U " B % Diposit digital

de documents
Universitat Autonoma de la UAB
de Barcelona

This is the submitted version of the article:

Bars Cortina, Francesc; Dieulefait, Luis. «Galois actions on Q-curves and
winding quotients». Mathematische Zeitschrift, Vol. 254, Issue 3 (November
2006), art. 531. DOI 10.1007/s00209-006-0956-4

This version is available at https://ddd.uab.cat/record /240656

IN .
under the terms of the - COPYRIGHT license


https://ddd.uab.cat/record/240656

Galois actions on Q-curves and Winding
Quotients

Francesc Bars® and Luis Dieulefait '

December 2, 2003

Abstract

We prove two “large images” results for the Galois representations
attached to a degree d Q-curve E over a quadratic field K: if K is
arbitrary, we prove maximality of the image for every prime p > 13
not dividing d, provided that d is divisible by ¢ (but d # ¢) with ¢ = 2
or 3or 5or 7or 13. If K is real we prove maximality of the image
for every odd prime p not dividing dD, where D = disc(K), provided
that E is a semistable Q-curve. In both cases we make the (standard)
assumptions that F does not have potentially good reduction at all
primes p 1 6 and that d is square-free.

1 Semistable Q-curves over real quadratic fields

Let K be a quadratic field, and let F be a degree d Q-curve defined over
K. Let D = disc(K). Assume that E is semistable, i.e., that F has good or
semistable reduction at every finite place § of K. Recall that we can attach to
E a compatible family of Galois representations {o)} of the absolute Galois
group of QQ: these representations can be seen as those attached to the Weil
restriction A of E to Q, which is an abelian surface with real multiplication
by F := Q(v/4*d) (cf. [E]). Let us call U the set of primes dividing D. For

primes not in U, it is clear that A is also semistable, so in particular for
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every prime A\ of F' dividing a prime ¢ not in U the residual representation
o will be a representation “semistable outside U”, i.e., it will be semistable
(in the sense of [Ri 97]) at ¢ and locally at every prime ¢ # ¢, ¢ ¢ U. This is
equivalent to say that its Serre’s weight will be either 2 or £+ 1 and that the
restriction to the inertia groups I, will be unipotent, for every ¢ # ¢, ¢ ¢ U
(cf. [Ri97]).

Imitating the argument of [Ri97], we want to show that in this situation, if
the image of gy is (irreducible and) contained in the normalizer of a Cartan
subgroup, then this Cartan subgroup must correspond to the image of the
Galois group of K, i.e., the restriction to K of 6, must be reducible. More
precisely:

Theorem 1.1. Let E be a semistable Q-curve over a quadratic field K as
above. If 0 +2dD, X\ | ¢, and &y is irreducible with image contained in the
normalizer of a Cartan subgroup of GL(2,[F,), then the restriction of this
residual representation to the Galois group of K 1s reducible.

Proof. For any number field X, let us denote by G x its absolute Galois group.
We know that if we take ¢ ¢ U the residual representation ) is semistable
outside U. If this representation is irreducible and its image is contained in
the normalizer N of a Cartan subgroup, then there is a quadratic field L
such that the restriction of ) to GG, is reducible and the quadratic character
¥ corresponding to L is a quotient of g, (cf. [Ri 97]).

Using the description of the restriction of &, to the inertia group I, in terms
of fundamental characters, and the fact that the restriction of &, to the iner-
tia groups I,, for every q # ¢, ¢ ¢ U, is unipotent, we conclude as in [Ri 97]
that the quadratic character ¢ can only ramify at primes in U, and therefore
that the quadratic field L is unramified outside U, the ramification set of K.
On the other hand, we know (by Cebotarev) that the restriction to Gk of 7,
is isomorphic to gg . Let us assume that g is irreducible (*). Its image is
contained in N, and since the restriction of 7, to GG, is reducible, it follows
that the restriction of 65, to G .k is reducible. We are again in the case of
“image contained in the normalizer of a Cartan subgroup” but now for a rep-
resentation of G . Once again, the quadratic character v’ corresponding to
the extension L- K /K is a quotient of the residual representation 65 ,. Using
the fact that the curve E is semistable we know that the restriction of this
residual representation to all inertia subgroups at places relatively primes to
¢ give unipotent groups, and this implies as in [Ri97] that ¢’ is unramified
outside (places above) . But ¢’ corresponds to the extension L - K/K, and
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L is unramified outside U, thus 1’ is also unramified outside (places above
primes in) U. This two facts entrain that ¢ € U, which is contrary to our
hypothesis.

