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Equality of some classical Lorentz spaces

Santiago Boza∗and Joaquim Mart́ın†

Abstract

We prove that although the class of Mp−weights of Muckenhoupt is
strictly smaller than the class of Bp−weights of Ariño and Mucken-
houpt, both classes produce the same classical Lorentz spaces. An
analogous result is obtained for other classes of weights.

1 Introduction

Let w be a positive and Lebesgue measurable function on (0,∞) (briefly a
weight).

For 1 ≤ p < ∞, Lp(w) is the class of Lebesgue measurable functions f
defined on the interval (0,∞) such that

‖f‖Lp(w) :=
(∫ ∞

0
|f(s)|p w(s)ds

)1/p

< ∞.

Let us also consider the Hardy operator P defined by

Pf(t) :=
1
t

∫ t

0
f(x)dx.

The study of the boundedness of P on Lp(w) has been considered by
several authors (see [5] and the references quoted therein). Their results en-
sure that P is bounded on Lp(w) if, and only if, w ∈ Mp, where Mp−weights
are described by the estimate,(∫ ∞

r

w(x)
xp

dx

)1/p (∫ r

0
w(x)1−p′dx

)1/p′

≤ C, if 1 < p < ∞,
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where, as usual, p′ = p/(p− 1). And∫ ∞

r

w(x)
x

dx ≤ Cw(r), if p = 1.

It is well known that the Hardy operator is closely related to the Hardy-
Littlewood maximal function M since (see [2])

(Mf)∗(t) ≈ Pf∗(t), (1)

where f∗ is the nonincreasing rearrangement of f and, as usual, the symbol
f ≈ g will indicate the existence of a universal positive constant C (inde-
pendent of all parameters involved) so that (1/C)f ≤ g ≤ Cf . Constants
such as C may change from one occurrence to the next.

In 1990 Ariño and Muckenhoupt (see [1]) consider the problem of char-
acterize the weights w so that

M : Λp(w) → Λp(w)

is bounded, where

Λp(w) =

{
f : ‖f‖Λp(w) =

(∫ ∞

0
f∗(x)pw(x)dx

)1/p

< ∞
}

is the classical Lorentz space (see [4]).
Ariño and Muckenhoupt’s result states that

M : Λp(w) → Λp(w) is bounded ⇔ w ∈ Bp

where Bp−weights can be define for 0 < p < ∞ and are described by the
estimate, ∫ ∞

r

(
r

x

)p

w(x)dx ≤ C

∫ r

0
w(x)dx. (2)

Using (1), it is obvious that if we define

Lp(w)dec := {f ∈ Lp(w) : f is decreasing}

then
M : Λp(w) → Λp(w) ⇔ P : Lp(w)dec → Lp(w)dec,

and from this, it follows that

Mp ⊆ Bp.
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In fact Mp is strictly smaller than Bp (see [1]).
Similarly (see [5]), the adjoint Hardy operator

Qf(t) :=
∫ ∞

t
f(x)

dx

x

is bounded on Lp(w) if, and only if, w ∈ Mp, that is

(∫ r

0
w(x)dx

)1/p
(∫ ∞

r

w(x)1−p′

xp′
dx

)1/p′

≤ C, if 1 < p < ∞,

and
Pw ≤ Cw, if p = 1.

The boundedness of Q on Lp(w)dec was considered by Neugebauer in
1992 (see [6], Theorem 3.3), and he proved that

Q : Lp(w)dec → Lp(w)dec ⇔ w ∈ B∗
∞,

where B∗
∞−weights are defined by the condition∫ r

0
Pw(x)dx ≤ C

∫ r

0
w(x)dx. (3)

(B∗
∞−weights are also related with the boundedness of the Hilbert transform

on Λp(w) (see [6], Theorem 4.4)). Again it is easy to see that Mp is strictly
smaller than B∗

∞.
We shall prove in this paper that although Mp 6= Bp and Mp 6= B∗

∞ both
classes produce the same classical Lorentz spaces (we also refer to [3] and
[8] as works related to this topic).

Our main result is the following:

Theorem 1.1 Let w be a weight and p ≥ 1. Then

1. If w ∈ Bp there exists w̃ ∈ Mp such that Λp(w) = Λp(w̃).

2. If w ∈ B∗
∞ there exists w̃ ∈ Mp such that Λp(w) = Λp(w̃).

3. If w ∈ Bp ∩B∗
∞ there exists w̃ ∈ Mp ∩Mp such that Λp(w) = Λp(w̃).

Before proving this theorem, we will introduce the following operators.
For q > 0, let us define

Qqf(t) := tq−1
∫ ∞

t
f(x)

dx

xq
,
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also for 0 ≤ λ < 1, let us consider the operators

Pλf(t) :=
1

t1−λ

∫ t

0

f(x)
xλ

dx.

We observe that P0 = P and also Q1 = Q. The following fact concerning
this operators, which can be easily proved using Fubini’s theorem, will be
useful

Pλ ◦Qq = Qq ◦ Pλ =
1

q − λ
(Pλ + Qq).

We also recall here that for a weight w ∈ Bp, w ∈ Bp−ε for every 0 < ε < ε0,
where ε0 depends only on p and also on the constant C that appears in
condition (2) (see [1], or [7] for a simpler proof of this result).

Finally the following simple inequality will be used repeatedly (see [2]).

Lemma 1.1 (Hardy’s Lemma) Let us assume that w0, w1 are two weights
such that∫ r
0 w0(x) dx ≈

∫ r
0 w1(x) dx, for every r > 0, then, for any decreasing func-

tion f ∫ ∞

0
f(x)w0(x)dx ≈

∫ ∞

0
f(x)w1(x)dx.

