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Coherent generation of EPR-entangled light pulses mediated by a single trapped atom
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We show that a single, trapped, laser-driven atom in a high-finesse optical cavity allows for the quantum-
coherent generation of entangled light pulses on demand. We report the detailed description of schemes for
generating simultaneous and temporally separated pulse pairs, presented in [G. Morigi e al., Phys. Rev. Lett.,
96, 023601 (2006)]. The mechanical effect of the laser excitation on the quantum motion of the cold trapped
atom mediates the entangling interaction between two cavity modes and between the two subsequent pulses,
respectively. The entanglement is of EPR-type, and its degree can be controlled through external parameters. At
the end of the generation process the atom is decorrelated from the light field. Possible experimental imple-

mentations of the proposals are discussed.
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I. INTRODUCTION

One of the most intriguing features of quantum mechanics
is the possibility of entangling physical systems, which has
both fundamental and practical implications. In particular,
entanglement has been recognized as a valuable resource for
quantum information processing and for cryptography. In
this context, two approaches have been developed, one based
on discrete variables, the other using continuous variables.
The main motivation to deal with continuous variables origi-
nates from practical considerations: efficient implementation
of the essential steps of quantum information processing are
achievable in quantum optics, utilizing the continuous
quadrature variables of the quantized electromagnetic field
[1]. In the continuous variable setting, Gaussian states play a
prominent role, and when considering bipartite Gaussian sys-
tems, entangled states are synonymous to two-mode
squeezed states [1], and their entanglement is equivalent to
the position-momentum entanglement originally considered
by Einstein, Podolsky, and Rosen (EPR) [2].

Conventionally, two-mode squeezed states emerge from
the nonlinear optical interaction of a laser with a crystal, i.e.,
from parametric amplification or oscillation. As such, the
phenomenon is the result of many-atom dynamics (often de-
scribed by a simple nonlinear polarizability model). Then, an
interesting question is whether analogous macroscopic non-
linear phenomena can emerge as well from the quantum dy-
namics of a single atom.

Recently, several experimental realizations have accessed
novel regimes of engineering atom-photon interaction and
opened promising perspectives for implementing controlled
nonlinear dynamics with simple quantum optical systems.
Examples are entangled light generation in atomic ensembles
[3,4], atomic memory for quantum states of light [5-7], en-
tanglement between a single atom and its emitted photon
[8.9], entanglement of remote ensembles [10], one-atom la-
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ser [11,12], mechanical forces of single photons on single
atoms [13-15], controlled interaction of a trapped ion and a
cavity [16,17], controlled single-photon generation [18-20],
as well as quantum state and entanglement engineering in the
microwave regime [21].

In this work we investigate the realization of an optical
parametric amplifier based on a single cold trapped atom
inside a high-finesse optical cavity and driven by a short
laser pulse, as sketched in Fig. 1. We show theoretically that
this system allows for the controlled, quantum-coherent gen-
eration of entangled light pulses by exploiting the mechani-
cal effects of atom-photon interaction. The pulses can con-
tain many (>1) photons, and their entanglement is of
continuous-variable (or EPR) type.
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FIG. 1. (Color online) A trapped atom (ion) is confined inside a
good resonator and is driven by a laser pulse of duration 7" which
propagates orthogonally to the cavity axis. By coupling the external
atomic degrees of freedom to the cavity dynamics the pulse pre-
pares the cavity field in a nonclassical state, which is transmitted to
the output by cavity decay. A basic condition for the validity of
these dynamics is kT<<1, whereby « is the cavity decay rate.
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We present the detailed study of two schemes, which have
been proposed in Ref. [22], and discuss in particular experi-
mental conditions for their realization. The first scheme re-
quires a bichromatic cavity interacting with the atomic di-
pole. Here, we show that—after short coherent excitation of
the atom by an external laser beam—the cavity emits a
bichromatic pulse of two-mode squeezed, i.e., entangled
light. The second scheme relies on the interaction between
the dipole and one cavity mode. Here, creation of two sub-
sequent, entangled pulses at the cavity output is accom-
plished by using two temporally separated excitation pulses,
with the quantum state of the atomic motion serving as in-
termediate memory which mediates the entanglement be-
tween the first and second pulse at the cavity output. In both
cases entanglement is found on time scales of the order of
the cavity decay time. In particular, noise reduction below
10% of the shot-noise level in the relative amplitude fluctua-
tions of the two light fields is derived for an experimentally
accessible set of parameters. Variation of the coupling pa-
rameters between atom and light allows for tuning the degree
of entanglement between the cavity modes. Moreover, the
emitted light pulses are decorrelated from the atom, i.e., at
the end of the process the atom carries no memory of the
interaction.

The scheme for generating a bichromatic pulse of two-
mode squeezed light applies concepts developed for macro-
scopic oscillators [23,24] to a single quantum optical system,
by exploiting the coupling between internal (electronic) and
external (motional) degrees of freedom. Such coupling is
negligible in macroscopic systems, but significant in atomic
systems, thus rendering the dynamics far more accessible.
The proposed scheme differs fundamentally from existing
methods for generating pulsed squeezing [25] or intense
pulses of polarization-entangled photons [26] which employ
nonlinear crystals driven by a pulsed pump: in our case the
microscopic nature of the medium allows for full coherent
control of the light-matter quantum correlations and of the
final quantum state of the generated light.

