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Equivalent expressions for norms in classical Lorentz
spaces

Santiago Boza and Joaquim Mart́ın∗

Abstract

We characterize the weights w such that∫ ∞

0
f∗(s)pw(s) ds '

∫ ∞

0

(
f∗∗(s)− f∗(s)

)p
w(s) ds.

Our result generalizes a result due to Bennett–De Vore–Sharpley, where the usual
Lorentz Lp,q norm is replaced by an equivalent expression involving the functional
f∗∗ − f∗. Sufficient conditions for the boundedness of maximal Calderón–Zygmund
singular integral operators between classical Lorentz spaces are also given.

1 Introduction

Let (Ω, Σ(Ω), µ) be a nonfinite totally σ−finite resonant measure space, and let w be a
strictly nonnegative Lebesgue measurable function on R+ = (0,∞) (briefly a weight).
For 1 ≤ p < ∞ the classical Lorentz space Λp

µ(w) (see [10] and [6]) is defined by those
measurable functions in Ω such that

‖f‖Λp
µ(w) :=

(∫ ∞

0

f ∗µ(s)pw(s)ds

)1/p

< ∞,

where f ∗µ(t) = inf
{
s : λµ

f (s) ≤ t
}

is the decreasing rearrangement of f , and λµ
f (y) =

µ
(
{x ∈ Ω : |f(x)| > y}

)
is the distribution function of f with respect to the measure

µ (we refer the reader to [4] for further information about distribution functions and
decreasing rearrangements).

Similarly, the weak Lorentz space Λp,∞
µ (w) (see [6]) is defined by the condition

‖f‖Λp,∞
µ (w) := sup

t>0
f ∗µ(t)W 1/p(t) < ∞,

where W (t) =
∫ t

0
w(s)ds.

Obviously, the above spaces are invariant under rearrangement and generalize the
Lorentz spaces Lp,q

µ since if w(t) = tq/p−1, (1 ≤ q, p < ∞) then Λq
µ(w) = Lp,q

µ and Λq,∞
µ (w)

coincides with Lp,∞
µ ; in particular the Lebesgue space Lp

µ is the space Λp
µ(w) when w = 1.
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00069. The second author has also been supported by ”programa Ramón y Cajal (MCYT)”.
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Let us denote by f ∗∗µ the maximal function of f ∗µ defined by

f ∗∗µ (t) :=
1

t

∫ t

0

f ∗µ(s)ds.

It is proved in [3] (see also [4], Proposition 7.12) that in the case p > 1 the usual Lorentz
Lp,q

µ norm can be replaced by an equivalent expression in terms of the functional f ∗∗µ − f ∗µ
i.e. if f ∈ Lp,q

µ , 1 < p < ∞, 1 ≤ q ≤ ∞ and limt→∞ f ∗∗µ (t) = 0, then( ∫ ∞

0

(t1/p(f ∗∗µ (t)− f ∗µ(t)))q dt

t

)1/q

' ‖f‖Lp,q
µ

, (1)

where as usual, by A ' B we mean that c−1A ≤ B ≤ cA, for some constant c > 0
independent of appropriate quantities.

The main purpose of this paper is to extend (1) in the context of the classical Lorentz
spaces and describe the weights w for which

‖f‖Λp
µ(w) '

( ∫ ∞

0

(
f ∗∗µ (s)− f ∗µ(s)

)p
w(s)ds

)1/p

. (2)

The work is organized as follows: in Section 2 we provide a brief review of the parts of the
theory of Bp and B∗∞ weights that we shall use in this paper and prove some properties
of the weights w that belong to Bp ∩B∗∞. In Section 3 we characterize the weights w for
which (2) holds, and as application, we obtain sufficient conditions for the boundedness of
maximal Calderón–Zygmund singular integral operators between Lorentz spaces Λp

µ(w), if
µ is an absolutely continuous measure on Rn defined by µ(A) =

∫
A

u(x) dx, (A ∈ Σ(Rn))
where u belongs to the class of weights Ap0 , for some p0 ≥ 1 (see [8] as a general reference
of this class of weights).

