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Equivalent expressions for norms in classical Lorentz
spaces

Santiago Boza and Joaquim Martin*

Abstract

We characterize the weights w such that

| rerutsds= [ () - () uis) ds.
0 0

Our result generalizes a result due to Bennett—De Vore—Sharpley, where the usual
Lorentz LP'? norm is replaced by an equivalent expression involving the functional
f** — f*. Sufficient conditions for the boundedness of maximal Calderéon—Zygmund
singular integral operators between classical Lorentz spaces are also given.

1 Introduction

Let (£2,%(€2), 1) be a nonfinite totally c—finite resonant measure space, and let w be a
strictly nonnegative Lebesgue measurable function on Rt = (0,00) (briefly a weight).
For 1 < p < oo the classical Lorentz space A?(w) (see [10] and [6]) is defined by those
measurable functions in {2 such that

00 1/p
T (/ f;(s)”w(s)d8> < oo,

where f*(t) = inf {s : Ne(s) < t} is the decreasing rearrangement of f, and Ne(y) =
p({z € Q: |f(z)| > y}) is the distribution function of f with respect to the measure
i (we refer the reader to [4] for further information about distribution functions and
decreasing rearrangements).

Similarly, the weak Lorentz space A% (w) (see [6]) is defined by the condition

[ £l Az () = Stug) f;(t)Wl/p(t) < 0,
>

where W (t) = f(fw(s)ds.

Obviously, the above spaces are invariant under rearrangement and generalize the
Lorentz spaces L since if w(t) = t¥7~1, (1 < ¢,p < 0o) then Ad(w) = L7 and A% (w)
coincides with LE:*°; in particular the Lebesgue space LE is the space A? (w) when w = 1.
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Let us denote by f;* the maximal function of f defined by

() = % /0 £(s)ds.

It is proved in [3] (see also [4], Proposition 7.12) that in the case p > 1 the usual Lorentz
B2 norm can be replaced by an equivalent expression in terms of the functional f;* — f}
ie if felh? 1<p<oo, 1<q<ooandlim . f;*(t) =0, then

( /Ooo<t””<f::*<t> 1) g, 1)

where as usual, by A ~ B we mean that ¢c7!A < B < cA, for some constant ¢ > 0
independent of appropriate quantities.

The main purpose of this paper is to extend (1) in the context of the classical Lorentz
spaces and describe the weights w for which

g = ([ 026 = 52660 wlopas) 2

The work is organized as follows: in Section 2 we provide a brief review of the parts of the
theory of B, and B}, weights that we shall use in this paper and prove some properties
of the weights w that belong to B, N B,. In Section 3 we characterize the weights w for
which (2) holds, and as application, we obtain sufficient conditions for the boundedness of
maximal Calderén—Zygmund singular integral operators between Lorentz spaces Aﬁ(w), if
1 is an absolutely continuous measure on R" defined by p(A) = [, u(z)dz, (A € B(R"))
where u belongs to the class of weights AP, for some py > 1 (see [8] as a general reference
of this class of weights).

For other applications of the functional f;* — f in rearrangement function inequalities
and interpolation theory we refer to [4], [3], [9], [13] and the references quoted therein.

2 Preliminaries

If h is a Lebesgue measurable function defined on R the Hardy operator P and its adjoint
@ are defined by

1

Ph(t) ::2/0 h(s)ds, Qh(t) := /too hs) L.

S

Results by M. Arino and B. Muckenhoupt (see [1]) and C. J. Neugebauer (see [11]) which
extend Hardy’s inequalities, ensure that:

o Pfi e Ab(w) for all f € Al(w) (1 <p<oo)if and only if w € B, i.e. there is a
constant ¢ > 0 such that

/Too (f)pw(s)ds < W (r) (r>0).
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e Qf; € AL(w) for all f € AP(w) (1 <p < oo)if and only if w € BY, i.e. thereis a
constant ¢ > 0 such that

/0’" (% /Osw(f”)d“f) ds < cW(r) (r>0).

