
This is the **accepted version** of the journal article:

Teles, Mariana [et al.]. «Endocrine and metabolic changes in *Anguilla anguilla* L. following exposure to β -naphthoflavone - A microsomal enzyme inducer». *Environment International*, Vol. 31, Num. 1 (January 2005), p. 99-104 DOI 10.1016/j.envint.2004.07.003

This version is available at <https://ddd.uab.cat/record/324241>

under the terms of the license.

Endocrine and metabolic changes in *Anguilla anguilla* L. following exposure to h-naphthoflavone—a microsomal enzyme inducer

M. Teles, M. Oliveira, M. Pacheco, M.A. Santos*

Biology Department, Aveiro University, 3810-193 Aveiro, Portugal

Abstract

Anguilla anguilla L. were exposed during 24 and 48 h to 2.7 AM h-naphthoflavone (BNF), a known microsomal enzyme inducer. The BNF effects on thyroid-stimulating hormone (TSH), free triiodothyronine (T3), free thyroxine (T4) and cortisol plasma levels were investigated. Alterations on plasma glucose and lactate levels were also measured as an indication of energy-mobilizing hormones alterations. BNF showed to be able to decrease significantly *A. anguilla* plasma T4 levels, whereas TSH, T3 and cortisol plasma remained constant. However, plasma glucose levels were significantly increased, demonstrating that intermediary metabolism has been affected. These results demonstrate that BNF a PAH-like compound alters the normal functioning of the hypothalamo-pituitary-thyroid (HPT) axis in *A. anguilla*.

Keywords: h-Naphthoflavone; Plasma; Endocrine

1. Introduction

In the vast majority of living organisms, the induction of phases I and II biotransformation enzymes is a well-known response to organic xenobiotic exposure. However, the knowledge of the linkage between these activations and other biological functions, namely endocrine regulation, is still a challenge to environmental toxicology. The majority of studies carried out on this subject concern effects on sexual hormones. For instance, h-naphthoflavone (BNF), an aryl-hydrocarbon (AhR) prototype ligand and cytochrome P4501A (CYP1A) inducer, demonstrated to impair the systemic hormonal control of reproductive processes by acting both at the hepatic level (vitellogenin production) and at the pituitary-gonad axis (Navas et al., 2004). Nevertheless, the interference of this kind of xenobiotics

with nonsexual endocrine responses in fish is still poorly understood.

Previous research work concerning mammals showed that typical microsomal enzyme inducers affected thyroid function. Thus, a decrease in plasma thyroxine (T4) and triiodothyronine (T3) concentrations, after exposure to phenobarbital, 3-methylcholanthrene, polychlorinated biphenyls (PCBs), and BNF was observed (Vansell and Klassen, 2002; Hood et al., 2003; Kato et al., 2003). Nevertheless, to our knowledge, there are no studies on fish concerning the effects of this type of chemicals over the hypothalamo-pituitary-thyroid (HPT) axis. The information on the effects of microsomal enzyme inducers on corticosteroid hormones is also scarce. According to Wilson et al. (1998), BNF can affect fish pituitary-interrenal (HPI) axis since it was demonstrated that it abolishes interrenal sensitivity to adrenocorticotropic hormone (ACTH). Considering the previous statements, it seems relevant to investigate how chemicals that are not commonly regarded as endocrine disruptors can interfere at hormonal levels.

HPT and HPI axes play a central role on a wide range of important homeostatic mechanisms in fish. Thyroid hor-

* Corresponding author. Tel.: +351 234370965; fax: +351 234426408.

E-mail addresses: mteles@bio.ua.pt (M. Teles)✉ mguedes@bio.ua.pt (M. Oliveira)✉ mpacheco@bio.ua.pt (M. Pacheco)✉ monteiro@bio.ua.pt (M.A. Santos).

mones regulate growth, and hydromineral balance (Van Anholt et al., 2003), while cortisol is involved in the regulation of energy metabolism, anti-inflammatory response as well as immune competence (Hontela, 1997; Wenderlaar Bonga, 1997). Thyroid hormones and cortisol can both interact and influence carbohydrate metabolism (Hontela et al., 1995). Alterations in these hormone plasma concentrations, as well as on glucose and lactate levels can reflect endocrine alterations, reducing fish physiological competence and possibly survivorship. Thus, the previously mentioned parameters can also be useful tools on monitoring the impact of anthropogenic stressors in fish.