This study is connected to ideas of mapping quantum
states of atoms onto light inside a cavity [27], to their imple-
mentation for establishing entanglement between distant at-
oms [28], and to recent experimental and theoretical studies
on quantum correlations in the light scattered by atoms
[3-5,7,29-31].

The paper is organized as follows. In Sec. II A we define
the master equation governing the coherent and dissipative
dynamics of the internal and motional degrees of freedom of
the laser-driven atom and of the two relevant modes of the
cavity coupling to the atom. In Sec. II B we derive the ap-
proximate Hamiltonian effecting the dynamics which lead to
the generation of entanglement between the cavity modes,
and in Sec. I C we discuss the dynamics it generates. In Sec.
II D we introduce the field at the cavity output and in Sec.
IT E we investigate its quantum correlations. Section II F dis-
cusses the possibility of experimentally realizing the pro-
posed scheme, i.e., the required experimental setup and pa-
rameters which would allow to observe the dynamics. Then,
in Sec. III we discuss the (conceptually simpler) case of cre-
ating temporally separated, entangled pulses in one and the
same cavity mode. The conclusions are drawn in Sec. IV, and
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in the appendix details of the calculations at the basis of the
results in Sec. II E are provided.

II. SIMULTANEOUS BICHROMATIC PULSES

In this section we present a scheme for the simultaneous
generation of bichromatic entangled light pulses. The scheme
bases itself on the interaction between a bimodal cavity and
the dipole of a trapped atom, which is driven by a laser
pulse. EPR-type entanglement is established between the
cavity modes via the quantum motion of the center of mass.
As a result the light pulses emitted at the cavity output ex-
hibit quantum correlations of EPR-type.

A. Theoretical model

We consider an atom of mass m, which is confined inside
an optical cavity by an external potential, as shown in Fig. 1.
The center-of-mass motion is along the X axis, as we assume
that the radial potential is sufficiently steep, that the motion
in this plane can be considered frozen out. The potential
along x is harmonic with frequency v. Position and momen-
tum of the atomic center of mass are denoted by x and p,
respectively. The corresponding center-of-mass dynamics are
given by

21 o ( . 1)

Hmec—2 +2m x—ﬁvbb+2 , (1)
where b,b" are the annihilation and creation operators, re-
spectlvelz of a quantum of vibrational energy #v, with x
=\Vh/2mv(b+b") and p—uﬁmv/Z(bT b). We denote by
[nmee) the eigenstates of H,,.. at energy Av(ny..+1/2). The
atom’s relevant internal degrees of freedom are described by
a ground state |g) and an excited state |e) which form a
dipole with dipole moment d and frequency w,, and the
atomic Hamiltonian has the form

H,=hawgle)e| + Hpypee- (2)
The full dynamics are described by Hamiltonian
H=H,+H.+H,.+H,,

where the terms H,, H,., and H,; describe two cavity modes
and the coupling of the atomic dipole to the electromagnetic
field of the cavity and of a laser, respectively. The cavity
Hamiltonian is

H.= E hw; ajaj, (3)

where w; are the frequencies of two optical modes, and a j,a;
are the respective annihilation and creation operators of a
quantum of energy fiw;, i.e., a photon in mode j. We denote
by |n,,n,) the eigenstates of H, at energy fiw,n,+#Aw,n,. The
coupling between the dipole and the cavity modes is repre-

sented by

H,=h > gjajch cos(kyx cos 6.+ ¢;) + Hee. , (4)
j=1,2

whereby the modes have wave vectors &; (k;=|k;|) forming
an angle 6, with the axis X of the motion, and g; is the
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coupling strength of the dipole to the corresponding mode.
The angle ¢; takes into account the position of the trap cen-
ter inside the cavity. The terms o=|g){e| and o =|e){g| de-
note the dipole lowering and raising operators. The coupling
to the laser at frequency wy is

H, =hQ(t)ofe(OrFexeos ) L H e (5)

where ) is the (slowly varying) Rabi frequency and ; is the
wave vector (k; = |I€L|) forming an angle #; with the trap axis.
In what follows we drop the subscripts in the moduli of the
wave vectors and denote them by k.

Denoting by p the density matrix of the cavity modes and
of the atom’s internal and external degrees of freedom, the
master equation for the dynamics reads

% o= {H.p)+ Kp+ L ©)
—p=—7lH,pl+Kp+
é’tp i p p+Lp

which accounts for the coherent interaction of the dipole
with the cavity modes, and the incoherent processes consti-
tuted by spontaneous emission and cavity decay, namely

Lp= %(ZO'ﬁO'T —d'op-pdo), (7)

Kp= 2, Kj-(Zajpa;r - a;ajp - pa;aj , (8)
j=12
where v is the spontaneous emission rate of the atom into
modes external to the cavity and «; are the decay rates of the
cavity modes. The density matrix p accounts for the me-
chanical effect of photon emission,

1
ﬁ: j duN(u)e—ikuxpeikux
-1

with probability NM(u)du that the spontaneously emitted pho-
ton imparts a recoil momentum %ku to the atom.