The boundedness of P on AP*°(w) was also considered by J. Soria (see [14] Theorem
3.1). Soria’s result ensures that:

o Pfre AL®(w) for all f € AL>*(w) (1 < p < o0o) if and only if w € B,. Moreover,
another characterization of the B, class is provided by

1/ d 1
B - ~ .
weBe 7“/0 Wiie(s) — Wi/e(r) )

Lemma 2.1 Let1 < p < co and w be a weight on RT. Then, the following are equivalent,
i) we B,N BL.

ii) T—lp/orw(s)dsz/roow(s)d—j (r>0).

S

m)l/TLN/OO ds L (r >0)
rJo W(s)Vr —J, SW(S)W—W(T)W '

Proof. i) = ii). Obviously, [~ w(s)% < £ ["w(s)ds since w € B,. Conversely, let us
write

Qpuw(r) = rP! /Toow@)@

sP’

Since w € B and Po @, = p (P + Q,) it follows that

P(P o Quu)(t) < cP(Qpu)(t). (4)
For any a > 1 we have that
P(Quu)(r) = . /arl/rQ w(s)dsdt < ! /arl/tQ w(s) ds dt
P -~ rloga ), t ), °F “rloga ), tJo
c ar
<
- rloga/o Qpuo(s) ds
where the last inequality follows from (4).
Since
" Q,w(s)ds = tp ! dt < " tP=tdt Oow(s)@
. p - , - sP
ap —1
= Qpw(r)
we have that
P(Quw)(r)

rlocga (/0 Qpw(s) ds—l—/r Qpuw(s) ds)
a? —1

= (3 [ Qutas )
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Hence

(1- 1) Pl < =D

loga ploga
we obtain a constant C' (depending only on p) such that
P(pr) (r) < CQpw(r).
Finally, since Pw(r) < pP(Q,w)(r) it follows that
1 T

— | w(s)ds < C/TOO w(s)

P Jo

Now if we take a = e*¢

ds
S—p.
i) = 4). It is enough to check that w € BX, that is, there is a ¢ > 0 such that

P o Pw < cPw.
We observe that condition i) is

Pu(r) =~ Qpu(r)

hence by Fubini’s theorem

P(Pw)(r) ~ P(Quw)(r) (Pw(r) + Quw(r)) < cPw(r).

1
p

i) =dii). If we B, by (3) £ [ Wl‘ff,(s) ~ Wl}p(r), hence only we need to see that

/ ©ds 1
r SW(s)Ve W/k(r)
which by [7] (Theorem 3.2) is equivalent to

/Too wiu - Wlm

and by Sagher’s Lemma (see [12]), this happens if and only if

/OT (é /Osw(x) d:zc) ds ~ W (r)

which follows from the fact that w € B, N B, since

Pw < Pw + Qyuw ~ P(Q,w) < cP(Pw) < CPuw.
iii) = ). If
L ds 1
rJo W(s)V/p = W(r)t/»

by (3) we have that w € B,.
On the other hand, as we have seen before, condition

/OO ds N 1
. sW(s)le — Wl/p(r)

/Or (% /Osw(a:) dx) ds ~ W (r)

ie. w e BL. m]

is equivalent to



3 The main result

Theorem 3.1 Let 1 < p < oo and w be a weight in RY. Then, the following are equiva-
lent,

i) we B,N BL,
° 1/p
i) W lagen = ([ 0776 = Fi66)Putepas) .
i) 1l = 50Dl (5) = F3(5) W7 (5),

where the equivalence constants do not depend on .

Proof i) = ii). Since w € B, N B by Lemma 2.1, there is ¢ > 0 such that
L [Jw(s)ds <c [ w(s)%. Hence

sP

I c I 4 [ ds
;/Ow(s)ds < c+1(;/ w(s)ds + 1P / w(s)s—p>
- @ 1/ / —ds
c+1r Jy

Thus by Hardy’s Lemma (see [4] Proposition 3.6, pag. 56) and Fubini

| siereeas < [T g /°° @)% a5
: m/ (/f ) 0

1/p
Since <f05 fi(x)par=t d:c) <1/p [, f;(x)dz (see [15], Theorem 3.11. pag 192) we have

that /OOO o < Ci 1 /Ooo ( é /0 fi(@) dx)pw(s)ds,

([ rorsan)” < (25 [ o -rorees)”

c 00 1/p
+ (c+ 1 /0 fn(s)Pw(s) ds) :
Collecting terms, we get

([ ruen)” < i ([ (0= f50) wisias) ™

The reverse inequality follows by the triangular inequality and condition B,,.