Previous studies have been performed with *Anguilla anguilla* concerning the effects of different xenobiotics on plasma cortisol, glucose and lactate levels (Santos et al., 1990, 1992, 1993, 1996; Pacheco and Santos, 2001; Teles et al., 2003a,b).

The choice of *A. anguilla* L. as test organism was based on its well-known resistance and sensitivity in the presence of adverse conditions making it a good option as an aquatic biological model for sublethal toxicological studies. A significant knowledge of eel's physiology was achieved by previous works namely those carried out in our laboratory. Moreover, the responses of *A. anguilla* to BNF in terms of biotransformation responses were extensively studied as an increase in microsomal EROD activity, despite the lack of knowledge concerning its endocrine and intermediary metabolic effects. Thus, the purpose of the present study was to investigate the effects of BNF on the *A. anguilla* L. plasma thyroid-stimulating hormone (TSH), free triiodothyronine (T3), free thyroxine (T4), cortisol, as well as glucose and lactate levels.

2. Material and methods

2.1. Chemicals

h-Naphthoflavone (BNF), h-nicotinamide adenine dinucleotide (h-NAD), L-lactic dehydrogenase, and glutamic-pyruvic transaminase were purchased from Sigma (USA). All the other chemicals were of analytical grade.

2.2. Biochemical analysis

The determination of cortisol, TSH, T3 and T4 were performed in plasma, using diagnostic ELISA direct immunoenzymatic kits (Diametra, Italy). The absorbance in each well was measured at 450 nm in a microplate reader (ASYS Hitech).

The cortisol in the sample competes with horseradish peroxidase (HRP)-cortisol for binding onto the limited number of anti-cortisol sites in the microplate wells. The enzyme substrate (H_2O_2) and the TMB-substrate (TMB) are added, and after an appropriate time has elapsed for maximum color development, the enzyme reaction is stopped

and the absorbances are determined. Cortisol concentration in the sample is calculated based on a series of standards and the color intensity is inversely proportional to the cortisol concentration in the sample.

The methods for free T3 and free T4 follow the same principles of the cortisol test, requiring immobilized T3 or T4 antibodies, as well as HRP-T3 or HRP-T4 conjugates.

Concerning TSH, an antibody specific to the h-chain of TSH molecule is immobilized on microwell plates and other antibodies to the TSH molecule are conjugated with HRP. TSH from the sample is bound to the plates. The enzymatic reaction is proportional to the amount of TSH in the sample.

Plasma glucose was measured according to the method modified from Banauch et al. (1975). Plasma lactate was determined according to the method modified from Noll (1974).

2.3. Test animals

The experiment was carried out using *A. anguilla* (European eel) collected from the Aveiro lagoon area—Murtosa, Portugal. The eels with a 25F3 cm (yellow eel) average length and weighing 30F5 g were acclimated to laboratory conditions in aerated (dissolved oxygen: 7.6F0.3 mg/l), filtered, dechlorinated tap water with pH 7.2F0.4, under a natural photoperiod at 20 8C, for 1 week prior to experimentation. Fish were neither fed under laboratory adaptation nor during the experimental procedure. The experiment was carried out in 20 l aquaria under the previous conditions.

2.4. Experimental design

The eels were exposed to BNF 2.7 AM during 24 and 48 h. The appropriate amount of BNF was previously dissolved in 1 ml of dimethyl sulfoxide (DMSO) and added to the experimental aquaria. The same volume of DMSO was added to the control aquaria. Fish blood was collected from the posterior cardinal vein using a heparinized Pasteur pipette and its plasma isolated using an Eppendorf centrifuge, 14,000 rpm during 5 min. Experiments were carried out using test groups of five eels (n=5). The BNF concentration and exposure time adopted were based on a previous study with the same species, where a significant increase in liver EROD activity was observed (Teles et al., 2003b).

