
This is the accepted version of the journal article:

Martín i Pedret, Joaquim; Soria, Fernando. «Integrability properties of maximal
convolution operators». Journal of Fourier Analysis and Applications, Vol. 11,
Issue 3 (June 2005), p. 289-298. DOI 10.1007/s00041-005-4007-z

This version is available at https://ddd.uab.cat/record/271877

under the terms of the license

https://ddd.uab.cat/record/271877


Integrability properties of maximal convolution

operators∗

Joaquim Mart́ın and Fernando Soria

Abstract

In this paper we study integrability properties of maximal convolution
operators satisfying restricted weak type (p, p) estimates.

1 Introduction

Let Snf by the nth partial sum of the Fourier series of the function f , and
let S∗f be the Carleson maximal operator, i.e.

S∗f(x) = sup
n

|Snf(x)|.

R. Hunt proved in [5], the following extension of the celebrated Theorem of
Carleson [3],

t|{x ∈ T : S∗χA(x) > t}|1/p ≤ c
p2

p − 1
|A|1/p, p > 1 (1)

(where T denotes the one-dimensional Torus which we identify with the in-
terval [0, 1], χA is the characteristic function of the set A and |A| its Lebesgue
measure), and then, via the so called ”Yano’s extrapolation theorem” (see
[10]) he obtained ∫

T

S∗f ≤ c
{
1 +

∫
T

|f |(1 + log+ |f |)2
}
. (2)
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This last estimate gives as corollary that Snf(x) converges a.e. for every
function of the class L(log L(T))2. Carleson and Sjölin in [6], showed that
is possible to extrapolate directly from estimate (1) to obtain

t|{x ∈ T : S∗f(x) > t}| ≤ c
{
1 +

∫
T

|f |(1 + log+ |f |)(1 + log+ log+ |f |)
}

which implies a.e. convergence in L log L log log L(T).
In [7], P. Sjölin showed that S∗ has the following integrability property:

For 0 < δ ≤ 1, there exists a constant Cδ such that
∫

T

S∗f
(1 + log+ S∗f)1−δ

≤ Cδ

{
1 +

∫
T

|f |(1 + log+ |f |)1+δ
}
.

The case in which δ = 0 was considered by F. Soria in [9], where he
obtain the following extension of the previous result

∫
T

S∗f
1 + log+ S∗f

≤ c
{
1 +

∫
T

|f |(1 + log+ |f |)(1 + log+ log+ |f |)
}
. (3)

More recently, N.Y. Antonov in [1] has proved that

t|{x ∈ T : S∗f(x) > t}| ≤ c
{
1 +

∫
T

|f |(1 + log+ |f |)(1 + log+ log+ log+ |f |)
}

and from here one can in fact obtain a.e. convergence of the Fourier series
in the biggest class L log L log log log L(T).

In this paper we consider an extension of estimate (3) for maximal con-
volution operators of restricted weak type (p, p) (see Theorem 3.1 below),
that in the particular case of the Carleson maximal operator S∗, states that

∫
T

S∗f
(1 + log+ S∗f)(1 + log+ log+ S∗f)

(4)

≤ c
{
1 +

∫
T

|f |(1 + log+ |f |)(1 + log+ log+ log+ |f |)
}
.

As usual, the symbol f � g will indicate the existence of a universal
positive constant c (independent of all parameters involved) so that (1/c)f ≤
g ≤ c f , while the symbol f � g means that f ≤ c g. We write ‖g‖p to
denote ‖g‖Lp , λg(y) = |{x ∈ Rn : |g(x)| > y}| is the distribution function
of g and g∗(t) = inf{s : λg(s) ≤ t} is the decreasing rearrangement (we refer
the reader to [2] for further information about distribution functions and
decreasing rearrangements).
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2 Preliminaries

The key in the proof of Antonov’s result (see [1]) about a.e. convergence of
Fourier series in L log L log log log L(T) follows from the following approxi-
mation argument which uses the fact that the convolution kernels defining
S∗, the Dirichlet kernels, are smooth.

Lemma 2.1 (Antonov) Let SNf(x) = sup0≤n≤N |Snf(x)|. Then, for ev-
ery ε > 0, every N ∈ N and every 0 ≤ f(x) ≤ 1, there exists a measurable
set F such that |F | = ‖f‖1 and ‖SN (f − χF )‖∞ ≤ ε.

