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Quantum-information processing in disordered and complex quantum systems
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We study quantum information processing in complex disordered many body systems that can be imple-
mented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range
case, the generation of entanglement and the /ocal realization of quantum gates in a disordered magnetic model
describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates
higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar
atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range
interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an
efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to

calculate its quantum correlations.
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I. INTRODUCTION

Successful implementations of quantum information pro-
cessing (QIP) in atomic, molecular, or solid state systems
typically demand a very rigorous control of the parameters
governing the dynamics of the system [1]. This concern af-
fects systems with few qubits such as the Cirac-Zoller com-
puter [2] with ions or photons [3], as well as atomic gases in
optical lattices [4]. Despite the recent progress, the de-
manded control in such systems is currently very hard to
achieve [5]. Recently QIP in systems with a limited knowl-
edge of the parameters has also been proposed [6].

Here we analyze QIP in systems with quenched (i.e., im-
mobile in the dynamic scale) disorder. This may sound like
contradicto in adjecto. However, in our system, disorder is
not due to uncontrolled values of some of the system param-
eters. It has been recently shown that it is possible to create
controlled disorder in atomic gases in optical lattices, and
this opens up the possibility to study, in an unconventional
way, Anderson and Bose glasses in a Bose gas [7], or spin
glasses with short range interactions in Fermi-Bose, or Bose-
Bose mixtures [8]. Disordered systems exist in nature, and
the consequences of disorder are largely recognized, but they
are still far from being well-understood [9]. We want here to
deepen our understanding on the effects of quenched disor-
der for QIP in systems that can be created with currently
available technology. For instance, using linear chains of
trapped ions [10], or dipolar atomic gases [11], it is possible
to realize complex spin systems with long range interactions
that may serve as a model for classical and quantum neural
networks [12] (cf. [13]).

We aim at using many body complex disordered systems
to perform distributed QIP. However, before that, one should
address more fundamental questions, namely
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(i) Can one generate entanglement in such systems that
would survive quenched averaging over long times?

(ii) Can one realize quantum gates with reasonable fidel-
ity in disordered systems?

Here we answer both questions affirmatively considering
both short and long range disordered systems.

The reason for considering disordered systems for QIP is
that potentially they could offer advantages for quantum in-
formation tasks as compared to ordered systems. First, since
they have typically a large number of different metastable
(free) energy minima, such states might be used to store
information distributed over the whole system, similarly to
neural network models [14]. The information is thus natu-
rally stored in a redundant way, like in error correcting
schemes [15]. Second, in disordered systems with long range
interactions, the stored information is robust: metastable
states have quite large basins of attraction in the thermody-
namical sense.

In this paper, we first consider a short range disordered
Ising Hamiltonian, the so-called Edwards-Anderson (EA)
model of spin glass (SG) which can be straightforwardly
implemented using atomic Bose-Fermi or Bose-Bose mix-
tures in optical lattices [8,16]. We address the generation and
evolution of nearest neighbor (NN) entanglement in this
model. In the short range Ising model without disorder, it is
possible to create cluster and graph states (and therefore,
entanglement) starting from an appropriate initial product
state [17,18]. Here we show that, while the density matrix of
two neighboring spins averaged over the disorder remains
always separable, the disorder averaged entanglement (quan-
tified by logarithmic negativity [19]) converges in time to a
finite value. We also show that the quantum single-qubit
Hadamard gate can be realized in such a system with signifi-
cant fidelity.

Second, we consider complex systems with long range
(1/ r? or 1/72) interactions that can be realized, for instance,
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in linear ion traps, using either local magnetic fields, as pro-
posed by Wunderlich and co-workers [20], or by appropri-
ately designed laser excitations [10]. The corresponding
Hamiltonian can be mapped into an Ising neural network
model with weighted patterns [14]. One can also include
external parallel or transverse fields in the model. In such a
system, we demonstrate analytically that it is possible to gen-
erate long range bipartite entanglement that undergoes a se-
ries of collapses and revivals [21]. Finally we also address
the dynamics of bipartite and tripartite entanglement in an
infinite range Ising model without disorder.