2.5. Statistical analysis

MeanFstandard error (S.E.) was calculated for each experimental group, and data were analyzed for significance of differences between control and exposed groups according to the two-tailed Student's t-test (Bailey, 1959). Experiments were carried out using test groups of five eels (n=5). Differences between means were considered significant when Pb0.05.

3. Results

3.1. Hormonal responses

A. anguilla plasma T4 was significantly decreased after 24- and 48-h exposure to BNF 2.7 AM when compared to the control. The plasma T4 decrease was time-related since a 2.5- and 5.1-fold decrease was, respectively, detected

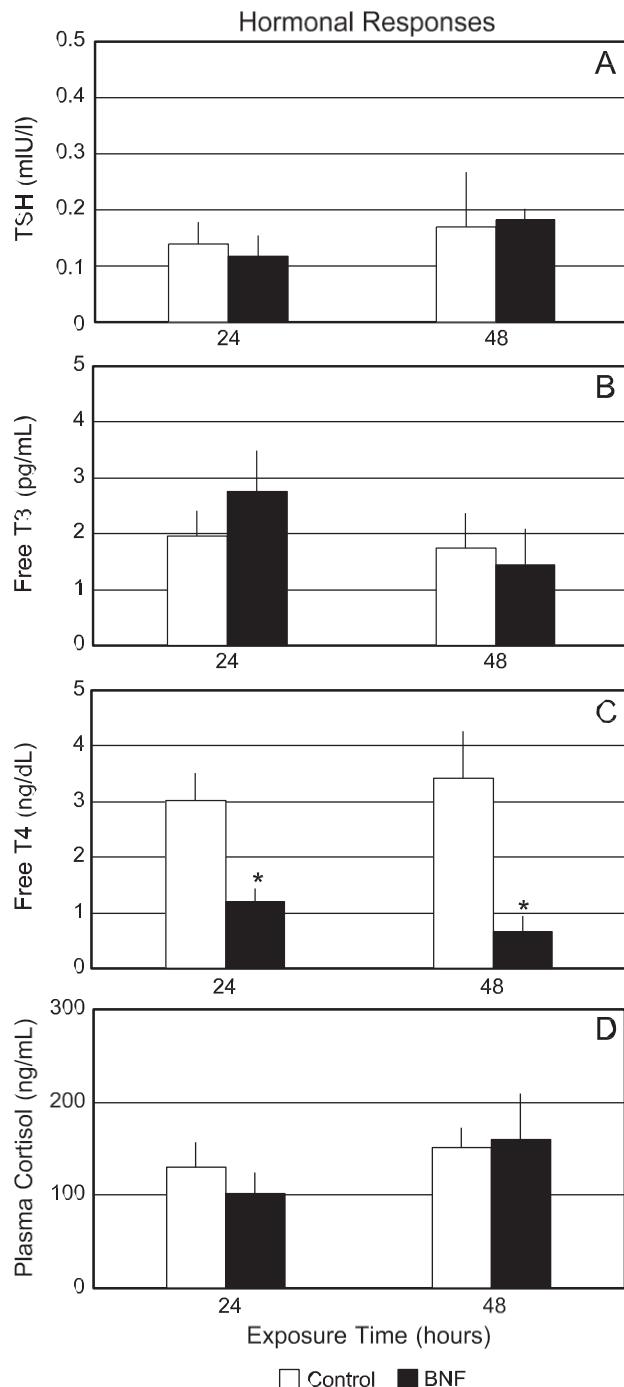


Fig. 1. Plasmatic concentrations of TSH (A), free T3 (B), T4 (C) and cortisol (D) after 24 and 48 h of exposure to BNF 2.7 AM. Values represent the means and S.E. (n=5/treatment). Differences from control: *P<0.05.

