2004), 42.5% of the embryos were 274 

abnormal, and of these, 17.6 % had complex chromosome abnormalities. These 275 

figures are similar to those more recently compiled in our laboratory (69 cycles, 276 

41.45% of abnormal embryos of which 16.86% with complex anomalies).  277 

4. Embryo cleavage: In carriers of synaptic anomalies, embryo division was 278 

significantly delayed (Vendrell et al., 2003).  279 
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 280 

Indications for a meiotic study    281 

In general, most meiotic (SCs, meiotic chromosomes) or meiotically related (sperm 282 

FISH) studies have been carried out in ill defined populations, such as “infertile 283 

males”, “ICSI candidates”, etc. Only a few of them have included patients with well 284 

known spermogram characteristics. By progressively narrowing the pathological 285 

spectrum, the best candidates for a meiotic study would be: 286 

1. Infertile males with a normal karyotype and unexplained infertility, and among 287 

them, 288 

2. Infertile males with normozoospermia and long-term sterility, or IVF failures 289 

(embryonic factor, no fertilization, repeated IVF failures), or  290 

3. Infertile males with a severe oligozoospermia (< 5 x 106 sperm/ml) or a severe 291 

oligoasthenozoospermia (< 1.5 x 106 motile sperm/ml). 292 

293 
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Figure 1. a) Medium-sized synaptonemal complex showing a long asynaptic region b) One medium-sized 
synaptonemal complex and one small immunostained with SCP3 (red) showing MLH1 recombination foci (yellow) 
and the centromere (CREST; blue).The sex chromosomes are indicated (XY). 
 
 
 
 
 

 
 
Figure 2. a) Leishman-stained metaphase I figure showing the precocious separation of the sex chromosomes, a large 
partially asynaptic bivalent (arrow) and a difficult-to-resolve superimposition (center). b) M-FISH of the same figure; 
the sex chromosomes are identified, the large, partially asynaptic bivalent corresponds to pair # 4, and the difficult-to-
resolve superimposition includes pairs # 1 and 13. 
 
 
 
 
 

 
 

Figure 3. The previous Metaphase I recycled for multiprobe FISH using a combination of a centromeric probe for 
chromosome 4 (orange), a centromeric probe for chromosome X (red), a probe identifying the heterochromatic region 
of chromosome Y (blue) and locus specific probe for chromosome 13 (13q14;green). The centromeres of the partially 
asynaptic bivalent # 4 are wide apart, indicating that asynasis is proximal. 
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Figure 4. Metaphase I (Giemsa stain) with mostly asynaptic bivalents. Chromatin aggregates (arrows) 
produce pseudochromosomes and pseudobivalents. 

 