We assume that the atomic motion is in the Lamb-Dicke
regime, and expand the interaction terms (4) and (5) to sec-
ond order in the Lamb-Dicke parameter n=k\%/2mv. In this
limit they take the form

H,.=h > g; cos d)j[aj(ﬁ(l — ncos 6, tan (;Sj(bT +b)
J=1.2

7]2

- cos® 6,.(b" + b)z) +0(7’) | +He. 9)

and

H, = ﬁQ(t)(rfe_"“’L’< 1+incos 6,(b" +b)

- ? cos? 0,(b" + b)* + 0(1;3)) +He  (10)

B. Effective Hamiltonian

We consider the reference frame rotating at the laser fre-
quency, and denote by
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FIG. 2. (Color online) Layout of the system and energy diagram.
A single atom with internal energy levels |g) and |e) is confined by
an external potential inside an optical cavity and is driven by a
laser. The orientation of the considered vibrational mode has non-
zero projection onto the laser direction. The harmonic motion, at
frequency v, modulates the laser frequency, w;, and the Stokes and
anti-Stokes components at w;+v are resonant with two cavity
modes, labeled 1 and 2. The linewidth of \e) is v, and A is the
detuning between laser and atom; 7., 711, 71, label the number of
excitations of the center-of-mass, cavity mode 1 and cavity mode 2
oscillator, respectively.

A = Wy — Wy
the detuning between laser and atom, and by
=~ w;

the detunings between the cavity modes and the laser. In
particular, we assume

51=V, 52=—V

namely, the mode frequencies are spaced by the quantity 2v,
and the laser frequency is tuned symmetrically between
them. Hence, in this reference frame

H! =hv(-dla, + aa,).

This choice of the frequency spacing and detunings allows us
to select certain resonant scattering processes which deter-
mine the dynamics on the considered time scales. Figure 2
displays the quantum states which are resonantly coupled for
this choice of the parameters. The corresponding effective
Hamiltonian is derived in the following.

In the limit

we eliminate the atom’s internal degrees of freedom in sec-
ond order perturbation theory in the parameter (/|A| and
obtain the approximate Hamiltonian,

Heff=Hé+Hmec+H1+H2 (11)

which is defined on the subspace |g,n,c,71,75). The dy-
namics of the coupling are given by the terms

H, =ihix,alb’ - ih¥ab, (12)
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H2 = lﬁ)(zazb - lhﬁfzazb-‘., (13)
with
. cos 0, i tan ¢; cos 06>
= Q(t
X1= 7181 008 by ()<A—v+iy/2 A+iy2
(14)
. cos 6. i tan ¢, cos GL.>
= Q(r
X2 = 78, €0 2 ()(A+V+iy/2 A+iy2
(15)
and
B . cos 6, i tan ¢; cos 06)
= Q(t -
X1 = 781 C08 6y ()(A—V+iy/2 A+iy2
_ . cos 6 i tan ¢, cos 06)
= Q t - .
Yo = g2 cos $:00(1) (A+V+i'y/2 Atiy2

Hamiltonian (12) describes an interaction giving rise to two-
mode squeezing between the center-of-mass oscillator and
the cavity mode at frequency w,. Hamiltonian (13) describes
a beam-splitter type of interaction between the center-of-
mass oscillator and the cavity mode at frequency w, [27].
Their coupling strengths x;,x», Egs. (14) and (15), depend
on the value of the atom-cavity coupling constants g;, g,, on
the geometry of the setup, and on the ratio between the trap
frequency v and the laser detuning A. In particular, each of
them is the sum of two terms, which represent two indistin-
guishable paths leading to the creation of a cavity photon
accompanied by the creation (x;) or annihilation (y,) of a
vibrational quantum. This interference depends on the geom-
etry of the setup and may lead to significantly different val-
ues of y; and y, when the ratio v/|A| is not too small
[32,33].

It should be remarked that these equations have been ob-
tained at first order in the Lamb-Dicke expansion, neglecting
off-resonant and inelastic scattering processes. They are
valid on a time scale in which the resonant processes, in
which a photon is scattered into the cavity mode under an-
nihilation or creation of a vibrational quantum, dominate
over all other processes. In addition, we have assumed that
during these dynamics the cavity does not decay. This as-
sumption implies that the duration of the laser pulses 7 is
much shorter than the cavity lifetime, k7<<1. On the other
hand, the dynamics are based on the spectral resolution of
the cavity modes spaced by twice the trap frequency, i.e.,
vT> 1. Therefore, relation

1
<K =< 16
K T v (16)

is required for the validity of the equations derived above.
We refer the reader to Sec. II F for an extensive discussion of
the parameter regimes in which Hamiltonian (11) holds. Note
that the photons which are elastically scattered into modes
external to the cavity do not affect the center-of-mass or
cavity mode dynamics. Therefore, they can be traced out
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from the respective equations of motion without causing de-
coherence.