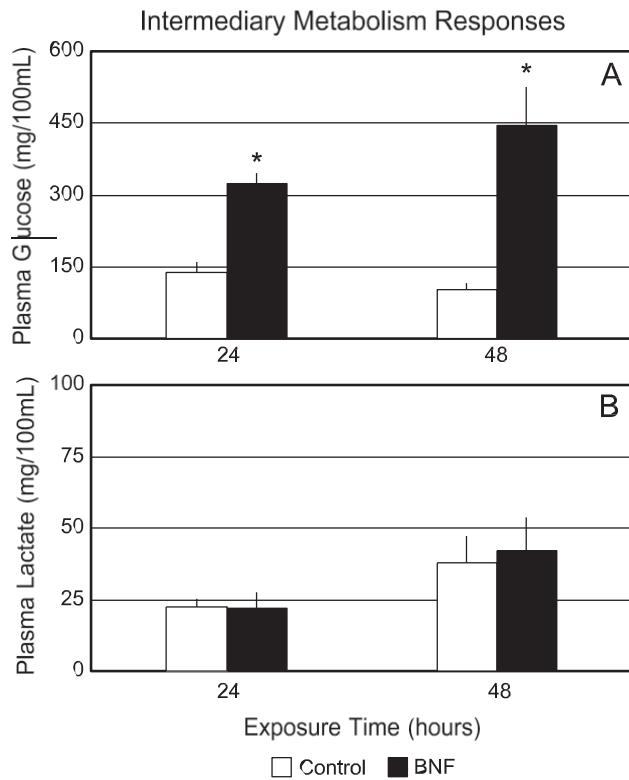


Fig. 2. Plasmatic concentrations of glucose (A) and lactate (B) after 24 and 48 h of exposure to BNF 2.7 AM. Values represent the means and S.E. (n=5/treatment). Differences from control: *P<0.05.

after 24 and 48 h. However, BNF did not induce any significant alteration on plasma cortisol, TSH and T3 concentrations (Fig. 1).

3.2. Intermediary metabolism responses

A. anguilla plasma glucose concentration significantly increased after 24- and 48-h BNF exposure. A 2.4-fold increase was observed after 24 h, while after 48-h exposure the increase was 4.3-fold. On the other hand, plasma lactate was not significantly altered (Fig. 2).

4. Discussion

The effects of different microsomal enzyme inducers (Liu et al., 1995; Hood and Klaassen, 2000), including BNF (Johnson et al., 1993), on the thyroid hormone dynamics have been extensively studied in rats, unanimously revealing plasma T4 decrease. To our knowledge, no studies were performed on this issue concerning fish. Current results revealed decreased A. anguilla plasma T4 levels after exposure to BNF, confirming the data previously obtained with mammals. This similarity is not surprising considering that the morphofunctional organization of the thyroid gland is similar in fishes and in rats (Kornienko and Kozhin, 1997).

A wide range of mechanisms can be implicated in the xenobiotic-induced alterations of plasma thyroid hormones, corresponding to changes on thyroid status and/or alterations upstream or downstream the hormone production. These mechanisms include alterations on the: (i) hypothalamus and/or pituitary status (Alkindi et al., 1996), (ii) biosynthesis and secretion steps of T3 and T4 (Capen, 1997), (iii) uptake by peripheral tissues, (iv) hepatic 5V-monodeiodinase activity (Waring et al., 1996), or (v) hormone catabolism and clearance rates (Saito et al., 1991; Hontela et al., 1995). Among all the possible mechanisms involved in plasma T4 decrease following liver microsomal enzyme inducers exposure, it has been frequently proposed that UDP-glucuronyl-transferase (UDP-GT) inducers can increase T4 glucuronidation and biliary excretion (mechanism v), reducing plasma T4 concentration (McClain, 1992; Johnson et al., 1993; Liu et al., 1995). In fact, it was demonstrated that BNF induces liver UDP-GT activity in *Dicentrarchus labrax* (Novi et al., 1998; Gravato and Santos, 2002). Thus, besides the similarity between mammals and fish responses, a mechanism resemblance can also be proposed, applying the previous explanation to the current responses observed in *A. anguilla*. Plasma T3 concentrations were unaffected by the current BNF fish treatment, which is consistent with the effects of other hepatic microsomal enzyme inducers on plasma T3 levels in rats (Hood et al., 1999, 2003; Liu et al., 1995). The ability to maintain plasma T3 concentrations is stronger than the ability to maintain T4 levels (Hood et al., 2003), probably due to an activation of homeostatic mechanisms, such as increased synthesis of T3 by the thyroid or by extra-thyroidal tissues (5V monodeiodinase activity increase), recovery of T3 from T3-SO₄ by sulfatases, and increased enterohepatic circulation (Alkindi et al., 1996; Hood et al., 2003). According to Sapin and Schlienger (2003), plasma T3 is a less reliable reflection of thyroid hormone production than T4 since most of circulating T3 (around 80%) is produced extra-thyroidally from T4 deiodination.