The paper is organized as follows. We begin in Sec. II by
a definition of quenched averaging that is used in the physics
of disordered systems [9]. This is followed in Sec. III by a
definition of logarithmic negativity, the measure of entangle-
ment that we use in this paper. In Sec. IV, we show that there
is bipartite nearest neighbor entanglement that survives
quenched averaging in short range disordered models. In the
different sections of Sec. IV, we discuss the dependence of
nearest neighbor entanglement on the time of evolution, on
the lattice geometry, and on the choice of the initial state for
the evolution. Section V is devoted to the implementation of
quantum gates in disordered short range interaction systems.
We then move to the case of long range interaction Hamil-
tonians (Sec. VI). We present first an analytical method to
calculate bipartite as well as multipartite density matrices for
long range interactions. We discuss the ordered and disor-
dered cases separately. Curiously, both cases present revivals
and collapses of bipartite entanglement. We summarize our
results in Sec. VIL

II. QUENCHED AVERAGING

In the disordered systems that we consider in this paper,
the disorders are “quenched,” i.e., they remain unchanged at
least for the duration of the considered dynamics of the sys-
tem. In the systems that we consider, it is the interactions that
are disordered. They are random variables following certain
probability distributions. The disorder is quenched means
that a particular realization of all the random variables re-
mains fixed for the relevant duration of the dynamics of the
system. Due to this reason, an average of a physical quantity,
say A, is to be carried out in the following order.

(a) First we consider a particular realization of the sys-
tem and take the corresponding fixed values of the system
parameters (including the ones that are disordered).

(b) Then, we compute the value of the physical quan-
tity A, with those fixed parameter values.

(c) Lastly, we average over the disordered parameters.
This mode of averaging is called “quenched” averaging. It
may be mentioned that an averaging in which items (b) and
(c) are interchanged in order is called “annealed” averaging.

III. LOGARITHMIC NEGATIVITY

To study bipartite entanglement, we use the logarithmic
negativity (LN) [19]. The LN of a bipartite state p,p is de-
fined as
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FIG. 1. (Color online) Temporal behavior of NN averaged en-
tanglement in a 2D SG model, starting from I +);. E;5(t) denotes
the NN averaged logarithmic negativity and ¢ denotes the time.
(Note that ¢ is implicitly multiplied by c/#, so that the horizontal
axis is actually of ct/#.) For a model with frustration (J=0), E;y(2)
converges quickly to a constant value (red dotted curve). For a
nonfrustrated case (J=+5), E;y(t) exhibits damped oscillations
(blue curve), converging to the same value =0.0154, as reached in
the frustrated case. Standard deviation for r— is =0.0704. It is
interesting to note that the dynamical behavior of E;y depends on J,
although at large times, they all converge to the same value (see
inset). The same behavior is encountered in the 1D case, even
though there is no frustration in that case.

E n(pap) = 10g2||P/§% 1>

where [|-||; is the trace norm, and p}4 denotes the partial
transpose of p,p with respect to the A-part [22]. Note that
p;;(t) acts on (2® (2. Consequently, a nonzero value of the
LN implies that the state is entangled and distillable [22,23],
while E;y=0 implies separability [22]. The LN of the singlet
state (|01)—|10))/+2 is unity, which will serve as our unit of
entanglement. (Throughout the paper, |0) and |1) are eigen-
vectors of the Pauli o operator, with eigenvalues +1 and —1,
respectively.) The singlet is said to have one ebit (entangle-
ment bit).