Antonov’s lemma has been recently extended by P. Sjölin and F. Soria
(see [8] Lemma 5) in the sense that one can approximate a given function in
the spirit of Antonov’s lemma but with no smooth assumption at all on the
kernels. This extension is contained in the following general approximation
principle

Lemma 2.2 Let {Kj} be a sequence of integrable functions in Rn (or Tn)
and define the maximal operator K∗ by

K∗f(x) = sup
j

|Kj ∗ f(x)|, (x ∈ R
n).

Let KNf(x) = sup0≤j≤N |Kj ∗ f(x)|. Then, given ε > 0, a > 0, N ∈ N

and a measurable function f ∈ L1(Rn) with 0 ≤ f(x) ≤ a, there exists a set
F ⊂supp f such that

i) ‖KN (f − aχF )‖∞ ≤ ε

ii)
∫

Rn
f = a|F |.

Proof: In [8] Lemma 5, condition i) reads ‖KN (f − aχF )‖1 ≤ ε, however,
it is easy to see that if the kernels {Kj} are uniform continuous then the
same proof works to obtain ‖KN (f − aχF )‖∞ ≤ ε. In the general case, for
each j = 1, 2, · · · , N, let gj be a continuous function of compact support
such that

‖Kj − gj‖1 ≤ ε

a
.

With GNf(x) = sup0≤j≤N |gj ∗ f(x)|, we therefore obtain

KNf(x) ≤ GNf(x) + max
1≤j≤N

‖Kj − gj‖1‖f‖∞ ≤ GNf(x) + ε.
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Similarly, GN can be estimate by KN , and so

|KNf(x) − GNf(x)| ≤ ε.

We shall denote by L(Ψm) the set of measurable functions such that∫
Rn

Ψm(|f(x)|) dx < ∞,

where m > 0 and Ψm(t) = t(1 + log+ t)m(1 + log+ log+ log+ t) (t > 0).

Proposition 2.1 L(Ψm) is a Banach space whose norm is given by

‖f‖
L(Ψm) =

∫ ∞

0
f∗(s)

(
1 + log+ 1

s

)m(
1 + log+ log+ log+ 1

s

)
ds.

Proof. We shall see that the functional ‖ · ‖
L(Ψm) is finite precisely in

the set L (Ψm). Effectively, given a measurable function f , consider the set
A = {t ∈ [0, 1] : f∗(t)2 > 1/t}, then

‖f‖
L(Ψm) � ‖f‖1 +

∫ 1

0
f∗(s)

(
log+ 1

s

)m(
log+ log+ log+ 1

s

)
ds

� ‖f‖1 +
∫

A
f∗(s)( log+ f∗(s))m( log+ log+ log+ f∗(s))

+
∫ 1

0

1√
s

(
log+ 1

s

)m(
log+ log+ log+ 1

s

)
ds

� 1 +
∫

Rn
Ψm(|f(x)|) dx.

On the other hand, if f ∈ L(Ψm) then ‖f‖1 < ∞, and since tf∗(t) ≤ ‖f‖1,
we get∫

Rn
Ψm(|f(x)|) dx =

∫ ∞

0
Ψm(f∗(t))dt

≤
∫ ∞

0
f∗(s)

(
1 + log+ ‖f‖1

s

)m(
1 + log+ log+ log+ ‖f‖1

s

)
ds

≤ min(1, ‖f‖1)‖f‖L(Ψm).

Finally, we also consider the function Φ : [0,∞) → [0,∞) defined by

Φ(t) =
t

(1 + log+ t)(1 + log+ log+ et)
.

Notice that since Φ(t) is increasing and Φ(t)/t is decreasing we can find a
concave function Φ̂ (see [2] Proposition 5.10 pag. 71) such that

Φ(t) � Φ̂(t). (5)
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3 The main result

Theorem 3.1 Let {Kj} be a sequence of kernels in L1(Rn). Assume that
the maximal operator K∗ is of restricted weak type (p, p) with a constant
which grows like (p − 1)−m as p → 1+, that is

λ|{x ∈ R
n : K∗χA(x) > λ}|1/p ≤

( C

p − 1

)m|A|1/p (6)

for some m > 0 and for all 1 < p ≤ 2, with C independent of p, λ > 0 and
of every measurable set A.