C. Dynamics

Let us now discuss the coherent physical dynamics that
Eq. (11) describes, and neglect for the moment incoherent
processes. In this case the observable C=b'b—aja,+dala, is
a constant of the motion. Therefore, if we consider the state
[Mmecs01,0,) at £=0, it will be coupled to states of the type
[Pmec+11—m5,1,,m,), which are eigenstates of C at the same

eigenvalue n=n,,.. The Heisenberg equations of motion

aj =X1bT, (17)
b= x,ai = a2, (18)
d2=X2b» (19)

generate periodic dynamics provided that |x,|>|x;|. In this
case their solutions read [24]

P 1
a (1) = %b‘(O)sm Or+ @[|X2|2 — [x1[* cos ©1]a,(0)

_X 1’(2[1 —cos O]al(0), (20)

a,(t) = —b(O)sm Or+ l—)(2[1 — cos Or]al(0)

1
— galal* = [xal* cos O1]ax(0), (21)

b(t) =b(0)cos Of + [ X2a2(0) + Xlal(O)]sm O1,

(22)
with
R
0 =\|xa* - [xil*. (23)

In general these solutions describe tripartite entanglement
among cavity modes and center-of-mass oscillator [24]. An
interesting situation is found after half a period, for T,
=7/0. At this time (modulus 27) we find

2
al(m=% 0 -X00), 24
alT) = 2X410) - % (0, (25)
b(T,) =~ b(0). (26)

Hence, at this instant the center-of-mass oscillator is decor-
related from the cavity modes. For instance, if at =0 the
center-of-mass oscillator density matrix is a thermal state at
temperature 7 given by
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(0) = (1 = &P Pl

with B=1/kz7T, then wu(T,)=wu(0). Most remarkably, how-
ever, if at t=0 the cavity modes are in the vacuum, then at
t=T, they exhibit EPR-type entanglement [2], their state be-
ing the two-mode squeezed state

1—r2) . ( 2 )
= - it 27
) (1+r2 go 3 2¢ n,ny, (27)
where
r=| % (28)
X1

and ¢=arg(y;)+arg(x,). The average number of photons per
mode is

(ny=4r¥(1-r»)>. (29)

Hence, if the laser pulse has duration 7', after the interaction
the cavity modes are EPR-entangled with each other and
decorrelated from the quantum state of the center-of-mass
motion. The mechanical effects of the atom-photon interac-
tion plays a fundamental role in establishing the entangle-
ment, nevertheless the initial motional state does not affect
the efficiency of the process.

D. Field at the cavity output

In this section we introduce the theoretical description of
the field at the cavity output, which will be used in Sec. Il E
for determining the degree of quantum correlation of the
emitted pulses. The cavity output is described by the Heisen-
berg operator [35]

EX',0)) =EP ', 1) + EO 1) (30)

where E®(x’,r) is the negative frequency part and
EC)(x',7) its adjoint at the position x' outside the cavity,
setting the mirror at x’=0. We decompose the field into the
free and the source field terms, according to

EW (', 1) = EP(x' 1) + B (1), (31)

whereby the source field is given by

. ho;
B =02 5 Ao e =) (32

and only times >x'/c are considered. Here, A is the cross-
sectional area of the cavity mode, and ¢;; is the phase
change on transmission through the output mirror. The free
field is

ﬁ(l) - | ’
EW "N=id é k___(j) 0)elont-x /L')—¢R], 33
i (x',1) l% G\ Sear ¥ (0)e (33)

which is defined for x’ >0. Here, r,(f) and r,(cj>T are annihila-
tion and creation operators for the modes of the electromag-
netic field external to the cavity at frequency w; and polar-
ization é;; L' is the quantization length at the cavity output,
and ¢y the phase change upon reflection at the cavity output
MIrTor.
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Using
r;-i)(t) — ei(¢R_¢Tj)2
' k

w . .
—£r0)e e, (34)
wj

we introduce the rescaled field operator Q;”(x’ ,1) whereby
Q;J')(x’,t) = \e’c/L’r}j)(t -x'/c) + \/chjaj(t -x"lc) (33)

such that [35]

. ho;
E® =i it i) ' 1),
(x',1) lgeje \/2€0ACQ, (x',1)

for ct>x' > 0. The decomposition of Eq. (35) shows how the
photons transmitted through the mirror into the cavity output
mix with the external fields reflected by the mirror itself.

Let us now discuss the dynamics of the cavity field, as-
suming that at t=0 a pulse of duration 7 is applied which
fulfills (16). At times > T the field inside the cavity evolves
according to

aj(T+ t) = aj(T)e_(i“’j+"j)’

t
[¢c — ) .
- E\QKJ-J dTe‘_(lwf"Kf)(t_T)r}/)(T). (36)
0

For later convenience, we generalize definition (35) and con-
sider the rescaled field operator

Q,(x',1,6) = 0(x",1)e™ + O (x' 1)e ™%
= Qy(Nlg() + 6q,(t.6))], (37)

where Qo(t)=\f"2_f<je‘ i is a time-dependent scalar, ¢;(6);) is
the cavity-field quadrature,

q,(6) =a{(T)e"’ + a_;(T)e_mf,

and &¢,(t,0;) is the correspondingly defined quadrature of
the free field.