2 Proof of Theorem 1.1

PART 1.
For w ∈ Bp, let us take ε > 0 such that w ∈ Bp−ε. Define

w̃(x) = xp−1−ε
∫ ∞

x

w(s)
sp−ε

ds = Qp−εw(x).

Then by use of the definition and Fubini’s theorem we have∫ ∞

t

w̃(x)
xp

dx =
∫ ∞

t

w(s)
sp−ε

(∫ s

t
x−1−ε dx

)
ds ≤ Ct−ε

∫ ∞

t

w(s)
sp−ε

ds. (4)

In the case p = 1, this last inequality means that Qw̃ ≤ Cw̃ which is
condition M1 for the weight w̃. For p > 1, we also have

∫ t

0
w̃(x)1−p′ dx ≤

∫ t

0
x−1+(ε/(p−1))

(∫ ∞

t

w(s)
sp−ε

ds

)−1/(p−1)

dx (5)

= Ctεp
′/p
(∫ ∞

t

w(s)
sp−ε

ds

)−p′/p

.
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Using inequalities (4) and (5) shows immediately that w̃ ∈ Mp. By use of
Fubini’s theorem and then the fact that w ∈ Bp−ε it follows that

Pw̃ = (P ◦Qp−ε)w ≈ Pw + Qp−εw ≈ Pw,

So then, Lemma 1.1 implies Λp(w) = Λp(w̃).
PART 2.

If w ∈ B∗
∞, there exists C > 0 such that (P ◦ P ) w ≤ CPw. Let us take

ε > 0 such that εC < 1, and let us define w̃ as

w̃(s) = w(s) + Pεw(s).

A standard argument (see for example [2], page 152) shows that with this
choice of ε we can represent Pεw as the sum of the following series

Pεw(s) =
∞∑

n=1

εn−1P (n)w(s),

where P (n) = P◦
(n)
· · · ◦P .

Obviously P (n)w ≤ Cn−1Pw, n ≥ 2, which implies the convergence of
the series. Moreover,

Pw̃(s) = Pw(s) +
∞∑

n=1

εn−1P (n+1)w(s) ≤ C
∞∑

n=1

εnP (n)w(s) ≤ Cw̃(s),

which means that w̃ ∈ M1 ⊂ Mp.
Finally, since w ≤ w̃ and

Pw̃(s) = Pw(s) +
∞∑

n=1

εn−1P (n+1)w(s) ≤ Pw(s) +
∞∑

n=1

εn−1CnPw(s)

=
1 + C(1− ε)

1− Cε
Pw(s), (6)

we have that
∫ s
0 w(x)dx ≈

∫ s
0 w̃(x)dx and applying Lemma 1.1 we are done.

PART 3.
For w ∈ Bp ∩B∗

∞, let us consider

w̃(x) = Qp−εw(x) + Pεw(x) ≈ (Qp−ε ◦ Pε)w(x) = (Pε ◦Qp−ε)w(x),

where ε > 0 is small enough in order to ensure that ω ∈ Bp−ε and also, as
in part 2, that εC < 1 for C as in (3).
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To prove that w̃ ∈ Mp, we proceed as follows,

Qpw̃ ≈ Qp(Qp−ε ◦ Pε)(w) = Pε(Qp ◦Qp−ε)w.

As we have seen in (4), we obtain that

(Qp ◦Qp−ε)w(t) = tp−1
∫ ∞

t

Qp−εw(x)
xp

dx

≤ Ctp−1−ε
∫ ∞

t

w(x)
xp−ε

dx = CQp−εw(t).

So then,
Qpw̃ ≤ C(Pε ◦Qp−ε)w = Cw̃. (7)

In the case p = 1 we are done, because this inequality implies that w̃ ∈ M1.
We observe that condition (7) can be explicitely written as∫ ∞

t

w̃(x)
xp

dx ≤ Ct−ε
∫ ∞

t

Pεw(x)
xp−ε

dx.

Following the same reasoning as in (5), we also have that, for p > 1,

∫ t

0
w̃(x)1−p′dx =

∫ t

0
(Qp−ε ◦Pεw(x))1−p′dx ≤ Ctεp

′/p
(∫ ∞

t

Pεw(s)
sp−ε

ds

)−p′/p

·

Combining these two last inequalities we obtain that w̃ ∈ Mp.
Next, we will check the condition M1 for w̃, that is Pw̃ ≤ Cw̃. First, we

observe that
Pw̃ ≈ P (Qp−ε ◦ Pεw) ≈ Qp−ε(P ◦ Pεw),

and, in the same way that (6), it can be easily deduced,

(P ◦ Pε)w ≤ CPεw.

Hence, we can conclude that

Pw̃ ≤ C(Qp−ε ◦ Pε)w = Cw̃,

that means w̃ ∈ M1 ⊂ Mp.
Finally, from the fact that

Pw̃ = P (Qp−ε ◦ Pε)w ≈ Pw + Qp−εw + (P ◦ Pε)w, (8)

it follows that Pw ≤ CPw̃.
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On the other hand, since w ∈ Bp−ε,

Qp−εw ≤ CPw.

Also, as we have seen before

P ◦ Pεw ≤ CPw.

These two facts and (8) give us Pw̃ ≤ CPw. So then, Pw ≈ Pw̃ and again
an application of Lemma 1.1 ends the proof.

Remark 2.1 From part 1 of Theorem 1.1 we obtain a new proof of the
Ariño-Muckenhoupt theorem about the boundedness of P on Lp(w)dec, since
we have seen that Lp(w)dec = Lp(w̃)dec with w̃ ∈ Mp, and then Mucken-
houpt’s theory applies. Similarly, Neugebauer’s result about the boundedness
of the adjoint operator Q on Lp(w)dec follows from part 2.
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