Then, for R > 2∫
|x|≤R

Φ(K∗f(x)) dx ≤ c(log R)m+1
(
1 + ‖f‖

L(Ψm)
)
.

Observe that the dependence on R is logarithmic. This gives in particular
the global integrability: ∀ε > 0, ∃Cε such that∫

Rn
Φ(K∗f(x))

dx

(1 + |x|)ε
≤ Cε{1 + ‖f‖

L(Ψm)}.

Proof: Using the above hypothesis (6) on characteristic functions and
Lemma 2.2 we can conclude that

λ|{x ∈ R
n : K∗f(x) > λ}|1/p ≤

( C

p − 1

)m‖f‖1/p
1 , ‖f‖∞ ≤ 1 (7)

since given ε = λ/2, N ∈ N and f ∈ L1(Rn) such that 0 ≤ f(x) ≤ 1,
by Lemma 2.2 there exists a measurable set F such that |F | = ‖f‖1 and
‖KN (f − χF )‖∞ ≤ ε, then

KNf(x) ≤ KN (f−χF )(x)+KNχF (x) ≤ λ/2+KNχF (x) ≤ λ/2+K∗χF (x).

Hence {x ∈ Rn : KNf(x) > λ} ⊂ {x ∈ Rn : K∗χF (x) > λ/2} which implies
that

λ|{x ∈ R
n : KNf(x) > λ}|1/p ≤

( C

p − 1

)m‖f‖1/p
1 .

Using now that KNf ↗ K∗f a.e. we obtain (7).

Let R > 2, by Hölder’s inequality we get

λ|{x ∈ R
n : |x| < R, K∗f(x) > λ}| ≤ CRn(p−1)/p)|{x ∈ R

n : K∗f(x) > λ}|1/p,

and now, using (7) with p = 1 + ( log R(1 + log 1
‖f‖1

))−1 we obtain
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λ|{x ∈ R
n : |x| < R, K∗f(x) > λ}| � (log R)mϕm(‖f‖1), ‖f‖∞ ≤ 1

where ϕm(t) = t(1 + log+ 1
t )

m (t > 0).

Equivalently, for every f ∈ L1(Rn) ∩ L∞(Rn),

λ|{x ∈ R
n : |x| < R, K∗f(x) > λ}| � (log R)m‖f‖∞ϕm

( ‖f‖1

‖f‖∞
)
. (8)

Let us assume that ‖f‖
L(Ψm) ≤ 1 and let us write

f = fχ{|f |≤2} +
∞∑
i=0

fχ{22i
<|f |≤22i+1} := f̄ +

∞∑
i=0

fi.

As we shall see later, we have that
∞∑
i=0

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)
� ‖f‖

L(Ψm) ≤ 1, (9)

hence, we may assume without lost of generality that

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞ ) ≤ 1, i ≥ 0.

Since Φ(t) � Φ̂(t) and Φ̂ is subadditive (since it is concave (see (5)) we
get∫

|x|≤R
Φ(K∗f(x)) dx �

∫
|x|≤R

Φ̂(K∗f̄(x))dx +
∞∑
i=0

∫
|x|≤R

Φ̂(K∗fi(x)) dx.

Now, by the concavity of Φ̂ we get Φ̂′(t) ≤ Φ̂(t)/t � Φ(t)/t, and so∫
|x|≤R

Φ̂(K∗fi(x)) dx

=
∫ ∞

0
|{x ∈ R

n, |x| ≤ R : K∗fi(x) > Φ̂−1(t)}| dt

=
∫ ∞

0
|{x ∈ R

n, |x| ≤ R : K∗fi(x) > t}|Φ̂′(t) dt

�
∫ ∞

0
|{x ∈ R

n, |x| ≤ R : K∗fi(x) > t}|Φ(t)dt

t

=
(∫

A1

+
∫

A2

+
∫

A3

+
∫

A4

)
|{x ∈ R

n, |x| ≤ R : K∗fi(x) > t}|Φ(t)dt

t

= I + II + III + IV,

6



where, A1 = (0, ‖fi‖∞ϕm( ‖fi‖1

‖fi‖∞ )), A2 = (‖fi‖∞ϕm( ‖fi‖1

‖fi‖∞ ), 1), A3 = (1, 22i+1
)

and A4 = (22i+1
,∞).

