UAB
 Universitat Autònoma de Barcelona

This is the submitted version of the article:
Bars Cortina, Francesc; Dieulefait, Luis. «Galois actions on Q-curves and winding quotients». Mathematische Zeitschrift, Vol. 254, Issue 3 (November 2006), art. 531. DOI 10.1007/s00209-006-0956-4

This version is available at https://ddd.uab.cat/record/240656
under the terms of the © ${ }_{\text {COPYRIGHt }}^{\mathbb{N}}$ license

Galois actions on Q-curves and Winding Quotients

Francesc Bars* and Luis Dieulefait ${ }^{\dagger}$

December 2, 2003

Abstract

We prove two "large images" results for the Galois representations attached to a degree d Q-curve E over a quadratic field K : if K is arbitrary, we prove maximality of the image for every prime $p>13$ not dividing d, provided that d is divisible by q (but $d \neq q$) with $q=2$ or 3 or 5 or 7 or 13 . If K is real we prove maximality of the image for every odd prime p not dividing $d D$, where $D=\operatorname{disc}(K)$, provided that E is a semistable Q-curve. In both cases we make the (standard) assumptions that E does not have potentially good reduction at all primes $p \nmid 6$ and that d is square-free.

1 Semistable Q-curves over real quadratic fields

Let K be a quadratic field, and let E be a degree d Q-curve defined over K. Let $D=\operatorname{disc}(K)$. Assume that E is semistable, i.e., that E has good or semistable reduction at every finite place β of K. Recall that we can attach to E a compatible family of Galois representations $\left\{\sigma_{\lambda}\right\}$ of the absolute Galois group of \mathbb{Q} : these representations can be seen as those attached to the Weil restriction A of E to \mathbb{Q}, which is an abelian surface with real multiplication by $F:=\mathbb{Q}(\sqrt{ \pm d})(c f$. $[\mathrm{E}])$. Let us call U the set of primes dividing D. For primes not in U, it is clear that A is also semistable, so in particular for

[^0]every prime λ of F dividing a prime ℓ not in U the residual representation $\bar{\sigma}_{\lambda}$ will be a representation "semistable outside U ", i.e., it will be semistable (in the sense of $[\operatorname{Ri} 97]$) at ℓ and locally at every prime $q \neq \ell, q \notin U$. This is equivalent to say that its Serre's weight will be either 2 or $\ell+1$ and that the restriction to the inertia groups I_{q} will be unipotent, for every $q \neq \ell, q \notin U$ (cf. [Ri97]).
Imitating the argument of [Ri97], we want to show that in this situation, if the image of $\bar{\sigma}_{\ell}$ is (irreducible and) contained in the normalizer of a Cartan subgroup, then this Cartan subgroup must correspond to the image of the Galois group of K, i.e., the restriction to K of $\bar{\sigma}_{\ell}$ must be reducible. More precisely:

Theorem 1.1. Let E be a semistable Q-curve over a quadratic field K as above. If $\ell \nmid 2 d D, \lambda \mid \ell$, and $\bar{\sigma}_{\lambda}$ is irreducible with image contained in the normalizer of a Cartan subgroup of $\mathrm{GL}\left(2, \overline{\mathbb{F}}_{\ell}\right)$, then the restriction of this residual representation to the Galois group of K is reducible.