IV. DYNAMICS OF ENTANGLEMENT WITH A SHORT-
RANGE DISORDERED HAMILTONIAN

A. Entanglement of the evolved state of the Edwards-
Anderson spin glass model: Quenched averaging

The short range disordered Hamiltonian, the Edwards-
Anderson SG model, that we consider here is given by

HE—A=—§EJ1'J‘07TO§- (1)

(ij)
Here o7 denotes the Pauli operator at the kth site, and J;;’s
describe NN couplings for an arbitrary lattice. The prefactor
c is used to make the couplings J;; dimensionless, and also to
make them effectively of the order of unity. In the EA model
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these couplings are given by independent Gaussian variables
with mean J and variance o°. Starting from a pure product
state of the form [18]

|¥) = H |+), where|+)=(]0)y+ |1>)/\6’

1

we evaluate the entanglement after a finite time. The density
matrix is given by

h

1 t 1 t
=exp —i—HE_AC— | W) W]exp +i—HE_Ac—
¢ h ¢ h

2)

and the reduced density matrix for any NN pair is obtained
by tracing over all other sites. (In the following, ¢ will mean
ct/h, ie., it will always be implicitly multiplied by a factor
c¢/h.) For example, the reduced density matrix for a two-
dimensional (2D) square lattice of the pair (1,2) is given by

P10 = exp{— gHt} |q,><q,|exp{+ iHE_Ar}

1 1
QIZ(I’{‘]U}) = Zl ®1+ Z[COS(J24I/2)COS(Jzét/Z)COS(ngt/z)

X {e1212)00)(01| + e=/12"2|10)(11[}

+ cos(J5t/2)cos(J 5t/2)cos(J 72/2){e™1272|00)
X (10| + e 22|01)(11[}

+ cos(J3t/2)cos(J5t/2)cos(J71/2)

X c08(J4t/2)cos(Jogt/2)cos(Jgt/2){|00)(11]
+[01)10[} + H.c.], (3)

where 1 is the identity operator on a two-dimensional com-
plex Hilbert space, and the indices 3,4,...,8 enumerate the six
neighbors of 1 and 2. [We assume that either the lattice is
infinite, or that none of the (1, 2) pair is at the boundary of
the lattice.] As we have mentioned before, in the physics of
disordered systems, to determine the values of relevant
physical quantities such as free energy, entanglement, etc.,
we are obliged to perform a quenched average [9] (see also
[24,25]). The disorder averaged state is actually separable.
So, the annealed averaged entanglement is zero (see Sec. II).

The entanglement in the SG model turns out to be an even
function of the couplings. The temporal behavior of E;y(z) in
a 2D square lattice is shown in Fig. 1 for two different cases
of disorder: with frustration and without it. For J=0, o2=1,
the system has randomly ferromagnetic (/>0) and antifer-
romagnetic (J<<0) interactions, and is strongly frustrated;
E;n(?) is rapidly damped to a constant and does not show any
oscillations. This behavior differs from the nonfrustrated
case J=5, a°=1, when E;(t) exhibits oscillations with fre-
quencies ~§% To understand why entanglement converges
in time to the same finite value for both the frustated and
nonfrustated cases, notice that as long as the distributions of
the J;;’s are sufficiently well-behaved, J;;¢/2 corresponds to a
uniform distribution over [0,27] for large enough ¢ [26], and
the sign of J;; [(i,j) # (1,2)] does not play any role.
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Note here that for short range interactions, the next-
nearest neighbor entanglement vanishes, even before the av-
eraging, for both 1D and 2D square lattices.

B. Time dependence of the nearest neighbor entanglement:
Probability distributions at given times

From the previous calculations we have seen that for a 2D
square lattice, the quenched averaged NN entanglement con-
verges, for large times, to a very low value. Precisely, E;y
=0.0154. To better understand the time dependence of the
above results we analyze here the probability distribution of
entanglement at given times, for the same lattice geometry
(viz. 2D square lattice). The probability distributions are ob-
tained by considering the relative frequencies of the en-
tanglements for a given distribution of the J;;’s, and is calcu-
lated before the quenched averaging.

The probability distributions at two exemplary times are
plotted in the histograms in Fig. 2. They show that although
the average value of NN entanglement is small, there is al-
ways a finite probability of obtaining an entanglement that is
one order of magnitude larger than the quenched averaged
value. For example, we observe that at small times, the prob-
ability of obtaining bipartite entanglement between the val-
ues 0.2 and 0.4 is about 15%. Intuitively, this is the entangle-
ment that is useful in obtaining the nonclassical fidelities for
the quantum gate operation considered in Sec. V.

