
This is the **accepted version** of the journal article:

Teles, Mariana; Pacheco, M. Guilherme Garcês; Santos, Monteiro Ana. «*Sparus aurata* L. liver EROD and GST activities, plasma cortisol, lactate, glucose and erythrocytic nuclear anomalies following short-term exposure either to 17 β -estradiol (E2) or E2 combined with 4-nonylphenol». *Science of the total environment*, Vol. 336, Num. 1-3 (January 2005), p. 57-69 DOI 10.1016/j.scitotenv.2004.05.004, PMID 15589249

This version is available at <https://ddd.uab.cat/record/324010>

under the terms of the license.

Sparus aurata L. liver EROD and GST activities, plasma cortisol, lactate, glucose and erythrocytic nuclear anomalies following short-term exposure either to 17h-estradiol (E₂) or E₂ combined with 4-nonylphenol

M. Teles, M. Pacheco, M.A. Santos*

Biology Department, Campus de Santiago, Aveiro University, 3810-193 Aveiro, Portugal

Abstract

Immature *Sparus aurata* L. (gilthead seabream) were exposed to 17h-estradiol (E₂) 4000 ng/l and to the same E₂ concentration mixed with 50,000 ng/l 4-nonylphenol (E₂ + NP) during 4, 8, 12 and 16 h. E₂ availability and E₂ plasma level variations were assessed. Liver biotransformation capacity was measured as ethoxresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) activities. Plasma cortisol, lactate and glucose were also determined. Genotoxicity was assessed through erythrocytic nuclear anomalies (ENA) frequency. Liver EROD activity significantly decreased during the whole experiment for both treatments, with the exception of 16 h exposure to E₂. Liver GST activity was significantly increased after 8 and 12 h of exposure either to E₂ or E₂ + NP. An endocrine disruption expressed as plasma cortisol decrease was observed after 16 h exposure under both tested conditions, concomitantly with a plasma lactate increase. No genotoxic responses, measured as ENA frequency, were detected. Analyzing the E₂ water concentration in aquaria without fish it was demonstrated an intense and fast E₂ loss, considerably reducing its availability to fish. In the presence of fish, E₂ water levels were drastically reduced after 4 h exposure, being this reduction more pronounced in E₂ aquarium when compared to E₂ + NP aquarium. In addition, it was demonstrated a rapid E₂ uptake from the water since the highest E₂ plasma concentrations were observed after 4 h exposure, followed by a continuous decrease, which became more pronounced between 8 and 12 h of exposure. Furthermore, during the first 8 h exposure to E₂ and E₂ + NP, seabream plasma E₂ concentrations were higher than the initial water exposure concentration. Comparing the E₂ plasma levels in both seabream-exposed groups, it was clear that its concentration is always higher in E₂ + NP-treated fish. Despite the previous results, no significant differences were found in the measured responses between E₂ and E₂ + NP.

Keywords: Seabream; Biotransformation; Genotoxicity; Endocrine disruption

* Corresponding author. Tel.: +351-234370965; fax: +351-234426408.

E-mail addresses: mteles@bio.ua.pt (M. Teles), mpacheco@bio.ua.pt (M. Pacheco), monteiro@bio.ua.pt (M.A. Santos).

1. Introduction

The aquatic environment contamination by xenoestrogens—substances that modulate or mimic the action of sex steroid hormones, mainly 17h-estradiol (E₂)—

has received considerable scientific, government and public attention (White et al., 1994; Brighty, 1996). However, natural estrogens such as E₂ and estrone can also be regarded as aquatic contaminants. The discovery of significant E₂ concentrations in municipal sewage treatment plants effluents (Brighty, 1996) became a matter of concern, being the assessment of its effects on fish at different levels, strongly recommended.

The degradation products of nonylphenol polyethoxylates, such as 4-nonylphenol (NP), are able to activate fish estrogen-dependent gene expression (Ackermann et al., 2002), revealing estrogenic properties either in vitro (White et al., 1994) or in vivo (Jobling et al., 1996). The polymer industry is the most important source of NP environment contamination, being the major part (95%) released to water. The majority of fish studies carried out on this subject concerned the effects on reproductive aspects. Either E₂ or NP elevate plasma vitellogenin and zona radiata proteins in both males and females (Ackermann et al., 2002), induce intersexuality (Jobling et al., 1996), inhibit spermatogenesis and alter gonadosomatic index (Sepúlveda et al., 2003). Besides the known interference on reproduction, it is also important to study the interaction of synthetic and natural steroids with other biological responses. In this perspective, a substantial lack of information concerning the effects of this type of compounds on nonreproductive endocrine responses is evident. Considering the important role of cortisol on fish physiological responses to stressors through intermediary metabolism regulation, immune function and hydromineral homeostasis (Hontela, 1997), its alterations after exposure to xeno/estrogens must be investigated.

Different authors (Pajor et al., 1990; Arukwe et al., 1997) proposed a cross-talk mechanism between P450 activities and steroid synthetic pathways. Thus, cytochrome P450-based mixed-function oxygenase (MFO) system is involved in xenobiotics and endogenous steroids metabolism. Despite the lack of information concerning CYP1A regulation by endogenous compounds, it was demonstrated that both EROD activity and CYP1A respond to estrogens (Solé et al., 2000). A significant reduction in EROD activity and CYP1A protein was reported in several fish species, namely *Pseudopleuronectes americanus*, *Stenotomus chrysops* (Gray et al., 1991) and *Salmo salar* (Arukwe and Goksøyr, 1997) after E₂ exposure. The same pattern of response was also observed in *S. salar* (Arukwe et al.,

1997) after NP exposure. Metabolites resulting from biotransformation processes (phase I) may be conjugated with endogenous molecules (phase II) making them more readily excretable (Goksøyr and Förlin, 1992). Gallagher et al. (2001) found that conjugase activities are also modulated by endogenous steroids. Additionally, effects of synthetic or natural steroids include genotoxicity (Liehr, 2000) as it was proposed that they could induce genetic damage and gene mutations in mammals (Roy and Liehr, 1999; Yared et al., 2002). However, to our knowledge only a few studies are available concerning genotoxicity of these compounds in non-mammal species. NP was reported as genomic DNA damaging agent to crustacean larvae (Atienzar et al., 2002), and genotoxic to sea bass, measured as erythrocytic nuclear abnormalities (ENA) (Teles et al., 2004a).

Gilthead seabream, *Sparus aurata* L., seawater teleost widespread in Atlantic and Mediterranean coastal waters, is one of the most commercially important species, and as protandrous hermaphrodite is particularly appropriate as a biological model to endocrine studies.

Environmental waters are frequently contaminated simultaneously by different natural and synthetic steroids, being therefore relevant to study xeno/estrogen mixtures effects, as well as their eventual interference on single compounds effects, in fish.