Let us see first that for R > 2

I � (log R)m+1‖fi‖∞ϕm

( ‖fi‖1

|fi‖∞ ).

Effectively,

I ≤
∫

A1

|{x ∈ R
n, |x| ≤ R : K∗fi(x) > t}| dt

and from (8) we get

I �
∫

A1

min
(
Rn,

(log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)

t

)
dt

� (log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
) ∫ 1

0
min (Rn, 1/t) dt

� (log R)m+1 ‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)
.

On the other hand estimate (8) gives again

II =
∫ 1

‖fi‖∞ϕm

(
‖fi‖1
‖fi‖∞

) |{x ∈ R
n, |x| ≤ R : K∗fi(x) > t}| dt

�
∫ 1

‖fi‖∞ϕm

(
‖fi‖1
‖f1‖∞

)(log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)dt

t

� (log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)

log
1

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)

and

III =
∫ 22i+1

1
|{x ∈ R

n, |x| ≤ R : K∗fi(x) > t}| dt

(1 + log+ t)(1 + log+ log+ et)

�
∫ 22i+1

1
(log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
) dt

t(1 + log+ t)(1 + log+ log+ et)

= (log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)

log(1 + log(1 + 2i+1 log 2))

� (log R)m‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)

log(i + 2).
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Finally, estimate (7) for p = 2 implies

IV ≤
∫ ∞

22i+1
|{x ∈ R

n : K∗fi(x) > t}| dt

(1 + log+ t)(1 + log+ log+ et)

� ‖fi‖∞‖fi‖1

∫ ∞

22i+1

dt

t2(1 + log+ t)(1 + log+ log+ et)

� ‖fi‖1 ≤ ‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)
.

Therefore, for R > 2

∞∑
i=0

1
(log R)m+1

∫
|x|≤R

Φ(K∗fi(x)) dx

�
∞∑
i=0

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
) 

1 + log
1

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞ )




+
∞∑
i=0

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)
(1 + log(i + 2))

=
∞∑
i=0

ϕ1

(
‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
))

+
∞∑
i=0

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)
(1 + log(i + 2)).

Using ‖fi‖∞ ≤ 22i+1
, and that tϕm(1/t) and ϕ1(tϕm(1/t)) are both

increasing, we get

∞∑
i=0

1
(log R)m+1

∫
|x|≤R

Φ(K∗fi(x)) dx �
∞∑
i=0

ϕ1

(
22i+1

ϕm

(‖fi‖1

22i+1

))

+
∞∑
i=0

22i+1
ϕm

(‖fi‖1

22i+1

)
(1 + log(i + 2))

= S0 + S1.

Define
B =

{
i ≥ 0 : 22i+1

ϕm

(‖fi‖1

22i+1

)
≤ 1

1 + i2

}
,

and split the sum S0 as
S0 =

∑
i∈B

+
∑
i/∈B

.
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Using again that ϕ1(s) is increasing, we get

∑
i∈B

≤
∞∑
i=0

1
1 + i2

(1 + log(1 + i2)) < ∞.

On the other hand,

∑
i/∈B

≤
∞∑
i=0

22i+1
ϕm

(‖fi‖1

22i+1

)
(1 + log(1 + i2)) = S1.

Summarizing, we have that

∞∑
i=0

1
(log R)m+1

∫
|x|≤R

Φ(K∗fi(x))dx � 1 + S1.

To estimate S1 we follow the steps of the corresponding Theorem 2.2 in
[4]. Since ‖fi‖1 ≤ 2

∑2i+1−1
j=2i 2jλf (2j) and ϕm is concave

S1 �
∞∑
i=0

22i+1
2i+1−1∑
j=2i

ϕm

( 2j

22i+1 λf (2j)
)
(1 + log(i + 2)).

Now, using ϕm(s)/s decreases, and that 2i ≤ j < 2i+1, we obtain that

22i+1
ϕm

( 2j

22i+1 λf (2j)
)
≤ (2j)2ϕm

(λf (2j)
2j

)
.