Both short- and long-time behaviors of the entanglement
are considered in Fig. 2 by looking at their probability dis-
tribution at given times. We observe that there is a marked
difference between short- and long-time behaviors. While the
probability decays exponentially with increasing entangle-
ment at large times, it is not so for small times (see Fig. 3).

C. Lattice geometry dependence of the nearest
neighbor entanglement

To study the dependence of the NN bipartite entanglement
with the lattice geometry we have studied the above problem
for the following lattice configurations: linear chain, 2D hon-
eycomb lattice, 2D square, and 3D cube. Any given pair of
neighboring lattice sites in the above configurations have d
=2, 4, 6, and 10 neighbors, respectively. Our numerical
simulations reveal that the NN entanglement also decays ex-
ponentially with increasing of neighbors for large enough
times.

We can provide an analytical estimate that reproduces
such dependence on the number of neighbors by considering
the volume of the set of separable states (see, e.g., [28]) in a
two-qubit system. This gives an upper bound on the NN
entanglement that depends exponentially on d. To see this,
consider an arbitrary lattice configuration, in which there are
d neighbors for any given pair of neighboring lattice sites. If
the reduced density matrix between two neighboring lattice
sites, pjﬂ(t), is entangled, then we must necessarily have

1
H—l@l-pyn

>R, 4
y 2 )

with R being the radius of the separable ball in the two qubit
space, using Frobenius norm (or 2-norm), where the latter is
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FIG. 2. (Color online) Probability distribution of NN entangle-
ment for given times ¢ in the evolved state @,(¢,{/;}) of the
Edwards-Anderson spin glass model [27]. The value of entangle-
ment for a large number of sample J; points (and hence a large
probability) is concentrated in the “zero” entanglement zone
[0,0.01]. This probability column is not shown in both of the histo-
grams for easy viewing of the histograms. This large zero entangle-
ment zone probability leads to the low average value of entangle-
ment. However, the histograms show that there is a substantial
probability of obtaining entanglement that is one order of magni-
tude more than the average value (see text). Note that including the
zero entanglement probability, the histograms are in fact correctly
normalized.

defined as ||A||,=\tr(ATA). Using the approximation cos x
~ 1 -x?/2, the inequality (4) reduces to

d

> HE<(3-4R)2, (5)

i=1

where the ¢,=J;;1/2’s are state parameters varying from
0 to 27 (as they always appear as arguments of trigonomet-
ric functions) [29]. The volume of this hypersphere [the one
given by Eq. (5)] is

3 g2\
desd( > ) d, (6)

where S;=27%?/T(d/2). Due to the periodicity involved im-
plicitly in pg.(t), there are 2¢—1 such hyperspheres [30]. Con-
sidering all states in this volume to have unit entanglement,
the average NN entanglement, of a lattice that has d neigh-
bors for any neighboring pair of lattice sites, at sufficiently
long times, is bounded by

E,=V,24-1)/(2m). (7)

As an example, for the case of the 2D square lattice (for
which d=6), at long times, the actual [i.e., calculated using
the exact state in Eq. (4)] entanglement is ~0.0154, while
the above estimated upper bound is £¢=0.0221. Although
bipartite entanglement vanishes with increasing number of
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FIG. 3. (Color online) Plot of probability vs NN entanglement
for time 7=1.25 (and =20 in inset) of ©,(z,{/;;}) [27]. The prob-
ability for the entanglement range [0.01i,0.01(i+1)] is plotted
against an entanglement of 0.014, for i=1 to 100. The dashed (blue)
lines correspond to the actual values, obtained by sampling a large
number of J;;’s. The undashed (red) lines are exponential fits. The
exponential fit in the inset (for 7=20) is almost exact, while the one
for r=1.25 is seen to not fit very well. In both cases, the exponential
fit is probability=a exp(—entanglement/b). For t=1.25, we have a
=0.018 37, b=0.215 43, while for t=20, we have a=0.00577, b
=0.150 53. Just like in Fig. 2, the “zero” entanglement zone is not
shown in the figure (see caption of Fig. 2 and text). Also, including
the zero entanglement probability, the curves are in fact correctly
normalized.

neighbors, the same argument predicts that multipartite en-
tanglement should be nonvanishing due to the fact that the
volume of separable states is ‘“‘super-doubly-exponentially
small” with increasing number of parties [31].