The aims of the present research work, using juvenile seabream, were to assess the waterborne E₂ or E₂ mixed with NP (E₂ + NP) effects on biotransformation, measured as total P450 content, ethoxresorufin-O-deethylase (EROD) activity (phase I) and glutathione-S-transferase (GST) activity (phase II). The variation on E₂ concentrations in aquaria water and in seabream plasma was determined during the whole experiment. Liver somatic index (LSI) and alanine transaminase (ALT) activity were measured as general hepatic condition indicators. Additionally, the stress responses were evaluated as plasma cortisol, glucose and lactate, and genotoxicity was investigated using the ENA assay.

2. Material and methods

2.1. Chemicals

NP and E₂ were purchased from Sigma-Aldrich (Germany). Marine salt was supplied by Sera Premium (Germany). All the other chemicals were of analytical

grade obtained from Sigma-Aldrich, Roche (Germany) and E. Merck-Darmstadt (Germany).

2.2. Test animals

The experiment was carried out with juvenile *S. aurata* specimens obtained from a local fish farm, Materaqua- Ílhavo, Portugal. Seabream weighing 34 F 0.3 g were transported in aerated saltwater and acclimated to laboratory conditions for 1 week prior to experimentation. During acclimatization and experimental periods, fish were kept in 80-l aquaria, at 20 $^{\circ}\text{C}$ in aerated (dissolved oxygen: 7.4 F 0.2 mg/l) and filtered artificial seawater (34 g/l salinity), with a pH of 8.4 F 0.2.

2.3. Experimental design

Fish were divided in three lots: one as control and the others were exposed either to E_2 or E_2 mixed with NP ($\text{E}_2 + \text{NP}$), during 4, 8, 12 and 16 h. The appropriate amount of each chemical was previously dissolved in 1 ml of DMSO and added to the experimental aquaria in order to prepare the following nominal concentrations: 14.68 nM (4000 ng/l) of E_2 and 183.5 nM (50,000 ng/l) of NP. The same volume of DMSO was added to the control aquarium, since this concentration has no damaging effects on fish (Pacheco and Santos, 1998). Experiments were carried out using test groups of five seabream ($n=5$). E_2 or $\text{E}_2 + \text{NP}$ (in the previous nominal concentrations) were added to two additional aquaria ($\text{E}_{2\text{nf}}$ and $\text{E}_2 + \text{NP}_{\text{nf}}$), kept without fish, in order to determine the E_2 availability to fish after the eventual adsorption and degradation occurring during the same exposure period.

Fish were killed at each sampling point and their blood and liver were collected. Liver was immediately frozen in liquid nitrogen, stored at $-80\text{ }^{\circ}\text{C}$ until homogenization. Blood smears were prepared. Blood plasma was isolated using an Eppendorf centrifuge (14,000 rpm).

2.4. Biochemical analysis

2.4.1. Liver cytochrome P450 content and EROD activity

Cytochrome P450 content was determined using the dithionite-reduced carbon monoxide difference

spectrum between 450 and 490 nm, as previously described by Hermens et al. (1990).

The liver EROD activity was measured in microsome suspension as described by Burke and Mayer (1974) as adapted by Pacheco and Santos (1998). The reaction was carried out, at 25 $^{\circ}\text{C}$, in the fluorometer cuvette containing 1 ml 0.5 AM ethoxyresorufin (in 0.1 M Tris-HCl pH 7.4, containing 0.15 M KCl and 20% glycerol) and 100 μl of microsomal suspension. The reaction was initiated by adding 10 μl of NADPH (10 mM) and the progressive increase in fluorescence, resulting from the resorufin formation, was measured for 3 min (excitation wavelength 530 nm, emission wavelength 585 nm). EROD-activity was expressed as picomoles per minute per milligram of microsomal protein.

2.4.2. Liver GST activity

GST activity was determined in the cytosolic fraction as described by Lemaire et al. (1996), using 1-chloro-2,4-dinitrobenzene (CDNB) as substrate (Habig et al., 1974). The assay was carried out in a quartz cuvette with a 2-ml mixture of 0.2 M phosphate buffer (pH 7.4), 0.2 mM CDNB and 0.2 mM GSH. The reaction was initiated by the addition of 10 μl sample at 25 $^{\circ}\text{C}$. The increase in absorbance was recorded at 340 nm wavelength during 3 min.

2.4.3. Liver ALT activity

ALT activity was measured, in the supernatant resulting from microsomal isolation, according to a colorimetric method based on the measurement of the pyruvate produced by the transamination reaction (Reitman and Frankel, 1957).

2.4.4. Protein measurement

Microsomal and cytosolic protein concentrations were determined according to the Biuret method (Gornal et al., 1949) using bovine serum albumin (E. Merck-Darmstadt) as a standard.

2.4.5. Cortisol, glucose and lactate measurement

The determination of cortisol was performed in plasma using a diagnostic ELISA direct immunoenzymatic kit (Diametra, Italy). The cortisol in the sample competes with horseradish peroxidase-cortisol for binding onto the limited number of anti-cortisol sites in the microplate. Cortisol concentration in the sample is calculated based on a series of standards and the

color intensity is inversely proportional to the cortisol concentration in the sample. The method allows the determination of cortisol from 10 to 500 ng/ml.

Plasma glucose was measured spectrophotometrically (340 nm) according to the method modified from Banauch et al. (1975) based on the quantification of NADH after a glucose oxidation catalysed by the glucose-dehydrogenase. The quantity of NADH formed is proportional to the glucose concentration.

Plasma lactate levels were determined spectrophotometrically (340 nm) according to the method modified from Noll (1974) using lactate-dehydrogenase (LDH), ALT and NAD, measuring the NADH appearance.

2.4.6. 17b-Estradiol measurement

The E₂ determination was performed using a diagnostic ELISA direct immunoenzymatic kit (Dia-metra). E₂ in the sample competes with horseradish-peroxidase E₂ for binding onto the limited number of anti E₂ sites on the microplates. E₂ concentration in the sample is calculated based on a series of standard; the color intensity is inversely proportional to the E₂ concentration in the sample. The method allows the determination of E₂ from 20 to 4000 pg/ml.

Plasmatic and water E₂ measurements were carried out during the entire experiment. The E₂ quantification on water was performed in the experimental aquaria (E₂, E₂ + NP) containing seabream, as well as in two additional aquaria kept without fish (E₂nf, E₂ + NP_{nf}).

2.5. Liver somatic index

LSI results were presented as a frequency (%) resulting from the following expression: [liver mass (g)/body mass (g)] × 100%.