For other applications of the functional f ∗∗µ −f ∗µ in rearrangement function inequalities
and interpolation theory we refer to [4], [3], [9], [13] and the references quoted therein.

2 Preliminaries

If h is a Lebesgue measurable function defined on R+ the Hardy operator P and its adjoint
Q are defined by

Ph(t) :=
1

t

∫ t

0

h(s)ds, Qh(t) :=

∫ ∞

t

h(s)
ds

s
.

Results by M. Ariño and B. Muckenhoupt (see [1]) and C. J. Neugebauer (see [11]) which
extend Hardy’s inequalities, ensure that:

• Pf ∗µ ∈ Λp
µ(w) for all f ∈ Λp

µ(w) (1 ≤ p < ∞) if and only if w ∈ Bp, i.e. there is a
constant c > 0 such that∫ ∞

r

(r

s

)p

w(s)ds ≤ cW (r) (r > 0).
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• Qf∗µ ∈ Λp
µ(w) for all f ∈ Λp

µ(w) (1 ≤ p < ∞) if and only if w ∈ B∗∞, i.e. there is a
constant c > 0 such that∫ r

0

(1

s

∫ s

0

w(x)dx
)

ds ≤ cW (r) (r > 0).

The boundedness of P on Λp,∞
µ (w) was also considered by J. Soria (see [14] Theorem

3.1). Soria’s result ensures that:

• Pf ∗µ ∈ Λp,∞
µ (w) for all f ∈ Λp,∞

µ (w) (1 ≤ p < ∞) if and only if w ∈ Bp. Moreover,
another characterization of the Bp class is provided by

w ∈ Bp ⇔
1

r

∫ r

0

ds

W 1/p(s)
' 1

W 1/p(r)
. (3)

Lemma 2.1 Let 1 ≤ p < ∞ and w be a weight on R+. Then, the following are equivalent,

i) w ∈ Bp ∩B∗∞.

ii)
1

rp

∫ r

0

w(s)ds '
∫ ∞

r

w(s)
ds

sp
(r > 0).

iii)
1

r

∫ r

0

ds

W (s)1/p
'

∫ ∞

r

ds

sW (s)1/p
' 1

W (r)1/p
(r > 0).

Proof. i) ⇒ ii). Obviously,
∫∞

r
w(s)ds

sp ≤ c
rp

∫ r

0
w(s)ds since w ∈ Bp. Conversely, let us

write

Qpw(r) := rp−1

∫ ∞

r

w(s)
ds

sp
.

Since w ∈ B∗∞ and P ◦Qp = p−1(P + Qp) it follows that

P
(
P ◦Qpw

)
(t) ≤ cP

(
Qpw

)
(t). (4)

For any a > 1 we have that

P
(
Qpw

)
(r) =

1

r log a

∫ ar

r

1

t

∫ r

0

Qpw(s) ds dt ≤ 1

r log a

∫ ar

0

1

t

∫ t

0

Qpw(s) ds dt

≤ c

r log a

∫ ar

0

Qpw(s) ds,

where the last inequality follows from (4).
Since∫ ar

r

Qpw(s)ds =

∫ ar

r

tp−1

∫ ∞

t

w(s)
ds

sp
dt ≤

(∫ ar

r

tp−1dt

) (∫ ∞

r

w(s)
ds

sp

)
= r

ap − 1

p
Qpw(r)

we have that

P
(
Qpw

)
(r) ≤ c

r log a

(∫ r

0

Qpw(s) ds +

∫ ar

r

Qpw(s) ds

)
≤ c

log a

(
1

r

∫ r

0

Qpw(s) ds +
ap − 1

p
Qpw(r)

)
.
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Hence (
1− c

log a

)
P

(
Qpw

)
(r) ≤ c(ap − 1)

p log a
Qpw(r).

Now if we take a = e2c we obtain a constant C (depending only on p) such that

P
(
Qpw

)
(r) ≤ CQpw(r).

Finally, since Pw(r) ≤ pP
(
Qpw

)
(r) it follows that

1

rp

∫ r

0

w(s) ds ≤ c

∫ ∞

r

w(s)
ds

sp
.

ii) ⇒ i). It is enough to check that w ∈ B∗∞, that is, there is a c > 0 such that
P ◦ Pw ≤ cPw.