Proof. For any number field X, let us denote by G_{X} its absolute Galois group. We know that if we take $\ell \notin U$ the residual representation $\bar{\sigma}_{\lambda}$ is semistable outside U. If this representation is irreducible and its image is contained in the normalizer N of a Cartan subgroup, then there is a quadratic field L such that the restriction of $\bar{\sigma}_{\lambda}$ to G_{L} is reducible and the quadratic character ψ corresponding to L is a quotient of $\bar{\sigma}_{\lambda}(\mathrm{cf} .[\operatorname{Ri} 97])$.
Using the description of the restriction of $\bar{\sigma}_{\lambda}$ to the inertia group I_{ℓ} in terms of fundamental characters, and the fact that the restriction of $\bar{\sigma}_{\lambda}$ to the inertia groups I_{q}, for every $q \neq \ell, q \notin U$, is unipotent, we conclude as in [Ri 97] that the quadratic character ψ can only ramify at primes in U, and therefore that the quadratic field L is unramified outside U, the ramification set of K. On the other hand, we know (by Cebotarev) that the restriction to G_{K} of $\bar{\sigma}_{\lambda}$ is isomorphic to $\bar{\sigma}_{E, \ell}$. Let us assume that $\bar{\sigma}_{E, \ell}$ is irreducible $\left.*^{*}\right)$. Its image is contained in N, and since the restriction of $\bar{\sigma}_{\lambda}$ to G_{L} is reducible, it follows that the restriction of $\bar{\sigma}_{E, \ell}$ to $G_{L \cdot K}$ is reducible. We are again in the case of "image contained in the normalizer of a Cartan subgroup" but now for a representation of G_{K}. Once again, the quadratic character ψ^{\prime} corresponding to the extension $L \cdot K / K$ is a quotient of the residual representation $\bar{\sigma}_{E, \ell}$. Using the fact that the curve E is semistable we know that the restriction of this residual representation to all inertia subgroups at places relatively primes to ℓ give unipotent groups, and this implies as in [Ri97] that ψ^{\prime} is unramified outside (places above) ℓ. But ψ^{\prime} corresponds to the extension $L \cdot K / K$, and
L is unramified outside U, thus ψ^{\prime} is also unramified outside (places above primes in) U. This two facts entrain that $\ell \in U$, which is contrary to our hypothesis.
This proves that the assumption $\left(^{*}\right)$ contradicts the hypothesis of the theorem, i.e., that the restriction to G_{K} of $\bar{\sigma}_{\lambda}$ is reducible, as we wanted.

Keep the hypothesis of the theorem above, and assume furthermore that the field K is real. Then, the conclusion of the theorem together with a standard trick show that the image of $\bar{\sigma}_{\lambda}$ can not be (irreducible and) contained in the normalizer of a non-split Cartan subgroup: the reason is simply that the representation σ_{λ} is odd, thus the image of c, the complex conjugation, has eigenvalues 1 and -1 . In odd residual characteristic, this gives an elements which is not contained in a non-split Cartan, but if we assume that K is real, we have c contained in the group G_{K}, and we obtain a contradiction because as a consequence of theorem 1.1 the restriction of $\bar{\sigma}_{\lambda}$ to G_{K} must be contained in the Cartan subgroup. This, combined with Ellenberg's generalizations of the results of Mazur and Momose (cf. [E]), shows that the image has to be large except for very particular primes. In fact, we have the following:

Corollary 1.2. Let E be a semistable Q-curve over a real quadratic field K of square-free degree d. Assume that E does not have potentially good reduction at all primes not dividing 6. Then, if D is the discriminant of K, for every $\ell \nmid d D, \ell>13$ and $\lambda \mid \ell$, the image of the projective representation $P\left(\bar{\sigma}_{\lambda}\right)$ is the full $\operatorname{PGL}\left(2, \mathbb{F}_{\ell}\right)$.

2 Q-curves of composite degree over quadratic fields

Let E be a Q-curve over a quadratic field K of square-free degree d. Let λ be a prime of K and let us consider the projective representation $P\left(\bar{\sigma}_{\lambda}\right)$ coming from E. We can characterize the image in a subgroup of $P G L_{2}\left(\mathbb{F}_{l}\right)$ with $\lambda \mid l$ of the projective representation $P\left(\bar{\sigma}_{\lambda}\right)$ by points of modular curves as follows (proposition $2.2[\mathrm{E}]$):