Table 1

17h-Estradiol (E₂) measurement in the aquaria water 5 min, 4, 8, 12 and 16 h and in the *S. aurata* plasma 4, 8, 12 and 16 h after the addition of E₂ (4000 ng/l) or E₂ mixed with 4-nonylphenol (NP)—E₂ + NP—4000 and 50,000 ng/l, respectively

Time	Water estradiol (ng/l)					Plasma estradiol (ng/l)		
	Control	E ₂	E ₂ + NP	E ₂ nf	E ₂ + NP _{nf}	Control	E ₂	E ₂ + NP
5 min	33.05	666.01	1618.18	3426.21	3879.99	—	—	—
4 h	29.09	31.46	258.86	1605.71	2039.32	59.14	5997.43	14329.58
8 h	17.38	24.16	102.08	1238.95	1481.23	145.55	5111.98	10040.00
12 h	29.75	17.62	32.05	958.90	1203.81	101.31	882.13	4051.00
16 h	32.98	10.18	19.99	630.71	686.84	51.41	206.10	1355.04

The water quantification was performed in aquaria with fish (E₂ and E₂ + NP) or without fish (E₂nf and E₂ + NP_{nf}).

2.6. ENA assay

The blood smears were fixed with methanol during 10 min and stained with Giemsa (5%) during 30 min. In order to evaluate genotoxicity the erythrocytic nuclear abnormalities were scored in 1000 mature erythrocytes sample per fish, according to the criteria of Schmid (1976), Carrasco et al. (1990) and Smith (1990), adapted by Pacheco and Santos (1996). According to these authors, nuclear lesions were scored into one of the following categories: micronuclei, lobed nuclei, dumbbell shaped or segmented nuclei and kidney shaped nuclei. The final result was expressed as the mean value (×) of the sum for all the individual lesions observed.

2.7. Statistical analysis

Statistica software (StatSoft, Tulsa, OK) was used for statistical analyses. All the data were first tested for normality and homogeneity of variance to meet statistical demands. ANOVA analysis was used to compare results between fish groups, followed by LSD test (Zar, 1996). Differences between means were considered significant when P < 0.05.

3. Results

3.1. Water and plasma 17b-estradiol quantification (Table 1)

A time-related reduction in 17h-estradiol concentrations was observed either in aquaria with fish (E₂ and E₂ + NP) or without fish (E₂nf and E₂ + NP_{nf}),

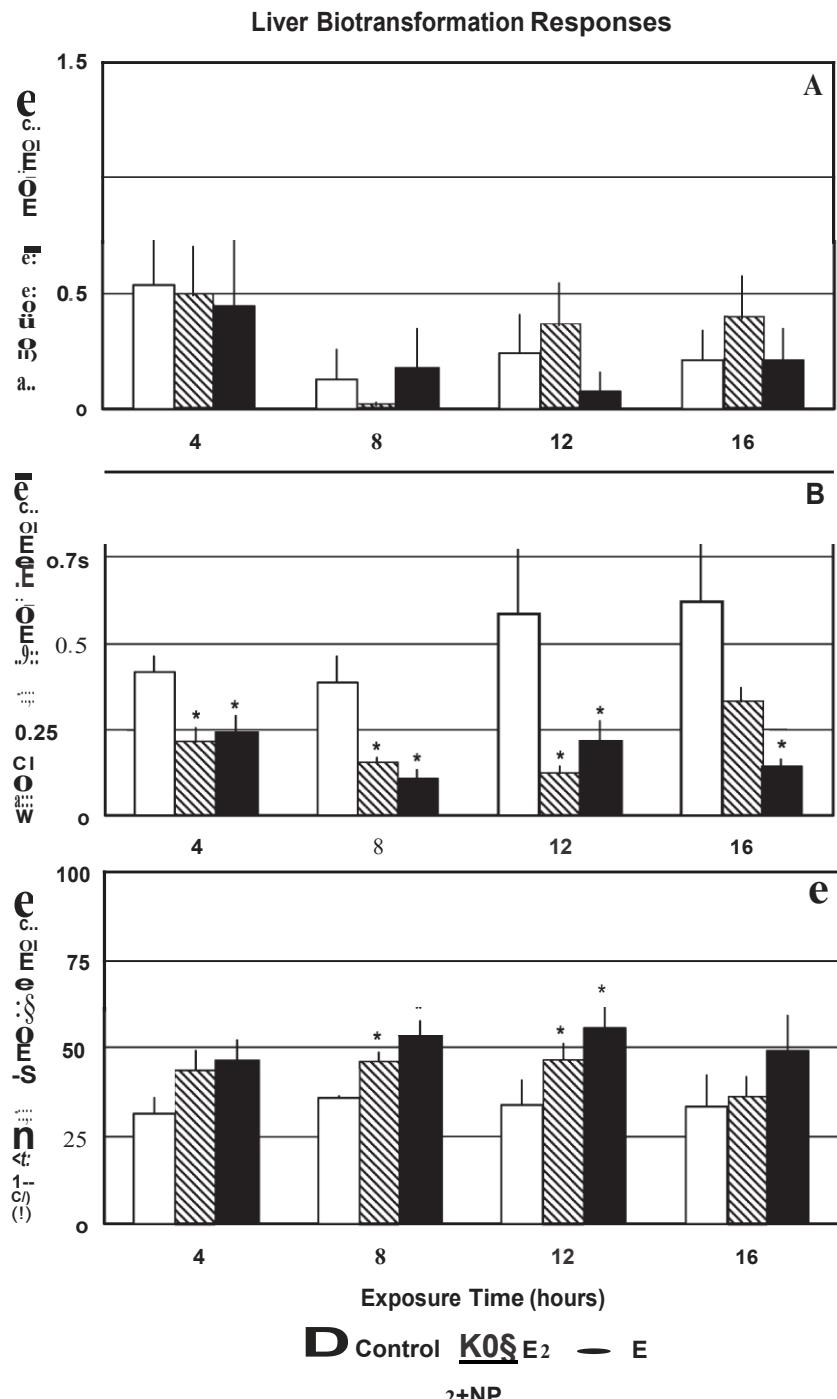


Fig. 1. *S. aurata* liver P450 content (A), liver EROD activity (B) and liver GST activity (C) after 4, 8, 12 and 16 h exposure to (4000 ng/l) of 17 β -estradiol (E₂), and to a mixture of E₂ and 4-nonylphenol (NP)--E₂ + NP-4000 and 50,000 ng/l, respectively. Values represent the means and S.E. (n = 5/treatment). Differences from control: *P < 0.05.

during the entire experiment. However, this E_2 reduction was more pronounced in aquaria containing fish. On the other hand, the $E_2 + NP$ aquaria always presented clearly higher E_2 concentrations than the E_2 aquaria, either in the fish presence or absence. After 4 h exposure E_2 levels in the aquaria with fish were drastically reduced, i.e., a 99% reduction in E_2 aquarium and a 93.5% reduction in $E_2 + NP$ aquarium. Furthermore, the control level was reached after 4 h in E_2 aquarium, whereas in $E_2 + NP$ aquarium this reduction occurred after 12 h of exposure. The maximum E_2 plasma levels were observed after 4 h exposure in both treated groups,

presenting thereafter a time-related decrease. Seabream exposed to $E_2 + NP$ exhibited E_2 plasma concentrations higher, at least two-fold, than E_2 -treated group. In the period between 4 and 8 h, it was observed, for treatments, the lowest E_2 plasma reduction, 15% and 30% reduction for E_2 - and $E_2 + NP$ -treated fish, respectively. The highest plasma E_2 reduction was observed after 12 h in E_2 (83% reduction) and at 16 h in $E_2 + NP$ -treated fish (67% reduction) Table 1.