We observe that condition ii) is

Pw(r) ' Qpw(r)

hence by Fubini’s theorem

P
(
Pw

)
(r) ' P

(
Qpw

)
(r) =

1

p
(Pw(r) + Qpw(r)) ≤ cPw(r).

i) ⇒ iii). If w ∈ Bp by (3) 1
r

∫ r

0
ds

W 1/p(s)
' 1

W 1/p(r)
, hence only we need to see that∫ ∞

r

ds

sW (s)1/p
' 1

W 1/p(r)

which by [7] (Theorem 3.2) is equivalent to∫ ∞

r

ds

sW (s)
' 1

W (r)

and by Sagher’s Lemma (see [12]), this happens if and only if∫ r

0

(
1

s

∫ s

0

w(x) dx

)
ds ' W (r)

which follows from the fact that w ∈ Bp ∩B∗∞ since

Pw ≤ Pw + Qpw ' P (Qpw) ≤ cP (Pw) ≤ CPw.

iii) ⇒ i). If
1

r

∫ r

0

ds

W (s)1/p
' 1

W (r)1/p

by (3) we have that w ∈ Bp.
On the other hand, as we have seen before, condition∫ ∞

r

ds

sW (s)1/p
' 1

W 1/p(r)

is equivalent to ∫ r

0

(
1

s

∫ s

0

w(x) dx

)
ds ' W (r)

i.e. w ∈ B∗∞.
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3 The main result

Theorem 3.1 Let 1 ≤ p < ∞ and w be a weight in R+. Then, the following are equiva-
lent,

i) w ∈ Bp ∩B∗∞,

ii) ‖f‖Λp
µ(w) '

(∫ ∞

0

(f ∗∗µ (s)− f ∗µ(s))pw(s)ds
)1/p

,

iii) ‖f‖Λp,∞
µ (w) ' sups>0(f

∗∗
µ (s)− f ∗µ(s))W 1/p(s),

where the equivalence constants do not depend on µ.

Proof. i) ⇒ ii). Since w ∈ Bp ∩ B∗∞ by Lemma 2.1, there is c > 0 such that
1
rp

∫ r

0
w(s) ds ≤ c

∫∞
r

w(s)ds
sp . Hence

1

r

∫ r

0

w(s) ds ≤ c

c + 1

(
1

r

∫ r

0

w(s) ds + rp−1

∫ ∞

r

w(s)
ds

sp

)
=

cp

c + 1

1

r

∫ r

0

sp−1

∫ ∞

s

w(x)
dx

xp
ds.

Thus by Hardy’s Lemma (see [4] Proposition 3.6, pag. 56) and Fubini∫ ∞

0

f ∗µ(s)pw(s) ds ≤ cp

c + 1

∫ ∞

0

f ∗µ(s)psp−1

∫ ∞

s

w(x)
dx

xp
ds

=
cp

c + 1

∫ ∞

0

(∫ s

0

f ∗u(x)pxp−1 dx

)
w(s)

sp
ds.

Since
( ∫ s

0
f ∗µ(x)pxp−1 dx

)1/p

≤ 1/p
∫ s

0
f ∗µ(x) dx (see [15], Theorem 3.11. pag 192) we have

that ∫ ∞

0

f ∗µ(s)pw(s) ds ≤ c

c + 1

∫ ∞

0

(
1

s

∫ s

0

f ∗µ(x) dx

)p

w(s)ds.

Hence (∫ ∞

0

f ∗u(s)pw(s) ds

)1/p

≤
(

c

c + 1

∫ ∞

0

(
f ∗∗µ (s)− f ∗µ(s)

)p
w(s) ds

)1/p

+

(
c

c + 1

∫ ∞

0

f ∗µ(s)pw(s) ds

)1/p

.

Collecting terms, we get( ∫ ∞

0

f ∗µ(s)pw(s)ds
)1/p

≤ c1/p

(c + 1)1/p − c1/p

( ∫ ∞

0

(
f ∗∗µ (s)− f ∗µ(s)

)p

w(s)ds
)1/p

.