Hence

i1) = ). This is a direct consequence of Lemma 2.1 since if we apply condition i7) to the
characteristic function x4 with u(A) = r, we obtain

L w(s)ds ~ /Toow(s)@

r? Jo spP
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i) = iii). First observe that if w € B, N BX then lim, .., W(z) = oo (otherwise the
constant function 1 € AL(w) and then w ¢ BX) and hence if f € AP®(w) we get
limy oo f2*(2) = 0.

Now using the elementary identity (see [3])

== [ G- R 0<i<s<o)

and letting s — oo we find that if f € AL (w)

o d
=@ - ne) 5
Hence
o d
g < s ([ (@) - 1) &) Wi
< sup (U7 (@) = S W) s (W) [
with supt>0< t) [ Wl/P ) C by Lemma 2.1.

On the other hand, since w € B, the boundedness of the Hardy operator in AL (w)
implies that

sup (f37(s) — £1(s))WP(s) < sup £3*(s)WP(s) < cl| fll o= w)

s>0 s>0

iii) = i). Since 1/WP is decreasing and lim, .., 1/W'/?(z) = 0; as a consequence of
Ryff’s Theorem (see [4] Corollary 7.6. pag. 83) there is a py—measurable function f on €
such that f7 = 1/W7, then by hypothesis

(i (x) = fr(@) WHP(@) < e[| fllapos ) = €
Thus

c+1 5
Wl/p Wl/p Wl/p( ) (5)
and by (3) w € B,.
Given a > 0 and s > 1, define

1 if0<t<a,
h(t) = (W(a)>1/p ifa <t<sa
W (%) ,
0 if t > sa,

and let g(t) = Qh(t). Since g is decreasing and lim, .., g(t) = 0, again by Corollary 7.6.
pag. 83 of [4], we can find f such that f; = g. Then

[ = fi=P(Qh) — Qh = Ph+ Qh — Qh = Ph
thus, by iii), since h is decreasing and w € B,,

Il = Sup@AOW(HY? = sup Ph(W (1) 7 < esup h(n)W (1)
t>0 t>0

t>0

< cWV(a)



we get that in particular

SCW2P(a) dt

Qh(a)W (a)'/? = W)

< cWP(a)

which implies that

/°° dt < c
o WUP()t = Wl/r(a)
Now by (5)
[ war = [ = [ ([ =) ([ w5e)
e =, 2y wee =\, =) e
Y A N 1
- 5/0 Wile(s) — Wilk(a)

Summarizing we have proved that

1 / ¢ ds / ©oodt 1
a o Wire(s) — J, WVe(t)t — Wr(a)
which by Lemma 2.1 implies that w € B, N B,. ]
Observe that in the above theorem we have proved the norm equivalence between f

(in the classical Lorentz space A?(w)) and f;* — f in the weighted LP(w) space. In fact
we have the following

Proposition 3.1 The following statements are equivalent,

i) we B,N BL,

&) Wl = ([ (05 = 60 wis)as) "

iii) | Fllag=cw) = sup,so (i = £7) ()WVP(s),

where the rearrangement (f:* — f7)* is taken with respect the Lebesque measure in R*.

Proof. i) = ii). Since w € B,N B, it follows from Theorem 3.1 that lim; ., f;*(t) =0,

for every f € AP (w). Hence,
dx
ot

fo(t) = / T () - f(@)

Then

dx
x

po<rio=1 [ ([T Grw-5e)%)a= s -

where S := P o () is the Calderén operator.

