This is the accepted version of the journal article:

This version is available at https://ddd.uab.cat/record/271868
under the terms of the © COPYRIGHT license
Equivalent expressions for norms in classical Lorentz spaces

Santiago Boza and Joaquim Martín*

Abstract

We characterize the weights w such that

$$\int_0^\infty f^*(s)^p w(s) \, ds \simeq \int_0^\infty (f^{**}(s) - f^*(s))^p w(s) \, ds.$$

Our result generalizes a result due to Bennett–De Vore–Sharpley, where the usual Lorentz $L^{p,q}$ norm is replaced by an equivalent expression involving the functional $f^{**} - f^*$. Sufficient conditions for the boundedness of maximal Calderón–Zygmund singular integral operators between classical Lorentz spaces are also given.

1 Introduction

Let $(\Omega, \Sigma(\Omega), \mu)$ be a nonfinite totally σ-finite resonant measure space, and let w be a strictly nonnegative Lebesgue measurable function on $\mathbb{R}^+ = (0, \infty)$ (briefly a weight). For $1 \leq p < \infty$ the classical Lorentz space $\Lambda^p_\mu(w)$ (see [10] and [6]) is defined by those measurable functions in Ω such that

$$\|f\|_{\Lambda^p_\mu(w)} := \left(\int_0^\infty f^*_\mu(s) w(s) \, ds \right)^{1/p} < \infty,$$

where $f^*_\mu(t) = \inf \left\{ s : \lambda^\mu_f(s) \leq t \right\}$ is the decreasing rearrangement of f, and $\lambda^\mu_f(y) = \mu\left\{ x \in \Omega : |f(x)| > y \right\}$ is the distribution function of f with respect to the measure μ (we refer the reader to [4] for further information about distribution functions and decreasing rearrangements).

Similarly, the weak Lorentz space $\Lambda^{p,\infty}_\mu(w)$ (see [6]) is defined by the condition

$$\|f\|_{\Lambda^{p,\infty}_\mu(w)} := \sup_{t>0} f^*_\mu(t) W^{-1/p}(t) < \infty,$$

where $W(t) = \int_0^t w(s) \, ds$.

Obviously, the above spaces are invariant under rearrangement and generalize the Lorentz spaces $L^{p,q}_\mu$ since if $w(t) = t^{q/p-1}$, $(1 \leq q, p < \infty)$ then $\Lambda^q_\mu(w) = L^{p,q}_\mu$ and $\Lambda^{q,\infty}_\mu(w)$ coincides with $L^{p,\infty}_\mu$; in particular the Lebesgue space L^p_μ is the space $\Lambda^p_\mu(w)$ when $w = 1$.

*This work has been partially supported by the DGICYT BMF2001–3395 and by CURE 2001SGR 00069. The second author has also been supported by ”programa Ramón y Cajal (MCYT)”.

Keywords and phrases: Lorentz spaces, Hardy’s operators, weights.

2000 Mathematics Subject Classification: 46E30, 26D10.
Let us denote by \(f^{**}_\mu \) the maximal function of \(f^*_\mu \) defined by

\[
f^{**}_\mu(t) := \frac{1}{t} \int_0^t f^*_\mu(s) \, ds.
\]

It is proved in [3] (see also [4], Proposition 7.12) that in the case \(p > 1 \) the usual Lorentz \(L^{p,q}_\mu \) norm can be replaced by an equivalent expression in terms of the functional \(f^{**}_\mu - f^*_\mu \); i.e., if \(f \in L^{p,q}_\mu \), \(1 < p < \infty \), \(1 \le q \le \infty \) and \(\lim_{t \to \infty} f^{**}_\mu(t) = 0 \), then

\[
\left(\int_0^\infty \left(\frac{t^{1/p} (f^{**}_\mu(t) - f^*_\mu(t))}{t} \right)^q \frac{dt}{t} \right)^{1/q} \simeq \| f \|_{L^{p,q}_\mu}, \tag{1}
\]

where as usual, by \(A \simeq B \) we mean that \(c^{-1}A \le B \le cA \), for some constant \(c > 0 \) independent of appropriate quantities.