The reverse inequality follows by the triangular inequality and condition Bp.

ii) ⇒ i). This is a direct consequence of Lemma 2.1 since if we apply condition ii) to the
characteristic function χA with µ(A) = r, we obtain

1

rp

∫ r

0

w(s) ds '
∫ ∞

r

w(s)
ds

sp
.
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i) ⇒ iii). First observe that if w ∈ Bp ∩ B∗∞ then limx→∞W (x) = ∞ (otherwise the
constant function 1 ∈ Λp

µ(w) and then w /∈ B∗∞) and hence if f ∈ Λp,∞
µ (w) we get

limt→∞ f ∗∗µ (t) = 0.
Now using the elementary identity (see [3])

f ∗∗µ (t)− f ∗∗µ (s) =

∫ s

t

(
f ∗∗µ (x)− f ∗µ(x)

)dx

x
(0 < t ≤ s < ∞)

and letting s →∞ we find that if f ∈ Λp,∞
µ (w)

f ∗∗µ (t) =

∫ ∞

t

(
f ∗∗µ (x)− f ∗µ(x)

)dx

x
.

Hence

‖f‖Λp,∞
µ (w) ≤ sup

t>0

(∫ ∞

t

(
f ∗∗µ (x)− f ∗µ(x)

)dx

x

)
W 1/p(t)

≤ sup
x>0

(
(f ∗∗µ (x)− f ∗µ(x))W 1/p(x)

)
sup
t>0

(
W 1/p(t)

∫ ∞

t

dx

W 1/p(x)x

)
with supt>0

(
W 1/p(t)

∫∞
t

dx
W 1/p(x)x

)
≤ C by Lemma 2.1.

On the other hand, since w ∈ Bp the boundedness of the Hardy operator in Λp,∞
µ (w)

implies that

sup
s>0

(
f ∗∗µ (s)− f ∗µ(s)

)
W 1/p(s) ≤ sup

s>0
f ∗∗µ (s)W 1/p(s) ≤ c‖f‖Λp,∞

µ (w).

iii) ⇒ i). Since 1/W 1/p is decreasing and limx→∞ 1/W 1/p(x) = 0; as a consequence of
Ryff’s Theorem (see [4] Corollary 7.6. pag. 83) there is a µ–measurable function f on Ω
such that f ∗µ = 1/W 1/p, then by hypothesis(

f ∗∗µ (x)− f ∗µ(x)
)
W 1/p(x) ≤ c ‖f‖Λp,∞

µ (w) = c.

Thus
1

W 1/p(r)
≤ 1

r

∫ r

0

ds

W 1/p(s)
≤ c + 1

W 1/p(r)
(5)

and by (3) w ∈ Bp.
Given a > 0 and s > 1, define

h(t) =


1 if 0 < t < a,(

W (a)
W (t)

)1/p

if a < t < sa,

0 if t > sa,

and let g(t) = Qh(t). Since g is decreasing and limx→∞ g(t) = 0, again by Corollary 7.6.
pag. 83 of [4], we can find f such that f ∗µ = g. Then

f ∗∗µ − f ∗µ = P (Qh)−Qh = Ph + Qh−Qh = Ph

thus, by iii), since h is decreasing and w ∈ Bp,

‖f‖Λp,∞
µ (w) = sup

t>0
Qh(t)W (t)1/p ' sup

t>0
Ph(t)W (t)1/p ≤ c sup

t>0
h(t)W (t)1/p

≤ cW 1/p(a)
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we get that in particular

Qh(a)W (a)1/p =

∫ sa

a

W 2/p(a) dt

W 1/p(t)t
≤ cW 1/p(a)

which implies that ∫ ∞

a

dt

W 1/p(t)t
≤ c

W 1/p(a)
.

Now by (5)∫ ∞

a

dt

W 1/p(t)t
'

∫ ∞

a

1

r2

∫ r

0

ds

W 1/p(s)
dr ≥

(∫ ∞

a

1

r2
dr

) (∫ a

0

ds

W 1/p(s)

)
=

1

a

∫ a

0

ds

W 1/p(s)
' 1

W 1/p(a)
.