Taking into account the E_2 levels detected in the E_2nf and $E_2 + NP_{nf}$ aquaria, indicating the E_2 availability, it is noticeable that its uptake from the water in

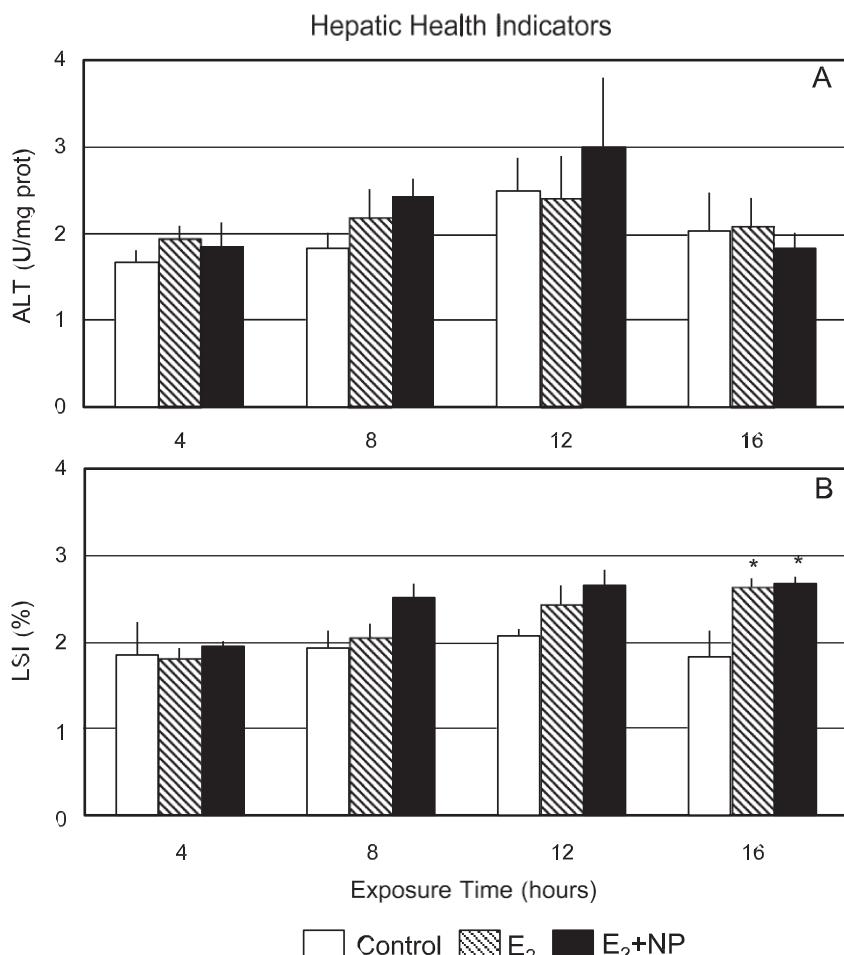


Fig. 2. *S. aurata* liver ALT activity (A) and LSI (B) after 4, 8, 12 and 16 h exposure to (4000 ng/l) of 17 β -estradiol (E_2), and to a mixture of E_2 and 4-nonylphenol (NP)— $E_2 + NP$ —4000 and 50,000 ng/l, respectively. Values represent the means and S.E. (n=5/treatment). Differences from control: *P < 0.05.

E_2 group was slightly lower than in $E_2 + NP$ group during the first 4 h.

3.2. Liver biotransformation responses (Fig. 1)

P450 content did not exhibit any statistically significant alteration (Fig. 1A). However, a significant EROD activity decrease was observed in seabream after 4, 8 and 12 h exposure to E_2 and $E_2 + NP$ compared to the control (Fig. 1B). Furthermore, EROD activity inhibition significantly persisted at 16 h of exposure to $E_2 + NP$. Seabream exposed either to E_2 or to $E_2 + NP$ did not demonstrate any significant differences between them. A significant increase in GST activity was observed in seabream at 8 and 12 h exposure to E_2 or $E_2 + NP$ (Fig. 1C).

3.3. Hepatic health indicators (Fig. 2)

Liver ALT activity did not present any significant alteration (Fig. 2A). However, LSI significantly rises after 16 h exposure to E_2 and $E_2 + NP$ (Fig. 2B).

3.4. Genotoxic response (Fig. 3)

The ENA frequency in treated fish was similar to that displayed by the control (Fig. 3).

3.5. Stress responses (Fig. 4)

Seabream plasma cortisol levels significantly decreased after 16 h exposure to E_2 or $E_2 + NP$ despite its decreased tendency since the initial exposure (Fig. 4A). The plasma glucose concentration did not exhibit any significant alteration (Fig. 4B). Plasma lactate levels displayed a significant increase after 16 h exposure either to E_2 or $E_2 + NP$, though this increasing tendency was noticed from 8 h exposure onwards (Fig. 4C).

4. Discussion

4.1. 17b-Estradiol measurements

E_2 has been detected in effluent sewage treatment plants in different countries such as USA, Japan, Germany, Italy and the Netherlands, at concentrations up to 64 ng/l (Spengler et al., 2001). Considering the previous environmental data, a spiking concentration was adopted in the current study, to ensure a substantial uptake in a short period. Thus, this fact should be kept in mind in eventual extrapolations of the current findings to environmental situations.