E. Correlations in the fields at the cavity output

Quantum correlations in the two-mode output field E
are detected by balanced homodyne detectors [2], using local
oscillators E(ILO), E(zLO) with phases 6, and 6,, respectively,
which mix with the fields previously spatially separated by a
beam splitter. A possible implementation is described in the
following section. The measured currents at the detectors are
i;()=aQ,(6,) and i(r)=aQ,(6,), where « is a scaling pa-
rameter assumed to be equal for the two modes. The corre-
lations are measured through the combined difference cur-
rent i_(t)=i,—i,, with

i_(t) =alQ(t,6)) — 0,(1,6,)].

We evaluate the current fluctuations at time ¢ on a grid o,
such that x8r<<1, i.e., fluctuations are recorded on a time
scale much faster than the cavity decay time. The fluctua-
tions of the difference current are given by

(i_? =i, (), (38)

where

033822-5



MORIGI et al.

i = a?[{0,(1,6))%) +(Q1(t,6,)»)]

is a positive proportionality constant, and

2(0,(t,6,)05(1,6,))
(01(1,6)%) +(0(t,6,)%)

contains the effect of quantum correlations. In these equa-
tions the mean value () of the operators at time 7 is averaged
over the interval of time dr and the average is taken over the
vacuum state of the electromagnetic field. Using Egs. (32),
(33), and (36), term (39) in the difference current (38) takes
the form

Cra)=1- (39)

~ R(r) (q1(6,)g,(6,))
1+ R(1) {q1(68)%) +{q2(6)%)°

In Eq. (40) the relevant quantities are
R(1) = kdte™>"[{q,(t,6))%) + {qa(t, 62))], (41)

Ci,(1)=1 (40)

and
(al* + e + 4yl
(@1(0)%) =(ax(0)%) == =, (42)
4 24
(ql(ﬁl)q2(02)>=Re< )(1)(2(|)(@1)|4 |X2| )ez(alwz))_ (43)
The details of the derivation of this result are reported in the

Appendix.

Let us now discuss function Ci (), Eq. (40), in detail.
The second term on the right-handside of Eq. (40) is propor-
tional to {(g,(6,)g.(6,)) and gives the effect of quantum cor-
relations. In absence of correlation between the two modes
the average (q;(6;)g,(6,)) vanishes and C;,(r)=1. This
value is the shot noise limit for independent vacuum inputs
into the homodyne detectors.

The correlations &(X;-X,)> and &(P,+P,)? of the or-
thogonal quadratures X and P are obtained by setting 6,
=6,=0 and 6,=—6,=m/2, respectively, which leads to iden-
tical results, namely

R()  2r 2
1+RO1+21+[20/(1 + )]

Ci(n=1 (44)
where we have used definition (28). Thus, the regime
Ci,(t) <1 corresponds to detecting EPR-type entanglement
[2,4,34]. Indeed, in this regime the value of C;,(r) is an
entanglement measure [34]. The effect on C; (1) of vacuum
fluctuations that mix with the quantum correlations of the
cavity field at the cavity output is represented by the param-
eter R(7), Eq. (41). This value is proportional to the number
of photons inside the cavity, and goes to zero as a function of
time on a scale determined by cavity decay. Therefore, for
short times and large number of photons the effect of quan-
tum correlations in the cavity field is well visible over the
quantum noise. As the intensity of the source field dimin-
ishes with time, the signal reaches the shot noise limit.
Figure 3 shows the signal C,,(#) for different values of
the parameter r. A reduction below 10% of the shot noise
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FIG. 3. Signal C|,(7) as a function of time, for 6,=#6, and for
values of the parameter r=1.8,1.5,1.3,1.1,1.05 (from left to right).
A time resolution of &t=0.1/« is used. The other parameters are
discussed in the text.

level is reached on a time scale of 1/« for r=1.1. About 110
photons per mode are created in this case. It should be noted
that for r close to 1, significant two-mode squeezing is ob-
served over several cavity decay times, before the shot noise
level Cy,(t)=1 is approached. This occurs when the number
of photons remaining in the cavity reaches the order of one.

F. Experimental parameters

We now discuss the parameter regime in which our de-
scription holds. First let us consider the ideal dynamics, as
given by Egs. (17)—(19). The degree of squeezing in the two-
mode state (27) is fixed by the ratio r=|x,/x|, Eq. (28);
large squeezing requires r be close to 1. With the cavity
mode frequencies much larger than the trap frequency, we
can assume g = g,=g. Therefore, the degree of squeezing is
solely controlled by the quantum effects in the mechanical
action of the light, which enters through the ratio v/A be-
tween the trap frequency and the detuning (in this section we
assume for convenience A for |A]). A small value of this
ratio, i.e., <A, means large two-mode squeezing. Indeed,
the control of the degree of squeezing through this ratio im-
plies a further condition relating the linewidth of the transi-
tion 7y and the trap frequency v, namely

vy, (45)

such that A> > . Under these conditions we find
14
~1+2—. 46
r A (46)

Furthermore we recall that A> (), g was required throughout
the model.