This proves that the assumption (*) contradicts the hypothesis of the theo-
rem, i.e., that the restriction to G of &, is reducible, as we wanted. O

Keep the hypothesis of the theorem above, and assume furthermore that
the field K is real. Then, the conclusion of the theorem together with a stan-
dard trick show that the image of g, can not be (irreducible and) contained
in the normalizer of a non-split Cartan subgroup: the reason is simply that
the representation o) is odd, thus the image of ¢, the complex conjugation,
has eigenvalues 1 and —1. In odd residual characteristic, this gives an ele-
ments which is not contained in a non-split Cartan, but if we assume that
K is real, we have ¢ contained in the group Gk, and we obtain a contra-
diction because as a consequence of theorem 1.1 the restriction of 7 to G
must be contained in the Cartan subgroup. This, combined with Ellenberg’s
generalizations of the results of Mazur and Momose (cf. [E]), shows that the
image has to be large except for very particular primes. In fact, we have the
following;:

Corollary 1.2. Let E be a semistable Q-curve over a real quadratic field
K of square-free degree d. Assume that E does not have potentially good
reduction at all primes not dividing 6. Then, if D is the discriminant of K,
for every £1dD, ¢ > 13 and X\ | £, the image of the projective representation
P(ay) is the full PGL(2,F,).

2 Q-curves of composite degree over quadratic
fields

Let E be a Q-curve over a quadratic field K of square-free degree d. Let
A be a prime of K and let us consider the projective representation P (7))
coming from E. We can characterize the image in a subgroup of PG Ly(IF;)
with A|l of the projective representation P (7)) by points of modular curves
as follows (proposition 2.2 [E]):

1. P(7)) lies in a Borel subgroup, then E is a point of X(dl)*(Q),

2. P(7,) lies in the normalizer of a split Cartan subgroup then FE is a

point of X§(d;1)%(Q),



3. P(7,) lies in the normalizer of a non-split Cartan subgroup, then F is
a point of X7*(d;1)%(Q);

where X% (Q) is the subset of P € X(K) such that P° = wyP for o a
generator of Gal(K/Q) where w, is the Fricke or Atkin-Lehner involution.
We have the following results ([E], propositions 3.2, 3.4):

Proposition 2.1. Let E be a Q-curve of square-free degree d over K a
quadratic field. We have:

1. Suppose P(G)) is reducible for some l = 11 or 1 > 13 with (p,d) =1
where A|l. Then E has potentially good reduction at all primes of K of
characteristic greater than 3.

2. Suppose P(Ty) lies in the normalizer of a split Cartan subgroup of
PGLy(Fy) where M|l for 1 =11 orl > 13 with (I,d) = 1. Then E has
good reduction at all primes of K not dividing 6.

After this result we need to study what happens when the image lies in
the non-split Cartan situation. For this case, Ellenberg obtains for the situ-
ation of K an imaginary quadratic field, that there is a constant depending
of the degree d and the quadratic imaginary field K such that if the image
of P(7,) lies in a non-split Cartan and [ > M,k then E has potentially
good reduction at all primes of K, see proposition 3.6 [E|. He centers in the
twisted version for X* to obtain this result. We obtain a similar result in a
non-twisted situation for X* and with K non necessarily imaginary.

We impose once for all that d, the degree, is even. We denote d = 2d.
First, let us construct an abelian variety quotient of the Jacobian of XSLS(QJ; )
on which w,; acts as 1 and having Q-rang zero. Then using “standard”
arguments, that we will reproduce here for reader’s convenience, we obtain
our result on the non-split Cartan situation.

By the Chen-Edixhoven theorem, we have an isogeny between J[*(2;1()
and Jy(2(?)/w. Darmon and Merel [DM, prop.7.1] construct an optimal
quotient Ay with Q-rang zero. They construct A; as the associated abelian
variety to a form f € Sy(T(21%)) with wpef = f and wyf = —f.

Then, in this situation, we construct now a quotient morphism

o Jo(2d1%) — A



such that the actions of w,; and wp on Jy(2dI?) give both the identity on Al

if d # 1. Moreover, we can see that A’f is preserved by the whole group W
of Atkin-Lehner involutions. We construct A’ from f € S3(T'9(21?)) and we
go to increase the level.

We denote by B, the operator on modular forms of weight 2 that acts

as: flp, (1) = f(nt) =n"1f|a,, where A, = ( 7(; (1) ) from level M to level

MFE with n|k. We denote by
By, : Jo(M) — Jo(ME)
the induced map on jacobians.