1. $P\left(\bar{\sigma}_{\lambda}\right)$ lies in a Borel subgroup, then E is a point of $X_{0}(d l)^{K}(\mathbb{Q})$,
2. $P\left(\bar{\sigma}_{\lambda}\right)$ lies in the normalizer of a split Cartan subgroup then E is a point of $X_{0}^{s}(d ; l)^{K}(\mathbb{Q})$,
3. $P\left(\bar{\sigma}_{\lambda}\right)$ lies in the normalizer of a non-split Cartan subgroup, then E is a point of $X_{0}^{n s}(d ; l)^{K}(\mathbb{Q})$;
where $X^{K}(\mathbb{Q})$ is the subset of $P \in X(K)$ such that $P^{\sigma}=w_{d} P$ for σ a generator of $G a l(K / \mathbb{Q})$ where w_{d} is the Fricke or Atkin-Lehner involution.

We have the following results ([E], propositions 3.2, 3.4):
Proposition 2.1. Let E be a Q-curve of square-free degree d over $K a$ quadratic field. We have:

1. Suppose $P\left(\bar{\sigma}_{\lambda}\right)$ is reducible for some $l=11$ or $l>13$ with $(p, d)=1$ where $\lambda \mid l$. Then E has potentially good reduction at all primes of K of characteristic greater than 3.
2. Suppose $P\left(\bar{\sigma}_{\lambda}\right)$ lies in the normalizer of a split Cartan subgroup of $P G L_{2}\left(\mathbb{F}_{l}\right)$ where $\lambda \mid l$ for $l=11$ or $l>13$ with $(l, d)=1$. Then E has good reduction at all primes of K not dividing 6 .

After this result we need to study what happens when the image lies in the non-split Cartan situation. For this case, Ellenberg obtains for the situation of K an imaginary quadratic field, that there is a constant depending of the degree d and the quadratic imaginary field K such that if the image of $P\left(\bar{\sigma}_{\lambda}\right)$ lies in a non-split Cartan and $l>M_{d, K}$ then E has potentially good reduction at all primes of K, see proposition 3.6 [E$]$. He centers in the twisted version for X^{K} to obtain this result. We obtain a similar result in a non-twisted situation for X^{K}, and with K non necessarily imaginary.

We impose once for all that d, the degree, is even. We denote $d=2 \tilde{d}$. First, let us construct an abelian variety quotient of the Jacobian of $X_{0}^{n s}(2 \tilde{d} ; l)$ on which $w_{2 \tilde{d}}$ acts as 1 and having \mathbb{Q}-rang zero. Then using "standard" arguments, that we will reproduce here for reader's convenience, we obtain our result on the non-split Cartan situation.

By the Chen-Edixhoven theorem, we have an isogeny between $J_{0}^{n s}(2 ; l)$ and $J_{0}\left(2 l^{2}\right) / w_{l^{2}}$. Darmon and Merel [DM, prop.7.1] construct an optimal quotient A_{f} with \mathbb{Q}-rang zero. They construct A_{f} as the associated abelian variety to a form $f \in S_{2}\left(\Gamma_{0}\left(2 l^{2}\right)\right)$ with $w_{l^{2}} f=f$ and $w_{2} f=-f$.

Then, in this situation, we construct now a quotient morphism

$$
\pi_{f}: J_{0}\left(2 \tilde{d} l^{2}\right) \rightarrow A_{f}^{\prime}
$$

such that the actions of $w_{2 \tilde{d}}$ and $w_{l^{2}}$ on $J_{0}\left(2 \tilde{d} l^{2}\right)$ give both the identity on A_{f}^{\prime} if $\tilde{d} \neq 1$. Moreover, we can see that A_{f}^{\prime} is preserved by the whole group W of Atkin-Lehner involutions. We construct A_{f}^{\prime} from $f \in S_{2}\left(\Gamma_{0}\left(2 l^{2}\right)\right)$ and we go to increase the level.