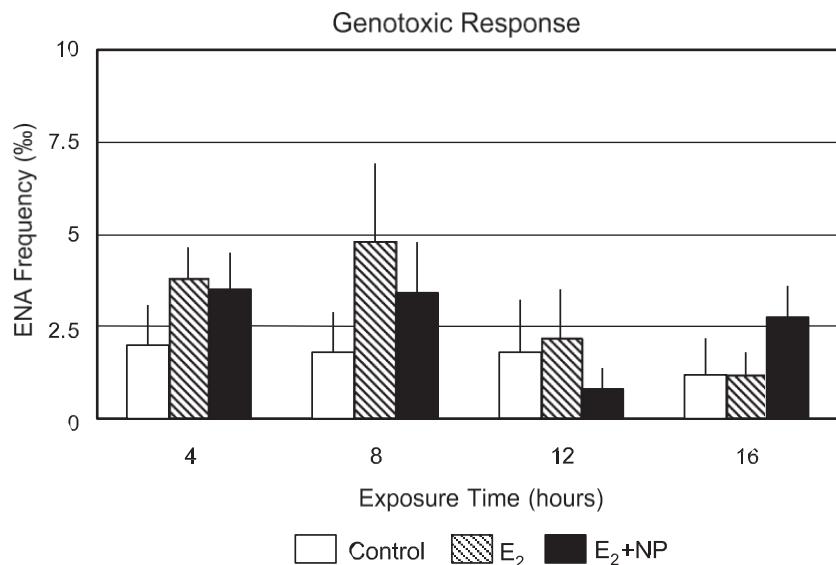


Fig. 3. *S. aurata* ENA frequency after 4, 8, 12 and 16 h exposure to (4000 ng/l) of 17 β -estradiol (E_2), and to a mixture of E_2 and 4-nonylphenol (NP)— $E_2 + NP$ —4000 and 50,000 ng/l, respectively. Values represent the means and S.E. ($n = 5$ /treatment). Differences from control: * $P < 0.05$.

Stress Responses

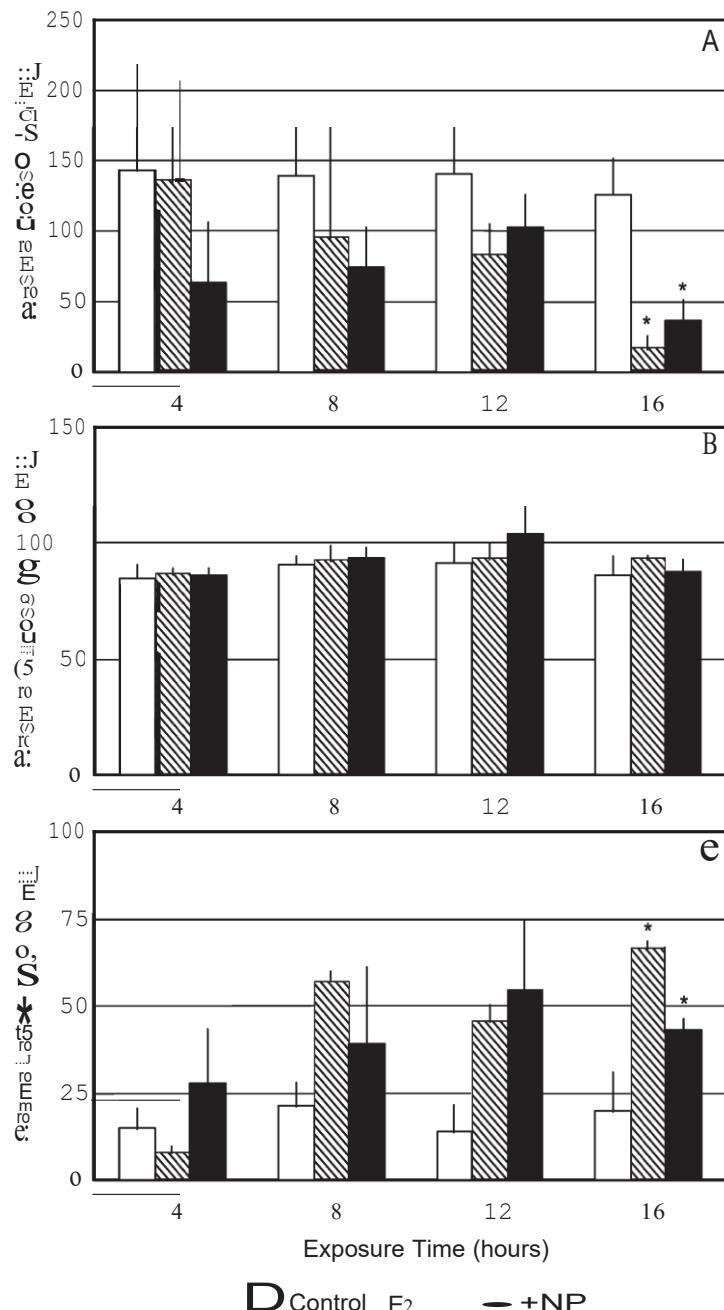


Fig. 4. *S. aurata* plasma cortisol levels (A) plasma glucose levels (B) and plasma lactate levels (C) after 4, 8, 12 and 16 h exposure to (4000 ng/l) of 17 β -estradiol (E₂), and to a mixture of E₂ and 4-nonylphenol (NP)—E₂ + NP—4000 and 50,000 ng/l, respectively. Values represent the means and S.E. (n=5/treatment). Differences from control: *P<0.05.

The NP concentrations detected in environment ranged from near or below limits of detection up to 180 ng/l (Nielsen et al., 2000).

The measurement of E₂ in aquaria without fish demonstrated a time-related reduction in E₂ concentration, which is less pronounced in the presence of NP. Some studies were previously carried out on E₂ sorption and degradation, which can help to explain the current results. A study testing an E₂ concentration range which includes the current E₂ concentration revealed that microorganisms were capable of transforming E₂ with half-lives of 0.2–9 days (Jurgen et al., 2002). According to the same authors, E₂ was susceptible to photodegradation with half-lives in order of 10 days. Additionally, Holthaus et al. (2002) observed that 80–90% of E₂ bound to bed sediments within 1 day, whereas Ying et al. (2003) stated that E₂ had a modest sorption capability to sediment.

The E₂ decrease in water was more pronounced in aquaria with than without seabream, suggesting its rapid uptake from the water, which is corroborated by the plasma E₂ increase. Thus, E₂ on water was drastically reduced during the first 4 h of exposure, and concomitantly the highest E₂ plasmatic concentrations were detected after 4 h, followed by its continuous decrease, which became more pronounced between 8 and 12 h exposure. Moreover, plasma E₂ concentrations were higher than the initial water exposure concentration (4000 ng/l), during the first 8 and 12 h in fish, respectively exposed to E₂ and E₂ + NP. The present results agree with Specker and Chandee (2003) who found that E₂ uptake by *Paralichthys dentatus* reached an initial plateau within 30 min, being accumulated in the whole-body above the exposure concentrations. Comparing the E₂ plasma levels in seabream exposed either to E₂ or E₂ + NP, it is clear that its concentration was always higher in the last group. This fact may reflect alterations on E₂ water/plasma/tissue uptake, and excretion, as a consequence of the simultaneous NP exposure.

Despite the different E₂ plasma levels between seabream exposed to E₂ and E₂ + NP, in general the measured responses were not different, as discussed below.