D. Dependence of nearest neighbor entanglement
on the initial state

Since we are dealing with a physical system that is gov-
erned by an Ising-interaction model, and as we want to gen-
erate as much entanglement as possible in the evolved state
of the system, a natural choice of the initial state is a product
state that will be created by a strong (initial) transverse field.
Therefore to generate entanglement in a system governed by
the Hamiltonian Hg_,, we have chosen the initial state as
I1;|+);. This is also the inituition that we obtain from previ-
ous works on generation of entanglement in models with
Ising-type interactions. See, e.g., [17,18].

The generated entanglement does depend on the chosen
initial state. In particular, any state of the form

IT14.

i

where |¢/¢) is either |0) or |1) at the ith lattice site, does not
produce any entanglement.

The choice of product states as initial states is motivated
by the fact that such states will be relatively easy to prepare
in the laboratory. However, one may consider initial states
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that are entangled, and we consider here the following par-
ticular case. Consider a 1D lattice, and suppose that the ini-
tial state is

|Bell) = H |62z 25
where |¢*)=5(|00)+[11)).
As time goes by, the state of the two neighboring spins
2i—1 and 2i is the rank-two state

1
oS Lt Ih = §[4(|00><00| +[11)(11]) + (cos 2x + cos 2y)

X (|00)(11] +[00)(11])], (8)

where

xX=Dionict +iniets Y =Ji02ic1 = J2inivt-

Here we have assumed that the 1D lattice is either infinite, or
it has a finite even number of sites. In the case of a finite
lattice, we assume that the lattice is either with open bound-
ary conditions, in which case the lattice must be at least of
length 4, and the pair (2i{—1,2i) must not be at the boundary,
or the lattice is with periodic boundary conditions, in which
case the lattice must be at least of length 6. Simple calcula-
tions reveal that the time evolved state of the sites 2i—1 and
2i is entangled at all times (in particular, its logarithmic
negativity is positive). Notice that the sites 2i—1 and 2i were
initially in the state |¢").

The evolved state of the sites 2i and 2i+ 1 is different: it is
separable at all times. Indeed, the state at all times is j—ll
® 1. Note that this is even before we perform any quenched
averaging. Note also that the sites 2/ and 2i+ 1 were initially
in the completely depolarized state.

Since the Hamiltonian commutes with the operator that is
a tensor product of o° at all or some lattice sites, the same
above states are obtained for the initial state

H | )2im1 25

where |¢‘)=é(|00)—|11)). However, even for the initial
states

H | lﬁt>2i—1,2i7

where |¢/* =%(|01>i|10>), the same evolved states as above
are obtained, up to local unitary operations. Indeed, the
evolved state at the sites 2i—1 and 2i is

1
oS (eI = 5[4(|01><01| +[10)10]) + (cos 2x + cos 2y)

X (|01)(10[ + [10)(01])]. )

V. IMPLEMENTATION OF QUANTUM GATES
VIA DYNAMICS OF A SPIN GLASS SYSTEM

Of the two questions posed in the Introduction, question
(i), viz. “Can one generate entanglement in such systems that
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would survive quenched averaging over long times?” was
answered affirmatively in the preceeding section, for the case
of a disordered short range Hamiltonian. In this section, we
consider the second question, viz. “Can one realize quantum
gates with reasonable fidelity in disordered systems?” and
show that for the same Hamiltonian [as in Eq. (1)], the an-
swer is also positive.

We focus on the Hadamard gate, which transforms the
computational basis into a complementary basis:

10) = [+).