In response to reduced plasma T4, an increase in plasma TSH would be expected; however, in the present study plasma TSH levels remained unaltered. Previous studies concerning mammals exposed to microsomal enzyme inducers revealed divergent responses, i.e., increased (Hood et al., 2003) or unaltered (Liu et al., 1995; Hood and Klaassen, 2000) plasma TSH concomitantly with decreased plasma T4. According to Hood and Klaassen (2000), these mechanisms are still poorly understood.

Previous fish studies (Anderson et al., 1996; Navas et al., 2004) suggested a disruptive action of BNF upon the hypothalamus-pituitary-gonad axis through the disappearance of the negative feedback control on pituitary luteinizing hormone (LH) release, explained through its absence of effect on estrogen receptors (ER) at the pituitary and hypothalamus level. Considering the current data, the occurrence of alterations on thyroid hormone receptors (TR) at the hypothalamus/pituitary level is not excluded;

though it cannot be adopted as an explanation for the absence of any TSH response to plasma T4 depression. Additionally, an alteration on thyrotrophin releasing hormone (TRH) receptors at pituitary cells could also be suggested.

Thyroid hormones deiodination, conjugation as well as transport and their receptors interaction, besides measuring its plasma levels, should also be evaluated in order for a better understanding of the HPT axis dynamic, following xenobiotic exposure.

Fish respond to stress with characteristic acute increases in plasmatic levels of catecholamines, and slower but more sustained increases in plasmatic levels of the corticosteroid cortisol (Grutter and Pankhurst, 2000). Thus, alterations on the levels of plasma cortisol could provide valuable information on the fish stress condition. BNF is a potent cytochrome P450 1A inducer in fish tissues, including interrenal (Husøy et al., 1994). CYP1A1 isozyme of fish does not catalyze oxidative metabolism of cortisol; however, CYP1A1 inducing compounds may interfere with steroid plasma levels through different mechanisms namely the increase of phase II conjugation of steroids, as suggested by Forlin and Haux (1985) for the effects of BNF on h-estradiol levels.

Furthermore, according to Wilson et al. (1998) a BNF interference on steroid biosynthetic pathways through a substrate competition or alterations on key mitochondrial enzymes involved in cortisol synthesis would be expectable, resulting in lower cortisol production. However, the present results did not confirm this hypothesis since *A. anguilla* plasma cortisol levels were not altered by the BNF treatment. It is well known that the stress of capture and handling induces an acute rise in plasma cortisol levels (Hontela, 1997); therefore, when control and treated fish present similar plasmatic levels of cortisol it means that both groups were equally able to elevate cortisol under stress.

A previous study concerning *D. labrax* exposure to BNF 0.9 AM during 24 h revealed no plasma cortisol alteration (Teles et al., 2004). In addition, no changes were found, after BNF injection, in *Oncorhynchus mykiss* plasma cortisol concentration, despite the ACTH interrenal sensitivity abolition demonstration (Wilson et al., 1998). The authors suggested that the ability of BNF-treated fish to normally increase plasma cortisol concentration could be due to other hormonal pathways, in addition to ACTH sensitivity abolition, as well as alterations in the plasma cortisol clearance rate. Therefore, the absence of significant plasma cortisol alterations cannot ensure that the cortisol dynamics was unaffected, remaining the possibility alterations of HPI axis as well as plasma cortisol uptake by the target cells.