Lemma 2.2. With the above notation and supposing that (n, k) = 1 and g
is a modular form which is an eigenform for the Atkin-Lehner involution ws;
in Jo(M), then g|p, is also an eigenform for the Atkin-Lehner involution wy,
in Jo(ME) with the same eigenvalue.

Proof. We only need to show that there exist w; a and wp ark, the Atkin-
Lehner involution of n at level M and MFk respectively, such that:

Anwﬁ,Mk = wﬁ,MAn

which is easy to check.

With the above lemma we can rewrite lemma 26 in [AL] as follows

Lemma 2.3 (Atkin-Lehner). Let g a form in T'o(M), eigenform for all the
Atkin-Lehner involutions w; at this level. Let q be a prime. Then the form

(o—

9|Bqa tq 2a)9|31:1d

is a form in To(Mq®) which is an eigenform for all Atkin-Lehner involutions
at level Mq® where § is defined by ¢"~°||M and q"||Mq®. Moreover, let us
impose that 6 # 2a. Then the eigenvalue of this form for Wpq(rqe) 1S £ the
eigenvalue of won on g.

Remark 2.4 (AL). In the case § = 2« let us take the form g|ps. Then it
satisfies the following: it is an eigenform for the Atkin-Lehner involutions at
level Mq® with eigenvalue for the Atkin-Lehner involution at q equal to that
of the Atkin-Lehner involution at q on g (g of level M ).
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Let us remark that if the condition § # 2« is satisfied we can choose a
form in level Mq® with eigenvalue of the Atkin-Lehner involution at ¢ as one
wishes: 1 or -1. This condition is always satisfied if (M, q) = 1, situation
that we will use in this article. With this remarks the following lemma is
clear by induction:

Lemma 2.5. Let g be a modular form of level M which is an eigenvector for
all the Atkin-Lehner involutions at level M. Then we can construct by the
above lemma a modular form f of level Mk (k € N) which is an eigenvector
for all the Atkin-Lehner involutions at level Mk, and moreover the eigenvalue
at the primes q|M with (q,k) = 1 is the same that the one for the Atkin-
involution of this prime at g at level M, and we can choose (1 or -1) the
eigenvalue for the Atkin-Lehner involution at the primes q with (q,k) # 1 if
this prime satisfies the condition § # 2ac of the above lemma.

Let us write a result in the form that will be usefull for our exposition,
noting here that the even level condition can be removed.

Corollary 2.6. Let us write d = pS*...p% with (d,2p?) = 1. We have a
map

I

Xp1s--Xpr : J0(2p2) - JO(QCZPQ)
whose image is stable under the action of W, and we can choose the action of
Wy on the quotient as £ the action of wy for an initial form g € So(To(2p?))

eigenform for the Atkin-Lehner involutions at level 2p?.

Proof. From lemma 27 in [AL], we have a base for the modular forms which
are eigenforms for the Atkin-Lehner involutions. Applying the lemma of
Atkin-Lehner above we have the result for d = pi', we have to consider
I, = |Bpfj‘1 +x(p1)p; ** | By=14, Where we can choose x(p;) as 1 or -1 depending

on how we want the Atkin-Lehner involution at the prime p; to act on the
quotient. Inductively we obtain the result. O

_ Applying the above corollary with d square-free (o; = 1) in our situation
(d # 1) and choosing w,; = 1, we take

A‘lf = Ipr---vXpr (Af)7

which is by construction a subvariety of Jo(2d1?) isogenous to Ay which is
stable under W (at level 2dI?) on which w,; and w2 acts as identity. In par-
ticular the Q-rank of A’ is zero (recall that we started with an Ay of Q-rank
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7€ero).

By the Chen-Edixhoven isomorphism, we obtain a quotient map
s Jyt(2d; 1) — Al

7 is compatible with the Hecke operators T, with (n, 2dl) = 1 (see for
example lemma 17 [AL]) and moreover 7 o wy; = 7. Let us recall that we

are interested in points on X7%(2d;1)X(Q) (we want to study the non-split
Cartan situation). We have the following commutative diagram:

Jos(2d; 1) — A
li | id
Ji=Jp2d DK — A

where 4 is an isomorphism such that i = w,; o4 with o the non-trivial
element of Gal(K/Q). Observe that ¢y := 7} 0i™' : J — A’ is defined over
Q because,

UF = (1)) o (i) =y ounzoi =wjoit = uy.