==

We assume that the computation is performed in a spin lat-
tice, of which particles 1 and 2 are part of and that at a
certain time, particle 1 is in an arbitrary state a|0)+b|1),
where |a|?>+|b|?=1, while particle 2 is in |+). Then we let
particles 1 and 2 evolve according to the Hamiltonian Hy_4
for a suitable duration of time, before performing a measure-
ment on particle 1 (in a suitable basis).

From the behavior of average entanglement in this model,
one may infer that realization of quantum gates in such a
model is not possible. However, we observe that this is not
the case. For example, our results show that for the nonfrus-
trated case (J=5, o?=1), particle 2 attains the Hadamard
rotated state a|+)+b|-), with quenched averaged fidelity
greater than 0.85. Moreover, one can increase such fidelity
by increasing the number of spins and employing assisted
measurements (choosing measurement bases depending on
results of previous measurements). Note that the fidelity of
the Hadamard rotated state using the classical information
obtained from the measurement of particle 1 is only 2/3
[32].

A similar system can potentially be used for implementing
a two-qubit gate, say U. A possible way is to consider a
square of four spin 1/2 particles interacting via the Hamil-
tonian Hp_, with J=5, o?=1, where, initially, two of the
spins are in an arbitrary two-qubit state and the other two are
each in the state |+). Similarly, as in the case of the Had-
amard gate, it is conceivable that by suitably chosen mea-
surements on two spins at a suitably chosen time, an approxi-
mately U-rotated two-qubit state of the initial two-qubit state
will be obtained at the other two (unmeasured) spins.

VI. GENERATION OF ENTANGLEMENT IN A QUANTUM
NEURAL NETWORK MODEL

Consider now a long range Ising spin model, described by
the Hamiltonian

c
HlFN%JUUfO';’ (10)
where N is the total number of spins. Again the factor ¢ helps
one to make the couplings J;; dimensionless, and to make
them effectively of the order of unity. We have used the same
notation as in the short range Hamiltonian, but there is no
room for confusion. Such models can be realized, e.g., with
trapped ions [12] (cf. [10,20]), where the interactions,
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o
Jyj= 2 &N, (11)
“

are phonon-mediated, with §L()\ ) describing the phonon
eigenmodes (eigenfrequencies). The (experimentally fea-
sible) control of the external trap potential allows one to
modify the value of the first eigenfrequencies. Here we con-
sider two extreme cases. First, we take

N=1, §"1 =const Vi,

A, — o foru=2,

so that the interactions are ordered, and the Hamiltonian is

Hlm = Sz’

<
N
where S=3Y o%. Second, we consider the case when

A, =1 forall u,
when the Hamiltonian becomes

S S @0

i,j=1 p=1

H c

neural — N
This latter one corresponds to the Hopfield model of a neural
network with Hebbian couplings [14]. Here p is the number
of “patterns” stored by the neural network. The patterns are
described by the random variables é'), which take the values
+1, with equal probabilities. To study the dynamics of en-
tanglement for ordered and disordered Hamiltonians, we
again take the initial state as [W)=ITY |+),. We provide an
efficient method to analytically compute the evolved state of
any number of patterns and any number of spins.

A. Behavior of entanglement for the ordered Hamiltonian

Consider first the long range ordered Hamiltonian H,,.
We write the evolution operator exp(—iS%t/N) [27] as

f do exp[(i/N)? + S\t(= 2i/N)w], (12)

up to a constant factor, by going to the Fourier space. Ap-
plying now this unitary to the initial state |¥), we find any
two-party state

Qllrzo(t) = tfk;&l,zplm(f)

of such a system and compute the entanglement quantified
by the LN. (This method can be also applied to find multi-
partite evolved states.) In Fig. 4, we plot the entanglement
(as quantified by LN) of Ql{f (¢), with respect to time, as well
as N. The figure shows revivals of bipartite entanglement
that occur on the time scale

TR~ N -,
c
and persist on the time scale (collapse time)

h
~ W
C

e
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FIG. 4. (Color online) Generation of entanglement [E;x(z), on
the vertical axis] of bipartite states "7(1) with respect to time 7 and
number of spins N [27]. Collapses and revivals of the entanglement

are clearly depicted.