In the present study, plasma glucose increased after BNF exposure, despite the unaltered plasma cortisol and lactate levels. Vijayan et al. (1997) stated that besides interrenal cortisol release, other mechanisms might be controlling glucose availability in fish. Moreover, under

acute stress catecholamines could be rapidly released resulting in increased glycogenolysis. However, this explanation cannot be applied to the current glucose response, since the persistence of catecholamine effects up to 48 h is not likely. Van der Boon et al. (1991) stated that the influence of plasma cortisol on fish carbohydrate metabolism is not very comprehensive and thus the establishment of a consistent relation between plasma cortisol, glucose and lactate seems difficult. However, the authors suggest that the current plasma glucose increase observed following BNF exposure may be related to an increased liver gluconeogenesis induced by the previously uptaken plasma cortisol.

Plasma T4 frequently follows a response pattern similar to that one of plasma cortisol, and T4 may also activate the interrenal function (Hontela et al., 1995). On the other hand, cortisol can induce T4 deiodination originating T3, as well as increase the clearance rate of T3 (Redding et al., 1991) and T4 (Leatherland, 1987).

Finally, the present results confirm the studied parameters as important biomonitoring tools to assess the presence of stressors in aquatic environment contributing to a broader knowledge of fish responses as integration at different physiological levels. Moreover, these findings highlight the need of a careful interpretation of field data, since the occurrence of sequential or simultaneous exposures to different classes of chemicals is likely.

5. Conclusions

- *A. anguilla* displayed a significant decrease in plasma T4 levels after BNF exposure, revealing a similarity with the known mammal responses. These results demonstrate that typical microsomal enzyme inducers, namely BNF, can also interfere with neuroendocrine processes.
- BNF affected the intermediary metabolism since plasma glucose levels were significantly increased; however, it seems difficult to establish a correlation between cortisol, thyroid hormones and carbohydrate metabolism.
- In the future, it would be of interest to assess thyroid hormones conjugation and deconjugation processes.
- The above results confirm the studied parameters as important biomonitoring tools to assess the presence of stressors in aquatic environment, providing significant information related to fish intermediary metabolism and endocrine responses to complex environmental mixtures.

Acknowledgements

The authors express their appreciation for the financial support provided by the Aveiro University Research Institute (CESAM) and by the bFundação para a Ciência e Tecnologia (FCT—Grant No. SFRH/BD/6607/2001).

References

Alkindi AYA, Brown JA, Waring CP, Collins JE. Endocrine, osmoregulatory, respiratory and haematological parameters in flounder exposed to the water soluble fraction of crude oil. *J Fish Biol* 1996;49:1291–305.

Anderson MJ, Olsen H, Matsumura F, Hinton DE. In vivo modulation of 17h-estradiol-induced vitellogenin synthesis and estrogen receptor in rainbow trout (*Oncorhynchus mykiss*) liver cells by h-naphthoflavone. *Toxicol Appl Pharmacol* 1996;137:210–8.

Bailey NJ. Statistical methods in biology. London: English Universities Press; 1959.

Banauch D, Brummer W, Ebeling W, Metz H, Rindfrey H, Lang H, et al. A glucose dehydrogenase for the determination of glucose concentrations in body fluids. *Z Klin Chem Klin Biochem* 1975;13:101–7.

Capen CC. Mechanistic data and risk assessment of selected toxic endpoints of the thyroid gland. *Toxicol Pathol* 1997;25:39–48.

Forlin L, Haux C. Increased excretion in the bile of 17h-[³H]estradiol-derived radioactivity in rainbow trout treated with h-naphthoflavone. *Aquat Toxicol* 1985;6:197–208.