We denote by B_{n} the operator on modular forms of weight 2 that acts as: $\left.f\right|_{B_{n}}(\tau)=f(n \tau)=\left.n^{-1} f\right|_{A_{n}}$, where $A_{n}=\left(\begin{array}{cc}n & 0 \\ 0 & 1\end{array}\right)$ from level M to level $M k$ with $n \mid k$. We denote by

$$
B_{n}: J_{0}(M) \rightarrow J_{0}(M k)
$$

the induced map on jacobians.
Lemma 2.2. With the above notation and supposing that ($\tilde{n}, k)=1$ and g is a modular form which is an eigenform for the Atkin-Lehner involution $w_{\tilde{n}}$ in $J_{0}(M)$, then $\left.g\right|_{B_{n}}$ is also an eigenform for the Atkin-Lehner involution $w_{\tilde{n}}$ in $J_{0}(M k)$ with the same eigenvalue.

Proof. We only need to show that there exist $w_{\tilde{n}, M}$ and $w_{\tilde{n}, M k}$, the AtkinLehner involution of \tilde{n} at level M and $M k$ respectively, such that:

$$
A_{n} w_{\tilde{n}, M k}=w_{\tilde{n}, M} A_{n}
$$

which is easy to check.

With the above lemma we can rewrite lemma 26 in [AL] as follows
Lemma 2.3 (Atkin-Lehner). Let g a form in $\Gamma_{0}(M)$, eigenform for all the Atkin-Lehner involutions w_{l} at this level. Let q be a prime. Then the form

$$
\left.g\right|_{B_{q^{\alpha}}} \pm\left. q^{(\delta-2 \alpha)} g\right|_{B_{1}=I d}
$$

is a form in $\Gamma_{0}\left(M q^{\alpha}\right)$ which is an eigenform for all Atkin-Lehner involutions at level $M q^{\alpha}$ where δ is defined by $q^{\gamma-\delta} \| M$ and $q^{\gamma} \| M q^{\alpha}$. Moreover, let us impose that $\delta \neq 2 \alpha$. Then the eigenvalue of this form for $w_{q^{v\left(M q^{\alpha}\right)}}$ is the eigenvalue of $w_{q^{v_{q}(M)}}$ on g.

Remark 2.4 (AL). In the case $\delta=2 \alpha$ let us take the form $\left.g\right|_{B_{q}^{\alpha}}$. Then it satisfies the following: it is an eigenform for the Atkin-Lehner involutions at level $M q^{\alpha}$ with eigenvalue for the Atkin-Lehner involution at q equal to that of the Atkin-Lehner involution at q on g (g of level M).

Let us remark that if the condition $\delta \neq 2 \alpha$ is satisfied we can choose a form in level $M q^{\alpha}$ with eigenvalue of the Atkin-Lehner involution at q as one wishes: 1 or -1 . This condition is always satisfied if $(M, q)=1$, situation that we will use in this article. With this remarks the following lemma is clear by induction:

Lemma 2.5. Let g be a modular form of level M which is an eigenvector for all the Atkin-Lehner involutions at level M. Then we can construct by the above lemma a modular form f of level $M k(k \in \mathbb{N})$ which is an eigenvector for all the Atkin-Lehner involutions at level $M k$, and moreover the eigenvalue at the primes $q \mid M$ with $(q, k)=1$ is the same that the one for the Atkininvolution of this prime at g at level M, and we can choose (1 or -1) the eigenvalue for the Atkin-Lehner involution at the primes q with $(q, k) \neq 1$ if this prime satisfies the condition $\delta \neq 2 \alpha$ of the above lemma.

Let us write a result in the form that will be usefull for our exposition, noting here that the even level condition can be removed.

Corollary 2.6. Let us write $\tilde{d}=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ with $\left(\tilde{d}, 2 p^{2}\right)=1$. We have a map

$$
I_{\chi_{p_{1}, \ldots, \chi_{p_{r}}}}: J_{0}\left(2 p^{2}\right) \rightarrow J_{0}\left(2 \tilde{d} p^{2}\right)
$$

whose image is stable under the action of W, and we can choose the action of $w_{2 \tilde{d}}$ on the quotient as \pm the action of w_{2} for an initial form $g \in S_{2}\left(\Gamma_{0}\left(2 p^{2}\right)\right)$ eigenform for the Atkin-Lehner involutions at level $2 p^{2}$.