4.2. Biotransformation responses

The CYP1A induction measured either by immunodetection or through its catalytic activity is proba-

bly the best-studied biomarker (Bucheli and Font, 1995). Hence, EROD activity has been widely used as a biomarker for fish exposure to substances that bind to the aryl hydrocarbon (Ah) receptor (Lemaire et al., 1996; Pacheco and Santos, 1998, 2001).

In the present research work P450 content did not demonstrate any alteration after E₂ or E₂ + NP exposures, which is in agreement with other authors who observed an unaltered total P450 content in *Cyprinus carpio* treated with the synthetic steroid 17a-ethynodiol (Solé et al., 2000) and in *D. labrax* exposed to E₂ (Teles et al., 2004a).

It is known that steroid hormones can regulate CYP1A expression. A decrease in the catalytic CYP1A activities was observed in sexually mature females with elevated levels of E₂, as well as in E₂-treated fish, namely *Oncorhynchus mykiss* (Andersson and Rafter, 1990), *P. americanus* and *S. chrysops* (Gray et al., 1991). Thus, the current EROD activity decrease regularly found during the whole experiment in both exposed groups is not surprising. Though, the interaction mechanism between E₂ and CYP1A is not well understood and different possibilities were presented. It was suggested that the possible binding of E₂ to the estrogen receptor (ER) exhibits an anti-CYP1A influence on the CYP1A gene, indicating a probable receptor and/or gene cross-talk between CYP1A and estrogen-responsive genes (Arukwe et al., 1997; Navas and Segner, 2000). However, the ability of steroids, including E₂ binding to the CYP1A molecule, acting as a competitive inhibitor of its enzymatic activities, e.g. EROD, was established in fish (Chan and Hollebone, 1995).

Despite NP estrogen-like properties (White et al., 1994) its interference with CYP1A function was demonstrated as an EROD activity reduction in juvenile *S. salar* (Arukwe et al., 1997). Furthermore, BNF potential to induce EROD was also reduced either by NP or E₂ *D. labrax* exposure (Teles et al., 2004a). Considering the previous findings a higher EROD activity reduction should be expected in E₂ + NP than in E₂ seabream exposed groups; however, current results did not confirm this hypothesis, since there was no NP additional effect under co-exposure.

The less pronounced decrease in EROD activity was observed at 16 h exposure to E₂ coinciding with the lowest E₂ plasma concentration and thus suggesting an E₂ metabolic turnover in the hepatocytes.

Furthermore, the E_2 inhibitory action was kept up to the end of the experiment in $E_2 + NP$ exposed fish which coincided with a substantially higher E_2 blood concentration than that observed in E_2 exposed fish.

P450 enzymes are constitutively expressed being also modulated (induced/inhibited) by chemicals. Since no potential CYP1A inducers were used in the present study, it seems that E_2 affects the constitutive liver CYP1A expression, as previously demonstrated by [Navas and Segner \(2000\)](#) in monolayer cell cultures of *O. mykiss*.

The physiological implications of P450 MFO activities inhibition have not been fully established ([Arukwe et al., 1997](#)). Nevertheless, this MFO inhibition by environmental estrogens may reduce fish ability to metabolize and excrete xenobiotics as well as endogenous estrogens, causing alterations at different biological levels and not only on reproduction. These metabolic changes may have important ecological consequences, as fish are frequently exposed in the environment to different classes of chemicals. Furthermore, the mechanisms involved in these interaction processes should be studied.

To our knowledge, no previous data concerning E_2 effects on fish GST activity are available. Concerning synthetic steroids, 17a-ethynodiol induced no alterations on *C. carpio* GST activity ([Solé et al., 2000](#)). On the other hand, a mammalian study demonstrated that bisphenol A increased GST activity ([Nieminan et al., 2002](#)). The GST activity increase observed in the current study is suggestive of an increased hepatic steroid catabolism in fish. CYP induction and conjugation activities may occur simultaneously, depending on the enzyme involved and its regulation. Thus, the inhibition detected on CYP1A activity was not extended to other CYP families. Taking into account that steroid metabolism and elimination may be catalyzed by CYP3A and that previous investigations on synthetic steroids effects demonstrated a CYP1A down-regulation and a CYP3A up-regulation, further laboratory studies on E_2 biotransformation, namely CYP3A induction should be carried out ([Lee et al., 1996a,b](#)).

4.3. Hepatic condition indicators

The LSI increase observed in both treatments at 16 h exposure indicates metabolic alterations. The

ALT kept constant, indicating that no cell damage was induced under the experimental conditions. Concerning LSI and ALT no differences were detected between E_2 single exposure and the NP co-exposure.

4.4. Genotoxic response

Recent works on genotoxicity of aquatic environment contaminants have demonstrated the suitability of the ENA assay, based on micronuclei and other nuclear anomalies detection in mature erythrocytes. This test, successfully adopted in different fish species ([Pacheco and Santos, 1996, 1998, 2001, 2002](#); [Ayllón and García-Vazquez, 2001](#); [Gravato and Santos, 2002](#)), is expanding in application due to its simplicity, rapidity, sensitivity, and low cost. However, its utilization may present some limitations in the presence of intense contamination since it can be masked by an increased splenic erythrocytic catabolism and/or erythropoiesis rate reduction ([Pacheco and Santos, 2002](#)).

In the present study, E_2 or $E_2 + NP$ exposure did not induce any significant ENA increase. However, an ENA increasing trend was observed at 4 and 8 h that returned to control levels after 12 h exposure to E_2 or $E_2 + NP$. Comparing the ENA frequency and E_2 plasmatic levels the explanation previously presented for EROD and GST activities can be adopted, i.e., the ENA highest values were found concomitantly to the highest plasma E_2 concentrations. Thus, the occurrence of an ENA expression limitation in the presence of intense contamination, as previously suggested by [Pacheco and Santos \(2002\)](#), does not apply to this particular situation.

E_2 was classified as nonmutagenic and nongenotoxic, based on the failure to induce gene mutations in classical bacterial and mammalian mutation assays; however, this matter seems to be highly controversial ([Roy and Liehr, 1999](#)). In a recent review work on estrogens DNA damage and mutations [Roy and Liehr \(1999\)](#) stated that this classification was probably related to the lack of a sensitive method for detection of estrogen covalent binding to DNA bases, and because the classical mutation assays performed were designed to uncover mutations only at one specific locus and could not have detected other types of mutations or changes in other genes. According to

International Agency for Research on Cancer (IARC) (1999) E_2 genotoxicity was not demonstrated *in vivo*, neither in humans, nor in mice; nevertheless, E_2 was classified as a carcinogen, class I (IARC, 1999).

In the present study, the E_2 genotoxic potential was not demonstrated. However, the importance of further fish studies on estrogen genotoxicity is increased by the lack of data in nonmammal organisms, being recommended the adoption of longer exposures in realistic conditions.