We now derive further conditions under which the dy-
namics are described by Egs. (17)—(19). We have already
identified in Eq. (16) an upper and a lower bound to the
duration T of the laser excitation pulse, due to cavity decay
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and to the spectral resolution of the cavity modes (whose
frequency separation is fixed to twice the trap frequency).
Other restrictions result from the requirement that processes
in which the atom scatters laser photons into modes external
to the cavity are negligible. Here some distinctions must be
made. In fact, elastic scattering and inelastic scattering along
the carrier (i.e., without changing the motion) do not affect
the relevant dynamics, since they do neither change the num-
ber of phonons or cavity photons nor dephase their quantum
states. Detrimental processes are (i) inelastic scattering of
laser photons along the sidebands (i.e., changing the motion)
and (ii) scattering of cavity photons into the external modes.
Processes of type (i), which would add dissipation to Eq.
(18), are characterized by a rate yg~ y77Q2%/A>. During an
excitation pulse of duration 7~ 1/0@ they are negligible as
long as

Processes of type (ii) occur at a rate y,~ yg?/A?. They enter
as additional dissipative and noise terms into Egs. (17) and
(19), and are negligible provided that

Ve < K. (48)

Moreover, the coherent dynamics are based on the validity of
the Lamb-Dicke regime at all times O<¢<T. This corre-
sponds to the condition 7\{h'(1)b(t))<1 which can be re-
written as

WAMAv <1 (49)

using Egs. (22), (28), and (46). Finally, in the case of ion
traps decoherence of the center-of-mass oscillation can
safely be ignored, as the trapping potential has been experi-
mentally demonstrated to be very stable on time scales of the
order of milliseconds [36].

We now identify parameter regimes where significant shot
noise reduction can be reached while conditions (16) and
(47)—(49) are simultaneously fulfilled. We use [37]

| o —— —
g=\—\Vydw= w/g'v’ yow
4mA

where o \? is the scattering cross section of the atom in
free space, A is the cavity mode waist, L is the cavity length
and dw=2mc/2L is the cavity free-spectral range. The cavity
decay rate is k=0w/F where F is the finesse. The condition
1/T> k in Eq. (16) together with T=7/® imposes the rela-

tion
~ [2vQg /41/6( Q 7/)
— =12 ——== — N\ /= |>1
k VN A Ak g A VAN 5w ’

where we have used Egs. (14) and (15) taking cos 6, =1 and
cos 6,.=0, i.e., the laser wave vector parallel to the motional
axis, and the cavity wave vector perpendicular to both. Con-
dition (47) leads to the relation

(50)
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0 20 Q\! 4| Q -
_z\,g‘/_lj(,?_) éz,/ﬂ(n_‘/l) -
Yo A\"A) vy A A NV bSw

(51)
Finally, from (48) we find
Yo YFo

These inequalities can conveniently be summarized as

4AV  _dvF 41/6'( Q ‘y>_1
B e N | B B o I T !
¥ A A \7A NV s (53)

We consider now the ratio »/A=0.05, which gives r
=1.1 [Eq. (46)], corresponding to significantly squeezed
pulses with an average number of about 110 photons per
mode. Taking realistic values #=0.1, Q/A=0.3, and &
=1073, we obtain

v\? 4 ow
80| — | =2 X107°F>0.54/—>1. (54)
Y Y

Additionally, Eq. (45) is required; condition (49) is already
met with the given choice of the Lamb-Dicke parameter 7
and of the ratio v/A.

A possible system to fulfil Eq. (54) and thus implement
the desired dynamics is a single In* ion [38], confined by an
ion trap of frequency w=27 X3 MHz, laser-excited on its
intercombination line at 231 nm (linewidth y=27
X360 kHz) at A=27X60 MHz detuning and Q=2
X 18 MHz Rabi frequency, and coupled to an optical cavity
with free spectral range dw=27X1 GHz and finesse F
=10°. For these parameters, g=~2mXx0.6 MHz, @=27
X 8 kHz and k=2 X 1 kHz, and one would measure highly
entangled pulses, characterized by 99% reduction of the
vacuum fluctuations over a time of the order of 0.1 ms.

To obtain a frequency splitting of 2v<< dw between the
two cavity modes involved in the dynamics, two nondegen-
erate polarization modes may be utilized, both of which
couple to the laser-driven transition of the atom. With In*,

this is achieved by setting the quantization axis B along the

cavity axis, and B,Iz, and laser polarization E; mutually or-
thogonal. Other possible atomic level schemes are, e.g., a J
=1/2+J'=1/2 or an F=0«F'=1 transition. The two-
mode field emitted from the cavity after the laser excitation
pulse is split by a polarizing beam splitter, and the fluctua-
tions of both modes are detected by balanced homodyne de-
tectors, as shown schematically in Fig. 4.

III. TEMPORALLY SEPARATED ENTANGLED PULSES

We now discuss a scheme which allows for the creation of
pairs of temporally separated, entangled pulses, which may
be monochromatic. The scheme is based on an atom trapped
in a cavity, of which only one mode is relevant to the dy-
namics and that is far off-resonance from the dipole transi-
tion. The scheme is connected to ideas of quantum state
transfer between the quantum center-of-mass motion and the
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FIG. 4. (Color online) Schematic setup for measuring quantum
correlations in the field at the cavity output. PBS stands for polar-
izing beam splitter, BS for beam splitter, D for detector. Details of
the experimental setup are discussed in the text.

electromagnetic field [27], and to its possible applications for
creating quantum correlations between distant atoms [28]. In
the present case, the ion keeps the memory of the quantum
correlations with the field which is emitted by the cavity, and
transfers it to the subsequent pulse. The resulting pulse pair
exhibits EPR-type correlations in the quantum fluctuations.