Proof. From lemma 27 in [AL], we have a base for the modular forms which are eigenforms for the Atkin-Lehner involutions. Applying the lemma of Atkin-Lehner above we have the result for $\tilde{d}=p_{1}^{\alpha_{1}}$, we have to consider $I_{\chi_{p_{1}}}=\left.\right|_{B_{p_{1}^{\alpha_{1}}}}+\left.\chi\left(p_{1}\right) p_{1}^{-\alpha_{1}}\right|_{B_{1}=I d}$, where we can choose $\chi\left(p_{1}\right)$ as 1 or -1 depending on how we want the Atkin-Lehner involution at the prime p_{1} to act on the quotient. Inductively we obtain the result.

Applying the above corollary with \tilde{d} square-free $\left(\alpha_{i}=1\right)$ in our situation $(\tilde{d} \neq 1)$ and choosing $w_{2 \tilde{d}}=1$, we take

$$
A_{f}^{\prime}:=I_{\chi_{p_{1}}, \ldots, \chi_{p_{r}}}\left(A_{f}\right),
$$

which is by construction a subvariety of $J_{0}\left(2 \tilde{d} l^{2}\right)$ isogenous to A_{f} which is stable under W (at level $2 \tilde{d} l^{2}$) on which $w_{2 \tilde{d}}$ and $w_{l^{2}}$ acts as identity. In particular the \mathbb{Q}-rank of A_{f}^{\prime} is zero (recall that we started with an A_{f} of \mathbb{Q}-rank
zero).
By the Chen-Edixhoven isomorphism, we obtain a quotient map

$$
\pi_{f}^{\prime}: J_{0}^{n s}(2 \tilde{d} ; l) \rightarrow A_{f}^{\prime}
$$

π_{f}^{\prime} is compatible with the Hecke operators T_{n} with $(n, 2 \tilde{d l})=1$ (see for example lemma 17 [AL]) and moreover $\pi_{f}^{\prime} \circ w_{2 \tilde{d}}=\pi_{f}^{\prime}$. Let us recall that we are interested in points on $X_{0}^{n s}(2 \tilde{d} ; l)^{K}(\mathbb{Q})$ (we want to study the non-split Cartan situation). We have the following commutative diagram:

where i is an isomorphism such that $i^{\sigma}=w_{2 \tilde{d}} \circ i$ with σ the non-trivial element of $\operatorname{Gal}(K / \mathbb{Q})$. Observe that $\psi_{f}:=\pi_{f}^{\prime} \circ i^{-1}: J \rightarrow A_{f}^{\prime}$ is defined over \mathbb{Q} because,

$$
\psi_{f}^{\sigma}=\left(\pi_{f}^{\prime}\right)^{\sigma} \circ\left(i^{-1}\right)^{\sigma}=\pi_{f}^{\prime} \circ w_{2 \tilde{d}} \circ i^{-1}=\pi_{f}^{\prime} \circ i^{-1}=\psi_{f} .
$$

Let R_{0} be the ring of integers of $K\left(\zeta_{l}+\zeta_{i}^{-1}\right)$ and $R=R_{0}[1 / 2 \tilde{d} l]$, then $X_{0}^{n s}(2 \tilde{d} ; l)$ has a smooth model over R and the cusp ∞ of $X_{0}^{n s}(2 \tilde{d} ; l)$ is defined over $\mathrm{R}[\mathrm{DM}]$. We define

$$
h: X_{0}^{n s}(2 \tilde{d} ; l) / R \rightarrow J_{0}^{n s}(2 \tilde{d} ; l) / R
$$

by $h(P)=[P]-[\infty]$. Then it follows by lemma $3.8[\mathrm{E}]$
Lemma 2.7. Let β be a prime of R. Then the map,

$$
\pi_{f}^{\prime} \circ h: X_{0}^{n s}(2 \tilde{d} ; l) / R \rightarrow A_{f}^{\prime} / R
$$

is a formal immersion at the point $\bar{\infty}$ of $X_{0}^{n s}(2 \tilde{d} ; l)\left(\mathbb{F}_{\beta}\right)$.
We can prove a result for the non-split Cartan situation with a constant independent of the quadratic field.