Summarizing we have proved that

1

a

∫ a

0

ds

W 1/p(s)
'

∫ ∞

a

dt

W 1/p(t)t
' 1

W 1/p(a)

which by Lemma 2.1 implies that w ∈ Bp ∩B∗∞.
Observe that in the above theorem we have proved the norm equivalence between f

(in the classical Lorentz space Λp
µ(w)) and f ∗∗µ − f ∗µ in the weighted Lp(w) space. In fact

we have the following

Proposition 3.1 The following statements are equivalent,

i) w ∈ Bp ∩B∗∞,

ii) ‖f‖Λp
µ(w) '

(∫ ∞

0

(
(f ∗∗µ − f ∗µ)∗(s))

)p
w(s) ds

)1/p

,

iii) ‖f‖Λp,∞
µ (w) ' sups>0

(
f ∗∗µ − f ∗µ

)∗
(s)W 1/p(s),

where the rearrangement (f ∗∗µ − f ∗µ)∗ is taken with respect the Lebesgue measure in R+.

Proof. i) ⇒ ii). Since w ∈ Bp∩B∗∞, it follows from Theorem 3.1 that limt→∞ f ∗∗µ (t) = 0,
for every f ∈ Λp

µ(w). Hence,

f ∗∗µ (t) =

∫ ∞

t

(
f ∗∗µ (x)− f ∗µ(x)

)dx

x
.

Then

f ∗µ(t) ≤ Pf ∗∗µ (t) =
1

t

∫ t

0

( ∫ ∞

s

(
f ∗∗µ (x)− f ∗µ(x)

)dx

x

)
ds = S

(
f ∗∗µ − f ∗µ

)
(t).

where S := P ◦Q is the Calderón operator.
Since if h is a nonnegative function on R+ then S

(
h
)
(t) is decreasing, for each t > 0,

by taking rearrangement (with respect the Lebesgue measure in R+) we get (see [4]
Proposition 5.2. pag. 142)

S
(
h
)
(t) =

(
S
(
h
))∗

(t) ≤ S
(
h∗

)
(t).
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Thus

f ∗µ(t) ≤ Pf ∗∗µ (t) ≤ 1

t

∫ t

0

(∫ ∞

s

(
f ∗∗µ − f ∗µ

)∗
(x)

dx

x

)
ds.

Now, since w ∈ Bp ∩B∗∞, we have that

‖f‖Λp
µ(w) ≤ c

(∫ ∞

0

(
(f ∗∗µ − f ∗µ)∗(s)

)p
w(s) ds

)1/p

.

On the other hand, since
(
f ∗∗µ − f ∗µ

)∗
(s) ≤ f ∗∗µ (s), the reverse inequality follows by condi-

tion Bp.
ii) ⇒ i). If f = χA with µ(A) = r, then(

f ∗∗µ − f ∗µ
)∗

(s) =
r

r + s
χ(0,∞)(s)

Applying condition ii) we get

W (r) '
∫ ∞

0

( r

r + s

)p

w(s) ds ≥
∫ ∞

r

( r

r + s

)p

w(s) ds ≥
∫ ∞

r

(r

2

)p w(s)

sp
ds

i.e. w ∈ Bp.
Given a > 0 and s > 1, define

h(t) =


1 if 0 < t < a,

a/t if a < t < sa,
0 if t > sa,

and let g(t) = Qh(t). Since g is decreasing and limx→∞ g(t) = 0, using again Ryff’s
Theorem (see [4] Corollary 7.6, pag. 83) we can find f such that f ∗µ = g. Then

f ∗∗µ − f ∗µ = P
(
Qh

)
−Qh = Ph + Qh−Qh = Ph,

thus, by condition ii), since h is decreasing and since w ∈ Bp, we get that( ∫ ∞

0

Qh(x)pw(x) dx
)1/p

= ‖f‖Λp
µ(w) '

( ∫ ∞

0

(
(f ∗∗µ − f ∗µ)∗(x)

)p
w(x) dx

)1/p

=
( ∫ ∞

0

Ph(x)pw(x) dx
)1/p

≤ c
( ∫ ∞

0

h(x)pw(x) dx
)1/p

.