As depicted in Fig. 4, there are large ranges of time, for
which the bipartite state is separable. Interestingly, this range
of separability can be sharply reduced, considering entangle-
ment of the tripartite evolved state p!%(z) in a bipartite cut.
Although the interlactions in I?Zm are long range, they are

ro ro

ordered so that p7(r) and p{3;(f) take relatively simple
forms.

B. A disordered long range model:
The neural network Hamiltonian

Amazingly, the previous method applies also for H, ey,
where the interactions are both long range and disordered.
Despite its increased complexity, we can still use the
technique for the evolution operator exp(—iH . ) [27] that
was used in the case of H,,. Specifically, we replace in
exp(—iH eura 1) the operator exp(—iSit/N) by

f dw, exp[(i/N)w), + SM\G(— 2ilN)w,], (13)

for every u, where S M:Eﬁlgi?of. Applying this operator to

our initial state |¥), we find that the N-particle state at time
t is given by

N
r\ i, ~2i\T (i)s
Qneural(t) =J (H dr’uds#)ei " M/NH [e 2 \tig,u. /.L/N(|O><O|)l
“w i=1
()
e g o, + B, (14

_ ' _ PN/ : _ _
where Fu=0,+ 0, $,=0,-0,, with u=1,...,p. After trac

ing out over all particles except 1 and 2, we obtain
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ous(r) = il ©1+ i( { 4zz2§'>g(2>/N[ 11 cos<4t2 é’)é”/N)looxml + 11 cos(4r2 é’)é”/zv)Iooxlol]}

i#1,2

i#1,2

10 cos(4t2 A GRET )/N>|OO)(11|+ I cos<4zE§< (&) - 5(2))/N)|01><10|

i#1,2

i#1,2

{ s é”é”ﬂv[ 11 cos(4t2 é’>é'>/N)|01>(11|+ 1 cos<4t2 é”é”/N)|10>(11|”+H.c.). (15)

i#1,2

For N large, and t/N small, the above expression can be
simplified using the fact that, for example,

HE[Z cos(4t2 §<’)§(2)/N)
= exp[ > log, cos(4t2 §<l)§<2)/N) H
S2INY) D <%x;) ]

i#1,2
i#1,2

where for all i, xiL=+1 or —1 with probability 1/2 each.
Therefore for large N and small #/N, we have that

11 cos(4t2 §<’)§(2)/N)

i#1,2

self-averages (i.e., independent of a particular disorder real-
ization) to the value exp[—(8¢>p/N)] (see [33]), so that after
time f~ \«"N—/p, all the off-diagonal elements of the state
015"¥(t) become vanishingly small. Therefore nearest neigh-

bor entanglement in the evolved state appears and persists

for times of order
\/N %
Te~\——.
pc

There are repeated revivals in entanglement, with the period
being [34]

7N h
TR=7— for odd p,

c

7N h
Tr=——— for even p.

4 ¢

Note that the period of revivals is independent of the number
of patterns in the model (cf. [25]).

i#1,2

It is to be noted here that in the case of short range models
considered in preceeding sections, although the entanglement
persists at long times, there are no collapse-revivals. Here,
however, the long range interactions force the entanglement
to continue exhibiting (repeated) collapse-revivals, even at
long times.

VII. SUMMARY

Summarizing, we have studied entanglement of disor-
dered and complex quantum spin systems with short range
and long range interactions that can be realized with trapped
atoms or ions. We have shown that in both cases, it is pos-
sible to generate quenched averaged entanglement over long
times. In the case of short range interactions, we have con-
sidered the Edwards-Anderson model in several lattices. The
cases of 1D and 2D square lattices are considered in detail.
We have shown that in such disordered systems, it is possible
to implement also distinctly quantum single-qubit gates with
high fidelity. We provide an efficient analytic method to
compute the time evolution of a state in a system with long
range interactions. By using this method, we are able to dem-
onstrate the generation of entanglement in spin systems with
long range interactions, e.g., in the Hopfield neural network
model. We have shown that in such case, entanglement ex-
hibits a sequence of collapses and revivals.
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