Proposition 2.8. Let $\underset{\sim}{K}$ be a quadratic field, and E / K be a Q-curve of square-free degree $d=2 \tilde{d}$, with $\tilde{d}>1$. Suppose that the image of $P\left(\bar{\sigma}_{\lambda}\right)$ lies in the normalizer of a non-split Cartan subgroup of $P G L_{2}\left(\mathbb{F}_{l}\right)$ with $\lambda \mid l$ for $l>13$ with $(2 \tilde{d}, l)=1$. Then E has potentially good reduction at all primes of K.

Proof. We can follow closely the proof of prop.3.6 in [E], let us reproduce it here for reader's convenience. Take β a prime of K where E has potentially multiplicative reduction, if $\beta \mid l$ then the image of the decomposition group G_{β} under $P\left(\bar{\sigma}_{\lambda}\right)$ lies in a Borel subgroup. By hypothesis this image lies in the normalizer of a non-split Cartan subgroup. We conclude that the size of this image has order at most 2 , which means that K_{β} contains $\mathbb{Q}\left(\zeta_{l}+\zeta_{l}^{-1}\right)$, which is impossible once $l \geq 7$.

Now let us suppose that E has potentially multiplicative reduction over β with $\beta \nmid l$, denote by l^{\prime} the prime of \mathbb{Q} such that $\beta \mid l^{\prime}$. It corresponds to a cusp on $X_{0}^{n s}(2 \tilde{d} ; l)$ where we will take reduction modulo β. The cusps of $X_{0}^{n s}(2 \tilde{d} ; l)$ have minimal field of definition $\mathbb{Q}\left(\zeta_{l}+\zeta_{l}^{-1}\right)$ [DM,, 5$]$, and K is linearly disjoint from $\mathbb{Q}\left(\zeta_{l}+\zeta_{l}^{-1}\right)$; it follows that the cusps of $X_{0}^{\text {ns }}(2 \tilde{d} ; l)$ which lie over $\infty \in X_{0}(2 \tilde{d})$ form a single orbit under G_{K}. If $\tilde{\beta}$ is a prime of $L=K\left(\zeta_{l}+\zeta_{l \tilde{}}^{-1}\right)$ over β, then the point $P \in X_{0}^{n s}(2 \tilde{d} ; l)(K)$ parametrizing E reduces $\bmod \tilde{\beta}$ to some cusp c. By applying Atkin-Lehner involutions at the primes dividing $2 \tilde{d}$, we can ensure that P reduces to a cusp which lies over ∞ in $X_{0}(2 \tilde{d})$. By the transitivity of the Galois action, we can choose $\tilde{\beta}$ so that P actually reduces to the cusp $\infty \bmod \tilde{\beta}$. Using the condition that a K-point of $X_{0}^{\text {ns }}(2 \tilde{d} ; l)$ reduces to ∞, we have then that the residue field \mathcal{O}_{K} / β contains $\zeta_{l}+\zeta_{l}^{-1}$, and this implies that $\left(l^{\prime}\right)^{4} \equiv 1 \bmod l$, in particular $l^{\prime} \neq 2,3$ when $l \geq 7$.
We have constructed a form f and an abelian variety A_{f}^{\prime} isogenous to the one associated to f with \mathbb{Q}-rank zero and $w_{2 \tilde{d}}$ acting as 1 on it, and we have a formal immersion $\phi=\pi_{f}^{\prime} \circ h$ at $\bar{\infty}$