A. Dynamics

We denote by a,a’ the annihilation and creation operator
of a cavity photon at frequency w,, and assume that both the
center-of-mass and the cavity oscillator are initially prepared
in the vacuum state. The model description is analogous to
the one given in Sec. Il A, whereby now the sum over the
cavity modes is dropped, together with the subscript ;.

The generation of pairs of monochromatic entangled
pulses follows this procedure: first, a laser pulse is applied
with w;=w_.+v, in the regime in which the relevant dynam-
ics are described by Hamiltonian H(e:}).:ﬁwcafa+Hmec+H(')
with

HY = itixa'b" +He., (55)
where the coupling term

* cos pQU(1
X= n—g A¢ ( )(cos 0, +itan ¢ cos 6,) (56)
has been obtained in the limit |A|> v, y. Therefore, at the
end of the laser pulse atomic motion and cavity mode are
two-mode squeezed, their degree of squeezing being deter-
mined by the duration 7 of the pulse according to

a(T,) = a(0)cosh| x|T; + b'(0)e'®x sinh|x| T},

bY(T;) = b*(0)cosh|x|T; + a(0)e™*®x sinh|x|T},

with y=e!®|x|. The average occupation number of both the
cavity mode and the center-of-mass oscillator is (n)
=sinh?|x|T;. The cavity field evolves according to Eq. (36)
and after several decay times it is in the vacuum state, while
the field at the cavity output is characterized by a propagat-
ing pulse described by Eq. (32), whose amplitude fluctua-
tions are entangled with the motional state.
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Let us then assume that at time 7> 1/k a second laser
pulse is applied, which is now tuned to w; =w.— v, thus driv-
ing dynamics described by Hamiltonian Hﬁf):hwca*a
+H, oo+ H? with

H® = ifxa'b +He. (57)

at the same coupling constant y as in Eq. (56). For a pulse
duration T,=1/2|x| then

a(7+ T,) = b(7)e'x

and the motion is in the state of the cavity field at time 7. In
absence of decoherence processes for the atomic motion,
b(7)<b(T,), whereby the proportionality factor is a time-
dependent phase which does not affect the efficiency of the
scheme. Therefore, for k7> 1, at the end of the second laser
pulse the motion becomes decorrelated from the first propa-
gating pulse and its correlations have been transferred to the
cavity field, which is in a two-mode squeezed state with the
first propagating pulse.

B. Field at the cavity output

The cavity field, entering Eq. (32) as the source field, is
written as

a(t) = 6(t=T)a(T)e ™ + 0(t — 7= Ty)a(r+ T,)e <=7

t
C — .
- VI?\QKI dTe_(“‘”")(’_T)rf(T) (58)
0

and the source field (32) describes now two temporally sepa-
rated pulses, whose separation can be controlled on a time
scale of the order of the cavity decay time.

The correlation between the pulses can be detected by
measuring the fluctuations of the difference current between
the signals at the detector at ¢ and 7+ 7, which we define as

i_(t,7)=al0(t,6)) - Ot + 7,6,)]. (59)

The correlation function shows the same functional behav-
iour as function (44) where now r is related to |x| and T; by
tanh|x|T,=2r/(1+7%).

C. Experimental parameters

This type of proposal requires the coupling of the dipole
with a single cavity mode, and it therefore simplifies several
experimental conditions with respect to the simultaneous
generation of bichromatic entangled pulses, see Sec. II. We
list below some salient requirements.

Coherent dynamics during the laser pulse is achieved pro-
vided that T'|,T, <1/ k. Moreover, spectral resolution of the
vibrational excitations imposes 7;,7,> 1/v. Therefore, an
important condition for the realization of this scheme is

11
V> — — > K. (60)

1 4a
This condition is accompanied by the requirements on neg-
ligible incoherent scattering by the atom, vy, <k [Eq. (48)]
and yeT,<<1, which is equivalent to condition (47) for this
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type of scheme. Moreover, the Lamb-Dicke regime must be
fulfilled at any stage of the dynamics. Therefore, large reduc-
tions in photon number correlations below the shot noise
limit can be produced with atoms confined in very tight
traps, i.e., with very small Lamb-Dicke parameters. This in
turn affects the speed of the dynamics, as the coupling y
scales with #. For instance, after the first pulse the average
number of vibrational excitations (and of cavity-mode pho-
tons) is (n)=sinh?|x|T, hence the Lamb-Dicke regime is ful-
filled at all stages provided that

n|sinh|x|T;| < 1. (61)

If we set (n)=100, thus imposing #%=0.03, then T
~1n 20/ |x|. Taking these values, Q/A=0.3, and T,~ T}, we
find from condition (60) a relation for the cavity parameters
and the trap frequency,

v > g/300 > k. (62)