Let Ry be the ring of integers of K(¢; + ¢') and R = Ry[1/2dl], then

X7%(2d; 1) has a smooth model over R and the cusp oo of X7¥(2d; 1) is defined
over R [DM]. We define

h: X2%(2d;1)/R — Jo*(2d;1)/R
by h(P) = [P] — [00]. Then it follows by lemma 3.8 [E]
Lemma 2.7. Let 3 be a prime of R. Then the map,
Tpoh: XP*(2d;1)/R — AY/R
is a formal immersion at the point 56 of X§*(2d;1)(Fs).

We can prove a result for the non-split Cartan situation with a constant
independent of the quadratic field.



Proposition 2.8. Let K be a quadratic field, and E/K be a Q-curve of
square-free degree d = 2d, with d > 1. Suppose that the image of P(T)) lies
in the normalizer of a non-split Cartan subgroup of PG Ls(IF;) with M|l for
[ > 13 with (262, l) =1. Then E has potentially good reduction at all primes
of K.

Proof. We can follow closely the proof of prop.3.6 in [E], let us reproduce it
here for reader’s convenience. Take (3 a prime of K where E has potentially
multiplicative reduction, if 3|l then the image of the decomposition group
G under P(7)) lies in a Borel subgroup. By hypothesis this image lies in
the normalizer of a non-split Cartan subgroup. We conclude that the size of
this image has order at most 2, which means that Kz contains Q(¢ + Q’l),
which is impossible once [ > 7.

Now let us suppose that F has potentially multiplicative reduction over
B with 3 ¢ [, denote by [’ the prime of Q such that §|I'. It corresponds
to a cusp on X[?S(Qa?; [) where we will take reduction modulo 5. The cusps
of X7%(2d;1) have minimal field of definition Q(¢; + ¢*) [DM,85], and K
is linearly disjoint from Q(¢ + ¢1); it follows that the cusps of X2(2d; 1)
which lie over co € X0<2CZ) form a single orbit under Gg. If § is a prime
of L = K(¢ + ¢ ') over 8, then the point P € X2%(2d;1)(K) parametrizing
E reduces mod f3 to some cusp ¢. By applying Atkin-Lehner involutions at
the primes dividing 2d, we can ensure that P reduces to a cusp which lies
over co in Xo(2d). By the transitivity of the Galois action, we can choose 3
so that P actually reduces to the cusp co mod 3. Using the condition that
a K-point of ng(de;l) reduces to oo, we have then that the residue field
Ok /3 contains ¢; + ¢; ', and this implies that (I')* = 1 mod [, in particular
I'#2,3whenl>T1.
We have constructed a form f and an abelian variety A’ isogenous to the
one associated to f with Q-rank zero and w,; acting as 1 on it, and we have
a formal immersion ¢ = 7, o h at 0

Xi*(d; 1) /R — A%/R.

Let us consider y = P our point from the Q)-curve and x = oo at the curve
X = X{}S(2J; 1)/ Rg, we know that they reduce at 3 to the same cusp if P has
multiplicative reduction. Let us consider then ¢(P) the point in A}(L) with
L =K({+¢™h). Let n be an integer which kills the subgroup of J§*(2d; 1)
generated by cusps, it exists by Drinfeld-Manin, then nh(P) € J2*(2d;1) and
let 7 € Gal(L/Q) and not fixing K, then P™ = w,;P and we obtain that
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ng(P)" = n¢(P) then lies in A%(Q) which is a finite group and then torsion,
concluding that ¢(P) is torsion (this is getting a standard argument [DM,
lemma 8.3]).

Since I’ > 3 the absolute ramification index of R at I’ is at most 2.
Then it follows from known properties of integer models (see for example [E,
prop.3.1]) that = and y reduce to distinct point of X at 3, in contradiction

with our hypothesis on F.
m

Putting together propositions 2.1 and 2.8, we obtain:

Corollary 2.9. Let E be a Q-curve over a quadratic field K of square-free
composite degree d = 2d, withd > 1. Assume that E does not have potentially
good reduction at all primes not dividing 6. Then, for every £ 4 2d, ¢ > 13 and
A | ¢, the image of the projective representation P(ay) is the full PGL(2,TFy).

To conclude, observe that if we take a Q-curve over a quadratic field whose
degree d is odd and composite (and square-free), there are more cases where
the above result still holds: for example if 3 | d the result holds because all
the required results from [DM] (in particular, the existence of a non-trivial
Winding Quotient in Sy(3p?)) are also proved in this case. Moreover, since
the only property of the small primes ¢ = 2 or 3 required for all the results
we need from [DM] to hold is the fact that the modular curve Xy(q) has
genus 0, we can apply them to any of ¢ = 2,3,5,7,13, and so we conclude
that the above result applies whenever d is composite (and square-free) and
divisible by one such prime gq.
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