4.5. Stress responses

The studied stress responses and the respective methodologies proved their suitability and reproducibility in previous studies with different fish species and different classes of contaminants (Teles et al., 2003a,b, 2004a,b), encouraging their utilization on toxicological endocrine research works.

The plasma cortisol decrease observed for both exposure conditions is an indication of endocrine impairment. Despite the lack of fish studies concerning cortisol alterations after E_2 exposure, plasma cortisol decrease was also found in various fish studies after short-term exposure to different contaminants (Pacheco and Santos, 2001; Teles et al., 2003a). The mechanism involved in this response is not completely clarified. Santos and Pacheco (1996) found that the interrenal cortisol release into the blood is prevented by the contaminant (i.e. endocrine disruptor) since an interrenal cortisol accumulation was observed in parallel with a reduced plasma cortisol concentration. The observed cortisol secretion dysfunction may reduce fish physiological competence, growth, and survivorship since this hormone is required for a wide range of important homeostatic mechanisms, including fuel reserves mobilization.

The E_2 potential to induce a plasma glucose increase was previously demonstrated in *D. labrax* (Teles et al., 2004a); however, this effect was not confirmed for the current *S. aurata* study.

The plasma lactate increase, observed for E_2 and $E_2 + NP$ exposures can be regarded as an indication of stress. This response seems to be expectable since it was demonstrated for a wide range of xenobiotics (Santos and Pacheco, 1996; Pacheco and Santos, 2001; Teles et al., 2003a), despite the lack of any

publications concerning specifically the current compounds.

Cortisol effect includes the gluconeogenic activation, mobilizing substrates such as lipids, amino acids and lactate as fuel energy, besides carbohydrates. Analyzing simultaneously the plasma cortisol and lactate responses it is evident an opposite trend of variation; thus, it can be suggested that the observed plasma lactate increase could have been potentiated by a reduction of the cortisol induced gluconeogenesis.

5. Conclusions

The current data concerning seabream exposure either to E_2 or to its mixture with NP revealed:

- a liver EROD activity depression after both treatments, while GST activity was elevated;
- an endocrine disruption, expressed as plasma cortisol decrease after exposure either to E_2 or $E_2 + NP$. Furthermore, a plasma lactate increase was measured for both conditions;
- that despite the higher E_2 levels measured in plasma of $E_2 + NP$ comparing to E_2 -treated fish, no significant differences were detected on the biological responses due to NP co-exposure.

It was also demonstrated a high E_2 spontaneous loss in the aquaria, and a rapid E_2 uptake by fish (in the first 4 h).

Acknowledgements

The authors express their appreciation for the financial support provided by the Aveiro University Research Institute (CESAM) and by the “Fundação Ciência e Tecnologia” (FCT-Grant no. SFRH/BD/6607/2001).

References

Ackermann GE, Swaiger J, Negele RD, Fent K. Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout (*Onchorhynchus mykiss*). *Aquat Toxicol* 2002;60:203–21.

Andersson T, Rafter J. Progesterone metabolism in the microsomal fraction of the testis, head kidney and trunk kidney from the rainbow trout. *Gen Comp Endocrinol* 1990;79:130–5.

Arukwe A, Goksøyr A. Changes in three hepatic cytochrome P450 subfamilies during a reproductive cycle in Turbot (*Scophthalmus maximus* L.). *J Exp Zool* 1997;277:313–25.

Arukwe A, Förlin L, Goksøyr A. Xenobiotic and steroid biotransformation enzymes in Atlantic salmon (*Salmo salar*) liver treated with an estrogenic compound, 4-nonylphenol. *Environ Toxicol Chem* 1997;12:2576–83.

Atienzar FA, Billingham Z, Depledge MH. 4-n-Nonylphenol and 17-beta estradiol may induce common DNA effects in developing barnacle larvae. *Environ Pollut* 2002;120:735–8.

Ayllón F, García-Vázquez E. Micronuclei and other nuclear lesions as genotoxicity indicators in rainbow trout (*Oncorhynchus mykiss*). *Ecotoxicol Environ Saf* 2001;49:221–5.

Banach D, Brummer W, Ebeling W, Metz H, Rindfrey H, Lang H, et al. A glucose dehydrogenase for the determination of glucose concentrations in body fluids. *Z Klin Chem Klin Biochem* 1975;101–7.

Brighty G. The identification and assessment of oestrogenic substances in sewage treatment works effluents. UK Environment Agency Project 490 Report, Bristol, UK; 1996.

Bucheli TD, Font K. Induction of cytochrome-P450 as a biomarker for environmental contamination in aquatic ecosystems. *Crit Rev Environ Sci Technol* 1995;25:201–68.

Burke MD, Mayer RT. Ethoxyresorufin: direct fluorimetric assay of a microsomal-O-deethylation, which is preferentially inducible by 3-methylcholanthrene. *Drug Metab Dispos* 1974;2:583–8.

Carrasco KR, Tilbury KL, Myers MS. Assessment of the piscine micronuclei test as an in situ biological indicator of chemical contaminant effects. *Can J Fish Aquat Sci* 1990;47:2123–36.

Chan Z, Hollebone BR. A qsar for steroid compound interaction with cytochrome P4501A1. *Environ Toxicol Chem* 1995;14: 597–603.

Gallagher EP, Gross TS, Sheedy KM. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (*Ameriurus nebulosus*). *Aquat Toxicol* 2001;55:223–37.

Goksøyr A, Förlin L. The cytochrome P450 system in fish, aquatic toxicology, and environmental monitoring. *Aquat Toxicol* 1992; 22:287–312.

Gornall AC, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. *J Biol Chem* 1949;177: 751–66.

Gravato C, Santos MA. Liver phase I and phase II enzymatic induction and genotoxic responses of beta-naphthoflavone water-exposed sea bass. *Ecotoxicol Environ Saf* 2002;52:62–8.

Gray ES, Woodin BR, Stegeman JJ. Sex differences in hepatic monooxygenases in winter flounder (*Pseudopleuronectes americanus*) and scup (*Stenotomus chrysops*) and regulation of P450 forms by estradiol. *J Exp Zool* 1991;259:330–42.

Habig WH, Pabst MJ, Jokoby WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. *J Biol Chem* 1974;249:7130–9.

Hermens JLP, Bradbury SP, Broderius SJ. Influence of cytochrome P450 mixed-function oxidase induction on the acute toxicity to rainbow trout (*Salmo gairdneri*) of primary aromatic amines. *Ecotoxicol Environ Saf* 1990;20:156–66.

Holthaus KI, Johnson AC, Jurgens MD, Williams RJ, Smith JJ, Carter JE. The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers. *Environ Toxicol Chem* 2002;21:2526–36.