Besides this, there is no particular requirement on the ratio
v/ v, therefore these numbers can be obtained with various
atomic species in experimentally available setups. It should
be noticed that reliable entanglement between the temporally
separated pulses requires that the coherence of the quantum
state of the center-of-mass oscillator is preserved during and
between the pulses. Generally, for ion traps one can rely on
heating times of the order of tens of milliseconds, such that
this condition is fulfilled [36]. A study of decoherence on the
efficiency of the scheme will be the subject of future work.
Finally, we comment on the initial preparation of the
center-of-mass state. The dynamics discussed here apply
when the motion is prepared in the ground state of the con-
fining potential, which may be achieved with ground state
cooling techniques. However, initial preparation of the
center-of-mass oscillator in the vacuum state is also possible
by means of quantum state transfer techniques between the
motion and the electromagnetic field [27]. Since these tech-
niques are at the basis of the entanglement scheme, ground
state cooling is not a necessary requirement. In future studies
we will also investigate the scheme when the motion has
been prepared in a different state than the ground state.

IV. CONCLUSIONS

To conclude, we have shown that the motion of a single
trapped atom inside an optical cavity can act as a quantum
medium which mediates entanglement on demand between
simultaneous or subsequent radiation pulses. The process is
based on the mechanical effect of light, which in the quan-
tum regime allows for coherently controlling the interaction
and thereby the degree of entanglement. We have discussed
two schemes, which allow for simultaneous bichromatic and
temporally separated entangled pulses. From our estimates
the proposal requires experimental regimes that are within
reach, and would allow for the production of entangled light
pulses on demand, characterized by 99% reduction of the
vacuum fluctuations over a time of the order of 0.1 ms.

Our schemes offer interesting alternatives to implementa-
tions with atomic gases [3,7], where now the controlled in-
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teraction with the spectrum of the quantum excitations cre-
ates the entanglement with the radiation pulses. It can be
extended to the microwave regime by suitably driving
atomic microwave transitions in a setup like the one dis-
cussed in Ref. [39]. It can also be extended to the collective
excitations of ultracold atomic gases, where the nature of the
collective excitations would allow for additional freedom in
tuning the parameters, thereby giving rise to higher efficien-
cies or new properties of the emitted radiation. The scheme
with spatially separated entangled pulses may be of help in
devising new cryptographic schemes exploiting time corre-
lated pulses and continuous alphabets, thus extending those
based on time-energy entangled photon pairs (see, e.g., Ref.
[40] and references therein).

In the future we will study correlations in the continuous-
wave excitation of the ion, in the perspective of applications
for quantum networking, like for instance discussed in Refs.
[41,42].

ACKNOWLEDGMENTS

The authors gratefully acknowledge discussions with
Christoph Becher, Luiz Davidovich, Markus Hennrich, Paulo
Nussenzveig, and Scott Parkins. This work was partly sup-
ported by the European Commission (CONQUEST network,
MRTN-CT-2003-505089; SCALA, Contract No. 015714),
and the scientific exchange programme Spain-Italy (HI2003-
0075); one of the author (G. M.) is supported by the Spanish
Ministerio de Educacién y Ciencia (Ramon-y-Cajal and
FIS2005-08257-C02-01).

APPENDIX: EVALUATION OF THE FIELD
CORRELATION FUNCTIONS

In this appendix we report the detailed steps for the ex-
plicit derivation of the difference current (38). We assume
K| = K,. The single terms on the right-hand side of Eq. (38)
are evaluated to be

(1)

(Q1(1,0)% =26 (q, (6)%) + 17 2 =Ty, (A1)
k@1

(2)

(0a(1,02)%) =2k go(6:) + 7 5 % T, (A2)
K @

(01(1,6)05(1,6,)) =2k q1(6))g5(65)),  (A3)
where
2 2\2 2 2
(01(6))%) = ((a,ei® +afe‘ml)2>= (xil” + xol 4"‘ 4x1%xal ’
(A4)
<Q2(‘92)2> = <611(01)2>, (A3)

and
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dxia(al+ P .
<CI1(91)‘]2(02)>=RC{ X1X2 |X®1|4 |X2| £ (01+62) ,
(A6)

while the integral

1 +6t +6t 0 , ()
Ij(t)=—2j de dr' e () =2
ot J, .

sin wy’ ot
w,(f)ét
(A7)
introduces the finite spectral resolution associated with the
temporal grid. With Eq. (A7) in Egs. (Al) and (A2), we
rewrite the sum over the free field modes as

()
wy 1
> LT ~—,
r 1) ot

where we have taken the continuum limit of the discrete sum
over the modes, thereby adding the density of states and
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assuming that w,(j) varies negligibly over 1/4¢. Substituting

into Egs. (A1) and (A2), we obtain

eZKI

2K6t

(04(1,0))% =2Ke-2”(<q1(0,)2> + ) (A8)

e2K[
(02(1,0)) = 2Ke-2”(<q2(02)2> + . (A9)
2Kt
Taking w;= w, we finally obtain
R(t)
C1,2(t):1_mcl,2(01’02)’ (A10)
where R(7) is defined in Eq. (41) and
2R 0 0
1201, 0) = e{(q1(61)q2(6,))} (ALD)

(:1(6)) +(q2(62))
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