The main purpose of this paper is to extend (1) in the context of the classical Lorentz spaces and describe the weights \(w \) for which

\[
\| f \|_{\Lambda^p_\mu(w)} \simeq \left(\int_0^\infty (f^{**}_\mu(s) - f^*_\mu(s))^p w(s) \, ds \right)^{1/p}. \tag{2}
\]

The work is organized as follows: in Section 2 we provide a brief review of the parts of the theory of \(B_p \) and \(B^*_\infty \) weights that we shall use in this paper and prove some properties of the weights \(w \) that belong to \(B_p \cap B^*_\infty \). In Section 3 we characterize the weights \(w \) for which (2) holds, and as application, we obtain sufficient conditions for the boundedness of maximal Calderón–Zygmund singular integral operators between Lorentz spaces \(\Lambda^p_\mu(w) \), if \(\mu \) is an absolutely continuous measure on \(\mathbb{R}^n \) defined by \(\mu(A) = \int_A u(x) \, dx \) (\(A \in \Sigma(\mathbb{R}^n) \)) where \(u \) belongs to the class of weights \(A^{p_0} \), for some \(p_0 \ge 1 \) (see [8] as a general reference of this class of weights).

For other applications of the functional \(f^{**}_\mu - f^*_\mu \) in rearrangement function inequalities and interpolation theory we refer to [4], [3], [9], [13] and the references quoted therein.

2 Preliminaries

If \(h \) is a Lebesgue measurable function defined on \(\mathbb{R}^+ \) the Hardy operator \(P \) and its adjoint \(Q \) are defined by

\[
Ph(t) := \frac{1}{t} \int_0^t h(s) \, ds, \quad Qh(t) := \int_t^\infty h(s) \, \frac{ds}{s}.
\]

Results by M. Ariño and B. Muckenhoupt (see [1]) and C. J. Neugebauer (see [11]) which extend Hardy’s inequalities, ensure that:

- \(Pf^*_\mu \in \Lambda^p_\mu(w) \) for all \(f \in \Lambda^p_\mu(w) \) \((1 \le p < \infty)\) if and only if \(w \in B_p \), i.e. there is a constant \(c > 0 \) such that

\[
\int_r^\infty \left(\frac{t}{s} \right)^p w(s) \, ds \le cW(r) \quad (r > 0).
\]
Lemma 2.1 Let $Qf^*_\mu \in \Lambda^p_\mu (w)$ for all $f \in \Lambda^p_\mu (w)$ $(1 \leq p < \infty)$ if and only if $w \in B^*_\infty$, i.e. there is a constant $c > 0$ such that
\[
\int_0^r \left(\frac{1}{s} \int_0^s w(x)dx \right) ds \leq c W(r) \quad (r > 0).
\]

The boundedness of P on $\Lambda^{p,\infty}_\mu (w)$ was also considered by J. Soria (see [14] Theorem 3.1). Soria’s result ensures that:

- $Pf^*_\mu \in \Lambda^{p,\infty}_\mu (w)$ for all $f \in \Lambda^{p,\infty}_\mu (w)$ $(1 \leq p < \infty)$ if and only if $w \in B_p$. Moreover, another characterization of the B_p class is provided by
\[
w \in B_p \iff \frac{1}{r} \int_0^r \frac{ds}{W^{1/p}(s)} \simeq \frac{1}{W^{1/p}(r)}.
\]

Lemma 2.1 Let $1 \leq p < \infty$ and w be a weight on \mathbb{R}^+. Then, the following are equivalent,

i) $w \in B_p \cap B^*_\infty$.

ii) $\frac{1}{r^p} \int_0^r w(s)ds \simeq \int_r^\infty w(s)\frac{ds}{sp^{1/p}}$ $(r > 0)$.

iii) $\frac{1}{r} \int_0^r \frac{ds}{W^{1/p}(s)} \simeq \int_r^\infty ds\frac{ds}{sW^{1/p}(s)} \simeq \frac{1}{W(r)^{1/p}}$ $(r > 0)$.