Hontela A. Endocrine and physiological responses of fish to xenobiotics: role of glucocorticosteroid hormones. *Rev Toxicol* 1997;1:1–46.

International Agency for Research on Cancer (IARC). Monographs on the evaluation of carcinogenic risk to Humans: Hormonal contraception and postmenopausal hormone therapy. IARC, Lyon, France; 1999. p. 72.

Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP. Inhibition of testicular growth in rainbow trout (*Oncorhynchus mykiss*) exposed to estrogenic alkylphenolic chemicals. *Environ Toxicol Chem* 1996;15:194–202.

Jurgen MD, Holthaus KI, Johnson AC, Smith JL, Hetheridge M, Williams RJ. The potential for estradiol and ethinylestradiol degradation in English rivers. *Environ Toxicol Chem* 2002;21: 480–8.

Lee PC, Patra SC, Stelloh CT, Lee W, Struve M. Interaction of nonylphenol and hepatic CYP1A in rats. *Biochem Pharmacol* 1996a;52:885–9.

Lee PC, Patra SC, Struve M. Modulation of rat hepatic CYP3A by nonylphenol. *Xenobiotica* 1996b;26:831–8.

Lemaire P, Förlin L, Livingstone DR. Responses of hepatic biotransformation and antioxidant enzymes to CYP1A-inducers (3-methylcholanthrene, b-naphthoflavone) in sea bass (*Dicentrarchus labrax*), dab (*Limanda limanda*) and rainbow trout (*Oncorhynchus mykiss*). *Aquat Toxicol* 1996;36:141–60.

Leihr JG. Is estradiol a genotoxic mutagenic carcinogen? *Endocr Rev* 2000;21:40–54.

Navas JM, Segner H. Modulation of trout 7-ethoxyresorufin-O-deethylase (EROD) activity by estradiol and octylphenol. *Mar Environ Res* 2000;50:157–62.

Nielsen E, Østergaard G, Thorup I, Ladefoged O, Jelnes O, Jelnes, J.E. Toxicological evaluation and limit values for nonylphenol ethoxylates, ticsresyl, phosphates and benzoic acid. Environmental Project (Miljøprojekt) 2000; 512.

Niemenen P, Lindstrom-Seppa P, Juntunen M, Asikainen J, Mustonen AM, Karonen SL, et al. In vivo effects of bisphenol A on the polecat (*Mustela putorius*). *J Toxicol Environ Health* 2002;65: 933–45.

Noll F. L-(+)-lactate determination with LDH, GPT and NAD. In: Bergmeyer HU, editor. *Methods of enzymatic analysis*. 2nd ed. Verlag Chemie Weinheim and Academic Press: New York, 1974; 4:1475.

Pacheco M, Santos MA. Induction of micronuclei and nuclear abnormalities in the erythrocytes of *Anguilla anguilla* L. exposed either to cyclophosphamide or to bleached kraft pulp mill effluent. *Fresenius Environ Bull* 1996;5:746–51.

Pacheco M, Santos MA. Induction of liver EROD and erythrocytic nuclear abnormalities by cyclophosphamide and PAHs in *Anguilla anguilla* L. *Ecotoxicol Environ Saf* 1998;40:71–6.

Pacheco M, Santos MA. Biotransformation, endocrine, and genetic responses of *Anguilla anguilla* L. to petroleum distillate pro-

ducts and environmentally contaminated waters. *Ecotoxicol Environ Saf* 2001;49:64–75.

Pacheco M, Santos MA. Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (*Anguilla anguilla* L.). *Ecotoxicol Environ Saf* 2002;53: 331–47.

Pajor AM, Stegeman JJ, Thomas P, Woodin BR. Feminization of the hepatic microsomal cytochrome P-450 system in brook trout by oestradiol, testosterone, and pituitary factors. *J Exp Zool* 1990;253:51–60.

Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. *J Clin Pathol* 1957;28:56–63.

Roy D, Liehr JG. DNA damage and mutations. *Mutat Res* 1999;424:107–15.

Santos MA, Pacheco M. *Anguilla anguilla* L. stress biomarkers recovery in clean water and secondary-treated pulp mill effluent. *Ecotoxicol Environ Toxicol Saf* 1996;35:96–100.

Schmid W. The micronucleus test for cytogenetic analysis. In: Hol-laender A, editor. *Chemical Mutagenesis*. New York: Plenum Press; 1976. p. 4.

Sepúlveda MS, Quinn BP, Denslow ND, Holm SE, Gross TS. Effects of pulp and paper mill effluents on reproductive success of largemouth bass. *Environ Toxicol Chem* 2003;22: 205–13.

Smith IR. Erythrocytic micronuclei in wild fish from Lakes Superior and Ontario that have pollution-associated neoplasia. *J Great Lakes Res* 1990;16-1:139–42.

Solé M, Porte C, Barcelo D. Vitellogenin induction and other biochemical responses in carp, *Cyprinus carpio*, after experimental injection with 17 alpha-ethynylestradiol. *Arch Environ Contam Toxicol* 2000;38:494–500.

Specker JL, Chandee MK. Methodology for estradiol treatment in marine larval and juvenile fish: uptake and clearance in summer flounder. *Aquaculture* 2003;217:663–72.

Spengler P, Körner W, Metzger JW. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany: 1. Chemical analysis. *Environ Toxicol Chem* 2001;20: 2133–41.

Teles M, Maria VL, Pacheco M, Santos MA. Effects on plasma cortisol, lactate and glucose in *Anguilla anguilla* L. exposed to pulp mill effluents components. *Environ Int* 2003a;29: 995–1000.

Teles M, Pacheco M, Santos MA. *Anguilla anguilla* L. liver EROD, GST, erythrocytic nuclear abnormalities and endocrine responses to naphthalene and h-naphthoflavone. *Ecotoxicol Environ Saf* 2003b;55:98–107.

Teles M, Gravato C, Pacheco M, Santos MA. Juvenile Sea bass biotransformation, endocrine and genotoxic responses to h-naphthoflavone, 4-nonylphenol and 17h-estradiol: comparison of individual and combined chemical exposures. *Chemosphere* 2004a. [in press].

Teles M, Pacheco M, Santos MA. *Anguilla anguilla* L. responses in two polluted environments: in situ experiments *Ecotoxicol. Environ Saf* 2004b. [in press].

White R, Jobling S, Hoare SA, Sumpter JP, Parker MG. Environmentally persistent alkylphenolic compounds are estrogenic. *Endocrinology* 1994;135:175–82.

Yared E, McMillan TJ, Martin FL. Genotoxic effects of oestrogens in breast cells detected by the micronucleus assay and the Comet assay. *Mutagenesis* 2002;17:345–52.

Ying G, Kookana R, Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. *Water Resour* 2003;37:3785–91.

Zar JH. *Biostatistical analysis*. USA: Prentice Hall International; 1996.