Gravato C, Santos MA. Liver phase I and phase II enzymatic induction and genotoxic responses of h-naphthoflavone water exposed sea bass. *Ecotoxicol Environ Saf* 2002;52:62–8.

Grutter AS, Pankhurst NW. The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish *Hemigymnus melapterus*. *J Fish Biol* 2000;57:391–401.

Hontela A. Endocrine and physiological responses of fish to xenobiotics: role of glucocorticosteroid hormones. *Rev Toxicol* 1997;1:1–46.

Hontela A, Dumont P, Duclos D, Fortin R. Endocrine and metabolic dysfunction in yellow perch, *Perca flavescens*, exposed to organic contaminants and heavy metals in the St Lawrence river. *Environ Toxicol Chem* 1995;14:725–31.

Hood A, Klaassen CD. Differential effects of microsomal enzyme inducers on *in vitro* thyroxine (T4) and triiodothyronine (T3) glucuronidation. *Toxicol Sci* 2000;55:78–84.

Hood A, Hashmi R, Klaassen CD. Effects of microsomal enzyme inducers on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy. *Toxicol Appl Pharmacol* 1999;160:163–70.

Hood A, Allen MA, Liu Y, Liu J, Klaassen D. Induction of T₄ UDP-GT activity, serum thyroid stimulating hormone, and thyroid follicular cell proliferation in mice treated with microsomal enzyme inducers. *Toxicol Appl Pharmacol* 2003;188:6–13.

Husby AM, Myers MS, Willis ML, Collier TK, Celander M, Goksoyr A. Immunohistochemical localization of CYP1A and CYP3A-like isozymes in hepatic and extrahepatic tissues of Atlantic cod (*Gadus morhua* L), a marine fish. *Toxicol Appl Pharmacol* 1994;129:294–308.

Johnson S, McKillop D, Miller J, Smith IK. The effects on rat thyroid function of a hepatic microsomal enzyme inducer. *Human Exp Toxicol* 1993;12:153–8.

Kato Y, Haraguchi K, Yamazaki T, Ito Y, Miyajima S, Nemoto K, et al. Effects of polychlorinated biphenyls, kanechlor-500, on serum thyroid hormone levels in rats and mice. *Toxicol Sci* 2003;72:235–41.

Kornienko GG, Kozhin AA. A comparative study of the morphofunctional changes in the thyroid of carp and rats as a result of being in an environment with an elevated lead level. *Tsitolgiia* 1997;39:5–9.

Leatherland JF. Thyroid response to ovine thyrotropin challenge in cortisol and dexamethasone-treated rainbow trout, *Salmo gairdneri*. *Comp Biochem Physiol* 1987;86:383–7.

Liu J, Liu Y, Barter RA, Klaassen CD. Alteration of thyroid homeostasis by UDP-glucuronosyltransferase inducers in rats: a dose-response study. *J Pharmacol Exp Ther* 1995;273:977–85.

McClain RM. Thyroid gland neoplasia: non-genotoxic mechanisms. *Toxicol Lett* 1992;64–65:397–408.

Navas JM, Zanuy S, Segner H, Carrillo M. h-Naphthoflavone alters normal plasma levels of vitellogenin, 17h-estradiol and luteinizing hormone in sea bass brood stock. *Aquat Toxicol* 2004;67:337–45.

Noll F. 1-(+)-Lactate determination with LDH, GPT and NAD. In: Bergmeyer, HU, editors. *Methods of enzymatic analysis*, 2nd ed. New York: Verlag Chemie Weinheim and Academic Press, 1974. p. 1475.

Novi S, Pretti C, Cognetti AM, Longo V, Marchetti S, Gervasi PG. Biotransformation enzymes and their induction by h-naphthoflavone in adult sea bass (*Dicentrarchus labrax*). *Aquat Toxicol* 1998;41:63–81.

Pacheco M, Santos MA. Biotransformation, endocrine, and genetic responses of *Anguilla anguilla* L to petroleum distillate products and environmentally contaminated waters. *Ecotoxicol Environ Saf* 2001;49:64–75.