Proof. i) \Rightarrow ii). Obviously, $\int_r^\infty w(s)\frac{ds}{sp^{1/p}} \leq \frac{1}{r} \int_0^r w(s)ds$ since $w \in B_p$. Conversely, let us write
\[
Q_pw(r) := r^{p-1} \int_r^\infty w(s)\frac{ds}{sp^p}.
\]

Since $w \in B^*_\infty$ and $P \circ Q_p = p^{-1}(P + Q_p)$ it follows that
\[
P(P \circ Q_p w)(t) \leq cP(Q_pw)(t).
\]

For any $a > 1$ we have that
\[
P(Q_pw)(r) = \frac{1}{r \log a} \int_r^{ar} \frac{1}{t} \int_0^r Q_pw(s) ds dt \leq \frac{1}{r \log a} \int_0^{ar} \frac{1}{t} \int_0^t Q_pw(s) ds dt
\]
\[
\leq \frac{c}{r \log a} \int_0^{ar} Q_pw(s) ds,
\]
where the last inequality follows from (4).

Since
\[
\int_r^{ar} Q_pw(s)ds = \int_r^{ar} t^{p-1} \int_t^\infty w(s)\frac{ds}{sp^p} dt \leq \left(\int_r^{ar} t^{p-1} dt \right) \left(\int_r^\infty w(s)\frac{ds}{sp^p} \right)
\]
\[
= \frac{a^p - 1}{p} Q_pw(r)
\]
we have that
\[
P(Q_pw)(r) \leq \frac{c}{r \log a} \left(\int_0^r Q_pw(s) ds + \int_r^{ar} Q_pw(s) ds \right)
\]
\[
\leq \frac{c}{\log a} \left(\frac{1}{r} \int_0^r Q_pw(s) ds + \frac{a^p - 1}{p} Q_pw(r) \right).
\]
Hence
\[
\left(1 - \frac{c}{\log a}\right) P(Q_p w)(r) \leq \frac{c(a^p - 1)}{p \log a} Q_p w(r).
\]
Now if we take \(a = e^{2c}\) we obtain a constant \(C\) (depending only on \(p\)) such that
\[
P(Q_p w)(r) \leq C Q_p w(r).
\]
Finally, since \(P w(r) \leq p P(Q_p w)(r)\) it follows that
\[
\frac{1}{r^p} \int_0^r w(s) \, ds \leq c \int_r^\infty w(s) \frac{ds}{s^p}.
\]
\(\Rightarrow\) ii). It is enough to check that \(w \in B^*_{\infty}\), that is, there is a \(c > 0\) such that \(P \circ P w \leq c P w\).

We observe that condition ii) is
\[
P w(r) \simeq Q_p w(r)
\]
hence by Fubini’s theorem
\[
P(P w)(r) \simeq P(Q_p w)(r) = \frac{1}{p} (P w(r) + Q_p w(r)) \leq c P w(r).
\]
\(\Rightarrow\) iii). If \(w \in B_p\) by (3) \(\frac{1}{r} \int_0^r \frac{ds}{W^{1/p}(s)} \simeq \frac{1}{W^{1/p}(r)}\), hence only we need to see that
\[
\int_r^\infty \frac{ds}{s W(s)^{1/p}} \simeq \frac{1}{W^{1/p}(r)}
\]
which by [7] (Theorem 3.2) is equivalent to
\[
\int_r^\infty \frac{ds}{s W(s)} \simeq \frac{1}{W(r)}
\]
and by Sagher’s Lemma (see [12]), this happens if and only if
\[
\int_0^r \left(\frac{1}{s} \int_0^s w(x) \, dx\right) \, ds \simeq W(r)
\]
which follows from the fact that \(w \in B_p \cap B^*_{\infty}\) since
\[
P w \leq P w + Q_p w \simeq P(Q_p w) \leq c P(P w) \leq C P w.
\]
\(\Rightarrow\) i). If
\[
\frac{1}{r} \int_0^r \frac{ds}{W(s)^{1/p}} \simeq \frac{1}{W^{1/p}(r)}
\]
by (3) we have that \(w \in B_p\).