$$
X_{0}^{n s}(d ; l)^{K} / R \rightarrow A_{f}^{\prime} / R
$$

Let us consider $y=P$ our point from the Q-curve and $x=\infty$ at the curve $X=X_{0}^{n s}(2 \tilde{d} ; l) / R_{\beta}$, we know that they reduce at β to the same cusp if P has multiplicative reduction. Let us consider then $\phi(P)$ the point in $A_{f}^{\prime}(L)$ with $L=K\left(\zeta_{l}+\zeta_{l}^{-1}\right)$. Let n be an integer which kills the subgroup of $J_{0}^{n s}(2 \tilde{d} ; l)$ generated by cusps, it exists by Drinfeld-Manin, then $n h(P) \in J_{0}^{n s}(2 \tilde{d} ; l)$ and let $\tau \in \operatorname{Gal}(L / \mathbb{Q})$ and not fixing K, then $P^{\tau}=w_{2 \tilde{d}} P$ and we obtain that
$n \phi(P)^{\tau}=n \phi(P)$ then lies in $A_{f}^{\prime}(\mathbb{Q})$ which is a finite group and then torsion, concluding that $\phi(P)$ is torsion (this is getting a standard argument [DM, lemma 8.3]).

Since $l^{\prime}>3$ the absolute ramification index of R_{β} at l^{\prime} is at most 2 . Then it follows from known properties of integer models (see for example [E, prop.3.1]) that x and y reduce to distinct point of X at β, in contradiction with our hypothesis on E.

Putting together propositions 2.1 and 2.8, we obtain:
Corollary 2.9. Let E be a Q-curve over a quadratic field K of square-free composite degree $d=2 \tilde{d}$, with $\tilde{d}>1$. Assume that E does not have potentially good reduction at all primes not dividing 6 . Then, for every $\ell \nmid 2 \tilde{d}, \ell>13$ and $\lambda \mid \ell$, the image of the projective representation $P\left(\bar{\sigma}_{\lambda}\right)$ is the full $\operatorname{PGL}\left(2, \mathbb{F}_{\ell}\right)$.

To conclude, observe that if we take a Q-curve over a quadratic field whose degree d is odd and composite (and square-free), there are more cases where the above result still holds: for example if $3 \mid d$ the result holds because all the required results from [DM] (in particular, the existence of a non-trivial Winding Quotient in $S_{2}\left(3 p^{2}\right)$) are also proved in this case. Moreover, since the only property of the small primes $q=2$ or 3 required for all the results we need from [DM] to hold is the fact that the modular curve $X_{0}(q)$ has genus 0 , we can apply them to any of $q=2,3,5,7,13$, and so we conclude that the above result applies whenever d is composite (and square-free) and divisible by one such prime q.

3 Bibliography

[AL] Atkin, A.O.L., Lehner, J., Hecke operators on $\Gamma_{0}(m)$, Math. Ann., 185 (1970), 134-160.
[DM] Darmon, H., Merel, L., Winding quotients and some variants of Fermat's last theorem, J. Reine Angew. Math., 490 (1997) 81-100.
[E] Ellenberg, J., Galois representations attached to Q-curves and the generalized Fermat equation $A^{4}+B^{2}=C^{p}$, preprint.
[ES] Ellenberg, J., Skinner, C., On the modularity of Q-curves, Duke Math. J., 109 (2001), 97-122.
[Ri97] Ribet, K., Images of semistable Galois representations, Pacific J. Math. 181 (1997), 277-297.

Francesc Bars Cortina, Depart. Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra. E-mail: francesc@mat.uab.es

Luis Dieulefait, Depart. d'Algebra i Geometria, Facultat Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona. E-mail: luisd@mat.ub.es

[^0]: *supported by BFM2003-06092
 ${ }^{\dagger}$ supported by a MECD postdoctoral grant at the Centre de Recerca Matemática from Ministerio de Educación y Cultura