Redding JM, Patiño R, Schreck CB. Cortisol effects on plasma electrolytes and thyroid hormones during smoltification in coho salmon *Oncorhynchus kisutch*. *Gen Comp Endocrinol* 1991;81:373–82.

Saito K, Kaneko H, Sato K, Yoshitake A, Yamada H. Hepatic UDP-glucuronyltransferase(s) activity toward thyroid hormones in rats: induction and effects on serum thyroid hormone levels following treatment with various enzyme inducers. *Toxicol Appl Pharmacol* 1991;111:99–106.

Santos MA, Pacheco M. *Anguilla anguilla* L stress biomarkers recovery in clean water and secondary-treated pulp mill effluent. *Ecotoxicol Environ Saf* 1996;35:96–100.

Santos MA, Pires F, Hall A. Metabolic effects of kraft mill effluents on the eel, *Anguilla anguilla* L. *Ecotoxicol Environ Saf* 1990;20:10–9.

Santos MA, Raposo F, Figueiredo MR, Serra T, Pacheco M. Study of recovery after exposure to kraft mill effluents of *Anguilla anguilla* L. *Proceedings: International Symposium on Ecotoxicology—Ecotoxicological Relevance of Test Methods*; 1992. p. 229–38.

Santos MA, Pacheco M, Serra T. Study of recovery after short-term exposure to kraft mill effluents of *Anguilla anguilla* L. *Sci Total Environ*; 1993;(Part 2):1173–8 [Suppl.].

Sapin R, Schlienger JL. Thyroxine (T4) and tri-iodothyronine (T3) measurements. *Ann Biol Clin (Paris)* 2003;61:411–20.

Teles M, Pacheco M, Santos MA. *Anguilla anguilla* L plasma cortisol, lactate and glucose responses to abietic acid dehydroabietic acid and retene. *Environ Int* 2003a;29:995–1000.

Teles M, Pacheco M, Santos MA. *Anguilla anguilla* L liver EROD, GST, erythrocytic nuclear abnormalities and endocrine responses to naphthalene and h-naphthoflavone. *Ecotoxicol Environ Saf* 2003b;55:98–107.

Teles M, Gravato C, Pacheco M, Santos MA. Juvenile sea bass biotransformation, genotoxic and endocrine responses to h-naphthoflavone, 4-nonylphenol and 17h-estradiol individual and combined exposures. *Chemosphere* 2004;57:147–58.

Van Anholt RD, Spanings T, Koven W, Wendelaar-Bonga SE. Effects of acetylsalicylic acid treatment on thyroid hormones, prolactins, and the stress response of tilapia (*Oreochromis mossambicus*). *Am J Physiol, Regul Integr Comp Physiol* 2003;285:1098–106.

Van der Boon J, Van den Thillart GE, Addink ADF. The effects of cortisol administration on intermediary metabolism in teleost fish. *Comp Biochem Physiol* 1991;100A:47–53.

Vansell NR, Klaassen CD. Increase in rat liver UDP-glucuronosyltransferase mRNA by microsomal enzyme inducers that enhance thyroid hormone glucuronidation. *Drug Metab Dispos* 2002;30:240–6.

Vijayan MM, Feist G, Otto DME, Schreck CB, Moon TW. 3,3V, 4,4V-tetrachlobiphenyl affects cortisol dynamics and hepatic function in rainbow trout. *Aquat Toxicol* 1997;37:87–98.

Waring CP, Brown JA, Collins JE, Prunet P. Plasma prolactin, cortisol, and thyroid responses of the brown trout (*Salmo trutta*) exposed to lethal and sublethal aluminium in acidic soft waters. *Gen Comp Endocrinol* 1996;102:377–85.

Wenderlaar Bonga SE. The stress response in fish. *Physiol Rev* 1997;77:591–625.

Wilson JM, Vijayan MM, Kennedy CJ, Iwama GK, Moon TW. h-Naphthoflavone abolishes interrenal sensitivity to ACTH stimulation in rainbow trout. *J Endocrinol* 1998;157:63–70.