On the other hand, as we have seen before, condition
\[
\int_r^\infty \frac{ds}{s W(s)^{1/p}} \simeq \frac{1}{W^{1/p}(r)}
\]
is equivalent to
\[
\int_0^r \left(\frac{1}{s} \int_0^s w(x) \, dx\right) \, ds \simeq W(r)
\]
i.e. \(w \in B^*_{\infty}\). \(\square\)
3 The main result

Theorem 3.1 Let $1 \leq p < \infty$ and w be a weight in \mathbb{R}^+. Then, the following are equivalent,

i) $w \in B_p \cap B^*_\infty$,

ii) $\|f\|_{\Lambda_p(w)} \simeq \left(\int_0^\infty (f^{**}_\mu(s) - f^*_\mu(s))^p w(s) ds \right)^{1/p}$,

iii) $\|f\|_{\Lambda_p,\infty(w)} \simeq \sup_{s>0}(f^{**}_\mu(s) - f^*_\mu(s))W^{1/p}(s)$,

where the equivalence constants do not depend on μ.

Proof. i) \Rightarrow ii). Since $w \in B_p \cap B^*_\infty$ by Lemma 2.1, there is $c > 0$ such that

$$\frac{1}{r} \int_0^r w(s) ds \leq c \int_r^\infty w(s) ds.$$

Hence

$$\frac{1}{r} \int_0^r w(s) ds \leq \frac{c}{c+1} \left(\frac{1}{r} \int_0^r w(s) ds + r^{p-1} \int_r^\infty w(s) ds \right).$$

Thus by Hardy’s Lemma (see [4] Proposition 3.6, pag. 56) and Fubini

$$\int_0^\infty f^*_\mu(s)^p w(s) ds \leq \frac{cp}{c+1} \int_0^\infty f^*_\mu(s)^p s^{p-1} \int_s^\infty w(x) \frac{dx}{xp} ds,$$

$$\leq \frac{cp}{c+1} \int_0^\infty \left(\int_0^s f^*_\mu(x)^p x^{p-1} dx \right) w(s) ds.$$

Since $\left(\int_0^s f^*_\mu(x)^p x^{p-1} dx \right)^{1/p} \leq 1/p \int_0^s f^*_\mu(x) dx$ (see [15], Theorem 3.11, pag 192) we have that

$$\int_0^\infty f^*_\mu(s)^p w(s) ds \leq \frac{c}{c+1} \int_0^\infty \left(\frac{1}{s} \int_0^s f^*_\mu(x) dx \right)^p w(s) ds.$$

Hence

$$\left(\int_0^\infty f^*_\mu(s)^p w(s) ds \right)^{1/p} \leq \left(\frac{c}{c+1} \int_0^\infty (f^{**}(s) - f^*_\mu(s))^p w(s) ds \right)^{1/p} + \left(\frac{c}{c+1} \int_0^\infty f^*_\mu(s)^p w(s) ds \right)^{1/p}.$$

Collecting terms, we get

$$\left(\int_0^\infty f^*_\mu(s)^p w(s) ds \right)^{1/p} \leq \frac{c^{1/p}}{(c+1)^{1/p} - c^{1/p}} \left(\int_0^\infty (f^{**}_\mu(s) - f^*_\mu(s))^p w(s) ds \right)^{1/p}.$$

The reverse inequality follows by the triangular inequality and condition B_p.