A simple computation shows that∫ ∞

0

h(x)pw(x) dx = W (a) + ap

∫ sa

a

w(x)

xp
dx

and ∫ a

0

(
log

a

x

)p

w(x) dx ≤
∫ ∞

0

Qh(x)pw(x) dx.

Then, since w ∈ Bp∫ a

0

(
log

a

x

)p

w(x) dx ≤ c

(
W (a) + ap

∫ sa

a

w(x)

xp
dx

)
≤ c

(
W (a) + ap

∫ ∞

a

w(x)

xp
dx

)
≤ cW (a)
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which is equivalent to P ◦ Pw ≤ cPw (see [11], Theorem 3.3) i.e. w ∈ B∗∞.
iii) ⇔ i). Is proved in the same way.

Given u ∈ Ap (1 ≤ p < ∞) we shall denote by µ its associate measure on Rn, i.e.

µ(A) =

∫
A

u(x) dx, A ∈ Σ(Rn).

Theorem 3.2 Let T be a Calderón–Zygmund maximal operator, u ∈ Ap0 (1 ≤ p0 < ∞)
and µ its associate measure. Then T is bounded from Λp

µ(w) to Λp
µ(w) (resp. from Λp,∞

µ (w)
to Λp,∞

µ (w)) for any w ∈ Bp/p0 ∩B∗∞ (1 ≤ p < ∞).

Proof. If T is a Calderón–Zygmund maximal operator, u ∈ Ap0 and µ its associate
measure then (see [2])

(Tf)∗µ(s)− (Tf)∗µ(2s) ≤ c
(
Mf

)∗
µ
(s/2) (6)

where M is the Hardy–Littlewood maximal function with respect to Lebesgue measure.
Hence

I :=
1

t

∫ t

0

(Tf)∗µ(s)ds− 1

t

∫ t

0

(Tf)∗µ(2s) ds ≤ c

t

∫ t

0

(
Mf

)∗
µ
(s/2) ds.

But

I =
1

t

∫ t

0

(
Tf

)∗
µ
(s) ds− 1

2t

∫ 2t

0

(Tf)∗µ(s) ds

=
1

2t

∫ t

0

(Tf)∗µ(s) ds− 1

2t

∫ 2t

t

(Tf)∗µ(s) ds

≥ 1

2t

∫ t

0

(Tf)∗µ(s) ds−
(Tf)∗µ(t)

2

Hence
1

t

∫ t

0

(Tf)∗µ(s) ds− (Tf)∗µ(t) ≤ 2c

t

∫ t

0

(
Mf

)∗
µ
(s/2)ds.

On the other hand, by [11] Lemma 2.2(
Mf

)∗
µ
(s) ≤ c

1

s1/p0

∫ s

0

f ∗µ(x)
dx

x1−1/p0
= cAp0f

∗
µ(s)

Hence
1

t

∫ t

0

(Tf)∗µ(s)ds− (Tf)∗µ(t) ≤ CP (Ap0f
∗
µ)(t/2).

Thus, by Theorem 3.1,

‖Tf‖Λp
µ(w) ≤ c

(∫ ∞

0

(
(Tf)∗∗µ (s)− (Tf)∗µ(s)

)p
w(s) ds

)1/p

≤ c‖P (Ap0f
∗
µ)‖Λp

µ(w) ≤ c‖f‖Λp
µ(w),

this last inequality is due to the fact that w ∈ Bp/p0 ⊂ Bp, and so P is bounded in Λp
µ(w).

We have also used that Ap0 is bounded in Λp
µ(w) since w ∈ Bp/p0 (see [11] Theorem 2.3).
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Remark 3.1 If 1 < p0 < ∞ using the same proof that above and Theorem 3.3.9 of [5],
one can easily check that Theorem 3.2 holds for every w in the biggest class Bp/p0,∞ ∩B∗∞
where

w ∈ Bq,∞ ⇔ W (r)/rq ≤ cW (s)/sq 0 < s < r < ∞, (q > 0).

Acknowledgments. We thank the referee for his/her helpful suggestions to improve the
presentation.
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Universitat Autònoma de Barcelona, Edifici C 08193 Bellaterra, Barcelona, (Spain).
E–mail: jmartin@mat.uab.es

11