Hence

S1 �
∞∑
i=0

2i+1−1∑
j=2i

(2j)2ϕm

(λf (2j)
2j

)
(1 + log+ log+ log+ 2j)

�
∫ ∞

1
sϕm

(λf (s)
s

)
(1 + log+ log+ log +s) ds.

Since sλf (s) ≤ ‖f‖1 ≤ ‖f‖
L(Ψm) ≤ 1, we get

s

λf (s)
≤

( 1
λf (s)

)2

and, since sϕm(1/s) increases, and ϕm(s2) ≤ 2msϕm(s),

sϕm

(λf (s)
s

)
≤ 1

λf (s)
ϕm((λf (s))2) � ϕm(λf (s)).
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Thus,

S1 �
∫ ∞

1
ϕm(λf (s))(1 + log+ log+ log+ s) ds

≤
∫ ∞

0
ϕm(λf (s))(1 + log+ log+ log+ s) ds

=
∫ ∞

0

(∫ f∗(s)

0
(1 + log+ log+ log+ t) dt

)
dϕm(s).

Finally, since (1 + log+ log+ log+ t) is increasing and sf∗(s) ≤ 1

S1 �
∫ ∞

0
f∗(s)(1 + log+ log+ log+ f∗(s)) dϕm(s)

�
∫ ∞

0
f∗(s)

(
1 + log+ 1

s

)m(
1 + log+ log+ log+ 1

s

)
ds.

Notice that claim (9) follows from the fact that

∞∑
i=0

‖fi‖∞ϕm

( ‖fi‖1

‖fi‖∞
)
≤ S1 � ‖f‖

L(Ψm) ≤ 1.

To estimate
∫
|x|≤R Φ̂(K∗f̄(x)) dx we use the same argument that above,

considering the sets A1 =
(
0, ‖f‖∞ϕm

( ‖f‖1

‖f‖∞

))
, A2 =

(
‖f‖∞ϕm

( ‖f‖1

‖f‖∞

)
, 1

)
,

A3 = (1, 2), A4 = (2,∞) (or A1 = (0, 1), A3 = (1, 2), A4 = (2,∞) if
‖f‖∞ϕm

( ‖f‖1

‖f‖∞

)
> 1) and the fact that ‖f‖∞ ≤ 2 and ‖f‖1 ≤ 1. Then, one

can easily check that for R > 2,∫
|x|≤R

Φ̂(K∗f̄(x)) dx � (log R)m+1.

Summarizing, if ‖f‖
L(Ψm) ≤ 1 we have proved that

‖f‖
L(Ψm)

∫
|x|≤R

Φ(K∗f(x)) dx ≤ c(log R)m+1{1 + ‖f‖
L(Ψm)}.

Finally, the case ‖f‖
L(Ψm) > 1 follows from the previous one since

1
‖f‖

L(Ψm)

∫
|x|≤R

Φ(K∗f(x)) dx ≤
∫
|x|≤R

Φ
(
K∗ f(x)

‖f‖
L(Ψm)

)
dx.

Remark 3.1 Theorem 3.1 is also true for kernels {Kj} in L1(Tn), hence
if K∗ = S∗ we obtain inequality (4).
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Remark 3.2 Under the same hypothesis of Theorem 3.1, the following weak
type inequalities were obtained in [8] and [4]

|{x ∈ R
n, |x| ≤ R : K∗fi(x) > t}| � 1 + ‖f‖

L(Ψm)

and
t
|{x ∈ Rn : K∗f(x) > t}|

(1 + log+ t)m
� 1 + ‖f‖

L(Ψm).
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[8] P. Sjölin and F. Soria, Remarks on a Theorem of N. Y. Antonov, Studia
Math. 158 (2003), 79-97.

[9] F. Soria, Integrability properties of the maximal operator on partial
sums of Fourier series, Rendiconti del Circolo Matematico di Palermo,
Serie II, Tomo XXXVIII (1989), 371-376.

11



[10] A. Zygmund, Trigonometric series, Cambridge Univ. Press (1959).

Joaquim Mart́ın. Departament de Matemàtiques
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