ii) \Rightarrow i). This is a direct consequence of Lemma 2.1 since if we apply condition ii) to the characteristic function χ_A with $\mu(A) = r$, we obtain

$$\frac{1}{r^p} \int_0^r w(s) ds \simeq \int_r^\infty w(s) ds.$$

$$\frac{s}{sp}.$$
i) ⇒ iii). First observe that if \(w \in B_p \cap B^*_\infty \) then \(\lim_{x \to \infty} W(x) = \infty \) (otherwise the constant function 1 ∈ \(\Lambda_p^\infty(w) \) and then \(w \notin B^*_\infty \)) and hence if \(f \in \Lambda_p^\infty(w) \) we get \(\lim_{t \to \infty} f^{**}(t) = 0 \).

Now using the elementary identity (see [3])
\[
f^{**}(t) - f^{**}(s) = \int_t^s (f^{**}(x) - f^*(x)) \frac{dx}{x} \quad (0 < t \leq s < \infty)
\]
and letting \(s \to \infty \) we find that if \(f \in \Lambda_p^\infty(w) \)
\[
f^{**}(t) = \int_t^\infty (f^{**}(x) - f^*(x)) \frac{dx}{x}.
\]
Hence
\[
\|f\|_{\Lambda_p^\infty(w)} \leq \sup_{t>0} \left(\int_t^\infty (f^{**}(x) - f^*(x)) \frac{dx}{x} \right) W^{1/p}(t)
\]
\[
\leq \sup_{x>0} \left((f^{**}(x) - f^*(x)) W^{1/p}(x) \right) \sup_{t>0} \left(W^{1/p}(t) \int_t^\infty \frac{dx}{W^{1/p}(x)x} \right)
\]
with \(\sup_{t>0} \left(W^{1/p}(t) \int_t^\infty \frac{dx}{W^{1/p}(x)x} \right) \leq C \) by Lemma 2.1.

On the other hand, since \(w \in B_p \) the boundedness of the Hardy operator in \(\Lambda_p^\infty(w) \) implies that
\[
\sup_{s>0} (f^{**}(s) - f^*(s)) W^{1/p}(s) \leq c \|f\|_{\Lambda_p^\infty(w)}.
\]

iii) ⇒ i). Since \(1/W^{1/p} \) is decreasing and \(\lim_{x \to \infty} 1/W^{1/p}(x) = 0 \); as a consequence of Ryff’s Theorem (see [4] Corollary 7.6. pag. 83) there is a \(\mu \)-measurable function \(f \) on \(\Omega \) such that \(f^*_\mu = 1/W^{1/p} \), then by hypothesis
\[
(f^{**}(x) - f^*(x)) W^{1/p}(x) \leq c \|f\|_{\Lambda_p^\infty(w)} = c.
\]
Thus
\[
\frac{1}{W^{1/p}(r)} \leq \frac{1}{r} \int_0^r \frac{ds}{W^{1/p}(s)} \leq \frac{c + 1}{W^{1/p}(r)} \quad (5)
\]
and by (3) \(w \in B_p \).

Given \(a > 0 \) and \(s > 1 \), define
\[
h(t) = \begin{cases}
1 & \text{if } 0 < t < a, \\
\left(\frac{W(a)}{W(t)} \right)^{1/p} & \text{if } a < t < sa, \\
0 & \text{if } t > sa,
\end{cases}
\]
and let \(g(t) = Qh(t) \). Since \(g \) is decreasing and \(\lim_{x \to \infty} g(t) = 0 \), again by Corollary 7.6. pag. 83 of [4], we can find \(f \) such that \(f^*_\mu = g \). Then
\[
f^{**} - f^*_\mu = P(Qh) - Qh = Ph + Qh - Qh = Ph
\]
thus, by iii), since \(h \) is decreasing and \(w \in B_p \),
\[
\|f\|_{\Lambda_p^\infty(w)} = \sup_{t>0} Qh(t) W(t)^{1/p} \simeq \sup_{t>0} Ph(t) W(t)^{1/p} \leq c \sup_{t>0} h(t) W(t)^{1/p} \leq cW^{1/p}(a)
\]