Since if & is a nonnegative function on R* then S(h)(t) is decreasing, for each t > 0,
by taking rearrangement (with respect the Lebesgue measure in RT) we get (see [4]
Proposition 5.2. pag. 142)

S(h)(t) = (S(h))"(t) < S(h") (®).
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o posrio<y [T 6 mwh)e

Now, since w € B, N B, we have that

g < e ([ (G5 = 50wt as) "

On the other hand, since ( I = f;)*(s) < f*(s), the reverse inequality follows by condi-
tion B,.
ii) = i). If f=xa with u(A) =r, then

(fi = £2) (o) =

T
T+

SX(o,oo>(8)

Applying condition i) we get

wor= [ ()i [ (Yo [ ()"

T

ie. w € By.
Given a > 0 and s > 1, define

1 if0<t<a,
h(t) =< a/t ifa<t<sa,
0 ift> sa,

and let g(t) = QAh(t). Since g is decreasing and lim, .. g(t) = 0, using again Ryff’s
Theorem (see [4] Corollary 7.6, pag. 83) we can find f such that f; = g. Then

£ — i = P(Qh) — Qh = Ph+ Qh — Qh = Ph,

m

thus, by condition i), since h is decreasing and since w € B, we get that
> p 1/p OO *k * * p 1/p
([ enara@dn)™ = Iflgw = (| (5 =5 @) 0 d)
00 1/ 0 1/
= (/ Ph(z)Pw(z) dx) " < c(/ h(z)Pw(x) dx) "
0 0
A simple computation shows that

/000 h(x)Pw(z) dx = W(a) + a” /:a w(z) dx

xP

and

/Oa, <log E)pw(;p) de < /OOO Qh(z)Pw(x) de.

x
Then, since w € B,

/Oa <log g)pw(a:) dx

IA
o

VAN
o
A/—%\
=
+
Q
S
N
g

g |5
SRS
oW
S
N———



which is equivalent to P o Pw < cPw (see [11], Theorem 3.3) i.e. w € B,
iii) < 1). Is proved in the same way. o

Given u € AP (1 < p < o0) we shall denote by p its associate measure on R”, i.e

w(A) = /Au(a:) dr, Ae X(R").

Theorem 3.2 Let T' be a Calderén—Zygmund mazimal operator, uw € AP (1 < py < 00)
and p its associate measure. Then T is bounded from AL (w) to AL (w) (resp. from AP (w)
to AL (w)) for any w € By, N BY, (1 < p < o0).

Proof. If T is a Calderén—Zygmund maximal operator, u € AP and p its associate
measure then (see [2])

(Th)(s) = (Tf)(2s) < e(M]) (5/2) (6)
where M is the Hardy-Littlewood maximal function with respect to Lebesgue measure.
Hence
I 1 ! )
I := Z/o (Tf);(s)ds — 2/0 (Tf);(Qs) ds < g/o (Mf)u(s/Q) ds
But
1 t . 1 2t
I = ¥/o () ds =5 [ TP is
1 t 1 2t
= 5 | @D ds =g [T s
L (T'f)5(@)
> g | @) ds - =5
Hence

t
On the other hand, by [11] Lemma 2.2

L[ as— @i <% [ ;s

dx
(Mf) ( l/po/ f :I)l 1—1/po CAPof ( )

Hence L
;/0 (Tf)(s)ds — (T'f),(t) < CP(Ay, f)(t/2).

Thus, by Theorem 3.1,

1/p

ITfllapw) < ¢ (/0 (T (s) = (Tf)i(s)) w(s) dS)
| P(Apy fi)llazwy < cll Fllaz w)»

this last inequality is due to the fact that w € B,/,, C B,, and so P is bounded in A (w).
We have also used that A,, is bounded in A?(w) since w € By, (see [11] Theorem 2.3).
m
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Remark 3.1 If 1 < py < 0o using the same proof that above and Theorem 3.3.9 of [5],
one can easily check that Theorem 3.2 holds for every w in the biggest class By p, .o N B,
where

W E Byoo & W(r)/rt <cWi(s)/s? 0<s<r<oo, (qg>0).

Acknowledgments. We thank the referee for his/her helpful suggestions to improve the
presentation.
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