6
we get that in particular
\[Qh(a)W(a)^{1/p} = \int_a^{\infty} \frac{W^2(a)}{W^{1/p}(t)} dt \leq cW^{1/p}(a) \]
which implies that
\[\int_a^{\infty} \frac{dt}{W^{1/p}(t)t} \leq \frac{c}{W^{1/p}(a)}. \]

Now by (5)
\[\int_a^{\infty} \frac{dt}{W^{1/p}(t)t} \approx \int_a^{\infty} \frac{1}{r^2} \int_0^r \frac{ds}{W^{1/p}(s)} dr \geq \left(\int_a^{\infty} \frac{1}{r^2} dr \right) \left(\int_0^a \frac{ds}{W^{1/p}(s)} \right) \]
\[= \frac{1}{a} \int_0^a \frac{ds}{W^{1/p}(s)} \approx \frac{1}{W^{1/p}(a)}. \]

Summarizing we have proved that
\[\frac{1}{a} \int_0^a \frac{ds}{W^{1/p}(s)} \approx \int_a^{\infty} \frac{dt}{W^{1/p}(t)t} \approx \frac{1}{W^{1/p}(a)} \]
which by Lemma 2.1 implies that \(w \in B_p \cap B_\infty^*. \)

Observe that in the above theorem we have proved the norm equivalence between \(f \) (in the classical Lorentz space \(\Lambda_\mu^p(w) \)) and \(f_{\mu}^{**} - f_{\mu}^{*} \) in the weighted \(L^p(w) \) space. In fact we have the following

Proposition 3.1 The following statements are equivalent,

i) \(w \in B_p \cap B_\infty^* \),

\[\|f\|_{\Lambda_\mu^p(w)} \approx \left(\int_0^{\infty} ((f_{\mu}^{**} - f_{\mu}^{*})(s))^p w(s) ds \right)^{1/p}, \]

\[\|f\|_{\Lambda_\mu^{p,\infty}(w)} \approx \sup_{s>0} (f_{\mu}^{**} - f_{\mu}^{*})^{*}(s)W^{1/p}(s), \]

where the rearrangement \((f_{\mu}^{**} - f_{\mu}^{*})^{*} \) is taken with respect the Lebesgue measure in \(\mathbb{R}^+ \).

Proof. i) \(\Rightarrow \) ii). Since \(w \in B_p \cap B_\infty^* \), it follows from Theorem 3.1 that \(\lim_{t \to \infty} f_{\mu}^{**}(t) = 0 \), for every \(f \in \Lambda_\mu^p(w) \). Hence,
\[f_{\mu}^{**}(t) = \int_t^{\infty} (f_{\mu}^{**}(x) - f_{\mu}^{*}(x)) \frac{dx}{x}. \]

Then
\[f_{\mu}^{*}(t) \leq Pf_{\mu}^{**}(t) = \frac{1}{t} \int_0^t \left(\int_s^{\infty} (f_{\mu}^{**}(x) - f_{\mu}^{*}(x)) \frac{dx}{x} \right) ds = S(f_{\mu}^{**} - f_{\mu}^{*})(t). \]

where \(S := P \circ Q \) is the Calderón operator.

Since if \(h \) is a nonnegative function on \(\mathbb{R}^+ \) then \(S(h)(t) \) is decreasing, for each \(t > 0 \), by taking rearrangement (with respect the Lebesgue measure in \(\mathbb{R}^+ \)) we get (see [4] Proposition 5.2, pag. 142)
\[S(h)(t) = (S(h))^{*}(t) \leq S(h^{*})(t). \]
Thus
\[f_\mu^*(t) \leq P f_\mu^{**}(t) \leq \frac{1}{t} \int_0^t \left(\int_s^\infty (f_\mu^{**} - f_\mu^*)^*(x) \frac{dx}{x} \right) ds. \]

Now, since \(w \in B_p \cap B_{\infty}^* \), we have that
\[\|f\|_{\Lambda_p^*(w)} \leq c \left(\int_0^\infty ((f_\mu^{**} - f_\mu^*)^*)(s) w(s) ds \right)^{1/p}. \]

On the other hand, since \((f_\mu^{**} - f_\mu^*)^*(s) \leq f_\mu^{**}(s)\), the reverse inequality follows by condition \(B_p \).

\(ii \Rightarrow i \). If \(f = \chi_A \) with \(\mu(A) = r \), then
\[(f_\mu^{**} - f_\mu^*)^*(s) = \frac{r}{r + s} \chi_{(0,\infty)}(s) \]

Applying condition \(ii \) we get
\[W(r) \simeq \int_0^\infty (\frac{r}{r + s})^p w(s) ds \geq \int_r^\infty (\frac{r}{r + s})^p w(s) ds \geq \int_r^\infty (\frac{r}{2})^p \frac{w(s)}{s^p} ds \]

i.e. \(w \in B_p \).

Given \(a > 0 \) and \(s > 1 \), define
\[h(t) = \begin{cases} 1 & \text{if } 0 < t < a, \\ a/t & \text{if } a < t < sa, \\ 0 & \text{if } t > sa, \end{cases} \]

and let \(g(t) = Qh(t) \). Since \(g \) is decreasing and \(\lim_{x \to \infty} g(t) = 0 \), using again Ryff’s Theorem (see [4] Corollary 7.6, pag. 83) we can find \(f \) such that \(f_\mu^* = g \). Then
\[f_\mu^{**} - f_\mu^* = P(Qh) - Qh = Ph + Qh - Qh = Ph, \]

thus, by condition \(ii \), since \(h \) is decreasing and since \(w \in B_p \), we get that
\[\left(\int_0^\infty Qh(x)^p w(x) dx \right)^{1/p} = \|f\|_{\Lambda_p^*(w)} \simeq \left(\int_0^\infty ((f_\mu^{**} - f_\mu^*)^*(x))^p w(x) dx \right)^{1/p} \]
\[= \left(\int_0^\infty Ph(x)^p w(x) dx \right)^{1/p} \leq c \left(\int_0^\infty h(x)^p w(x) dx \right)^{1/p}. \]

A simple computation shows that
\[\int_0^a h(x)^p w(x) dx = W(a) + a^p \int_a^{sa} \frac{w(x)}{x^p} dx \]

and
\[\int_0^a \left(\log \frac{a}{x} \right)^p w(x) dx \leq \int_0^\infty Qh(x)^p w(x) dx. \]

Then, since \(w \in B_p \)
\[\int_0^a \left(\log \frac{a}{x} \right)^p w(x) dx \leq c \left(W(a) + a^p \int_a^{sa} \frac{w(x)}{x^p} dx \right) \leq c \left(W(a) + a^p \int_a^\infty \frac{w(x)}{x^p} dx \right) \leq cW(a) \]

8
which is equivalent to $P \circ Pw \leq cPw$ (see [11], Theorem 3.3) i.e. $w \in B_{\infty}^*$. \Box

ii) \iff i). Is proved in the same way.

Given $u \in A^p (1 \leq p < \infty)$ we shall denote by μ its associate measure on \mathbb{R}^n, i.e.

$$\mu(A) = \int_A u(x) \, dx, \quad A \in \Sigma(\mathbb{R}^n).$$

Theorem 3.2 Let T be a Calderón–Zygmund maximal operator, $u \in A^{p_0} (1 \leq p_0 < \infty)$ and μ its associate measure. Then T is bounded from $\Lambda_p^p(w)$ to $\Lambda_p^p(w)$ (resp. from $\Lambda_{p,\infty}^p(w)$ to $\Lambda_{p,\infty}^p(w)$) for any $w \in B_{p/p_0} \cap B_{\infty}^* (1 \leq p < \infty)$.

Proof. If T is a Calderón–Zygmund maximal operator, $u \in A^{p_0}$ and μ its associate measure then (see [2])

$$(Tf)_{\mu}^*(s) - (Tf)_{\mu}^*(2s) \leq c(Mf)_{\mu}^*(s/2)$$

(6)

where M is the Hardy–Littlewood maximal function with respect to Lebesgue measure. Hence

$$I := \frac{1}{t} \int_0^t (Tf)_{\mu}^*(s) \, ds - \frac{1}{t} \int_0^t (Tf)_{\mu}^*(2s) \, ds \leq \frac{c}{t} \int_0^t (Mf)_{\mu}^*(s/2) \, ds.$$

But

$$I = \frac{1}{t} \int_0^t (Tf)_{\mu}^*(s) \, ds - \frac{1}{2t} \int_0^{2t} (Tf)_{\mu}^*(s) \, ds$$

$$= \frac{1}{2t} \int_0^t (Tf)_{\mu}^*(s) \, ds - \frac{1}{2t} \int_{t}^{2t} (Tf)_{\mu}^*(s) \, ds$$

$$\geq \frac{1}{2t} \int_0^t (Tf)_{\mu}^*(s) \, ds - \frac{(Tf)_{\mu}^*(t)}{2}$$

Hence

$$\frac{1}{t} \int_0^t (Tf)_{\mu}^*(s) \, ds - (Tf)_{\mu}^*(t) \leq \frac{2c}{t} \int_0^t (Mf)_{\mu}^*(s/2) \, ds.$$

On the other hand, by [11] Lemma 2.2

$$(Mf)_{\mu}^*(s) \leq c \frac{1}{s^{1/p_0}} \int_0^s f_{\mu}^*(x) \frac{dx}{x^{1-1/p_0}} = cA_{p_0}f_{\mu}^*(s)$$

Hence

$$\frac{1}{t} \int_0^t (Tf)_{\mu}^*(s) \, ds - (Tf)_{\mu}^*(t) \leq CP(A_{p_0}f_{\mu}^*)(t/2).$$

Thus, by Theorem 3.1,

$$\|Tf\|_{\Lambda_p^p(w)} \leq c \left(\int_0^\infty \left(\frac{(Tf)_{\mu}^*(s) - (Tf)_{\mu}^*(s)}{w(s)} \right)^p \, ds \right)^{1/p}$$

$$\leq c\|P(A_{p_0}f_{\mu}^*)\|_{\Lambda_p^p(w)} \leq c\|f\|_{\Lambda_p^p(w)} + \epsilon,$$

this last inequality is due to the fact that $w \in B_{p/p_0} \subset B_p$, and so P is bounded in $\Lambda_{p}^p(w)$. We have also used that A_{p_0} is bounded in $\Lambda_{p}^p(w)$ since $w \in B_{p/p_0}$ (see [11] Theorem 2.3). \Box
Remark 3.1 If $1 < p_0 < \infty$ using the same proof that above and Theorem 3.3.9 of [5], one can easily check that Theorem 3.2 holds for every w in the biggest class $B_{p/p_0, \infty} \cap B^*_\infty$ where

$$w \in B_{q, \infty} \Leftrightarrow W(r)/r^q \leq cW(s)/s^q \quad 0 < s < r < \infty, \quad (q > 0).$$

Acknowledgments. We thank the referee for his/her helpful suggestions to improve the presentation.

References

SANTIAGO BOZA. Departament de Matemàtica Aplicada IV, E.U.P.V.G., Avda. Victor Balaguer s/n, E-08800 Vilanova i Geltrú, Barcelona (Spain). E–mail: boza@mat.upc.es

JOAQUIM MARTIN. Departament de Matemàtiques. Universitat Autònoma de Barcelona, Edifici C 08193 Bellaterra, Barcelona, (Spain). E–mail: jmartin@mat.uab.es