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Abstract

We prove two “large images” results for the Galois representations
attached to a degree d Q-curve E over a quadratic field K: if K is
arbitrary, we prove maximality of the image for every prime p > 13
not dividing d, provided that d is divisible by q (but d 6= q) with q = 2
or 3 or 5 or 7 or 13. If K is real we prove maximality of the image
for every odd prime p not dividing dD, where D = disc(K), provided
that E is a semistable Q-curve. In both cases we make the (standard)
assumptions that E does not have potentially good reduction at all
primes p - 6 and that d is square-free.

1 Semistable Q-curves over real quadratic fields

Let K be a quadratic field, and let E be a degree d Q-curve defined over
K. Let D = disc(K). Assume that E is semistable, i.e., that E has good or
semistable reduction at every finite place β of K. Recall that we can attach to
E a compatible family of Galois representations {σλ} of the absolute Galois
group of Q: these representations can be seen as those attached to the Weil
restriction A of E to Q, which is an abelian surface with real multiplication
by F := Q(

√±d) (cf. [E]). Let us call U the set of primes dividing D. For
primes not in U , it is clear that A is also semistable, so in particular for
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every prime λ of F dividing a prime ` not in U the residual representation
σ̄λ will be a representation “semistable outside U”, i.e., it will be semistable
(in the sense of [Ri 97]) at ` and locally at every prime q 6= `, q 6∈ U . This is
equivalent to say that its Serre’s weight will be either 2 or `+1 and that the
restriction to the inertia groups Iq will be unipotent, for every q 6= `, q 6∈ U
(cf. [Ri97]).
Imitating the argument of [Ri97], we want to show that in this situation, if
the image of σ̄` is (irreducible and) contained in the normalizer of a Cartan
subgroup, then this Cartan subgroup must correspond to the image of the
Galois group of K, i.e., the restriction to K of σ̄` must be reducible. More
precisely:

Theorem 1.1. Let E be a semistable Q-curve over a quadratic field K as
above. If ` - 2dD, λ | `, and σ̄λ is irreducible with image contained in the
normalizer of a Cartan subgroup of GL(2, F̄`), then the restriction of this
residual representation to the Galois group of K is reducible.

Proof. For any number field X, let us denote by GX its absolute Galois group.
We know that if we take ` 6∈ U the residual representation σ̄λ is semistable
outside U . If this representation is irreducible and its image is contained in
the normalizer N of a Cartan subgroup, then there is a quadratic field L
such that the restriction of σ̄λ to GL is reducible and the quadratic character
ψ corresponding to L is a quotient of σ̄λ (cf. [Ri 97]).
Using the description of the restriction of σ̄λ to the inertia group I` in terms
of fundamental characters, and the fact that the restriction of σ̄λ to the iner-
tia groups Iq, for every q 6= `, q 6∈ U , is unipotent, we conclude as in [Ri 97]
that the quadratic character ψ can only ramify at primes in U , and therefore
that the quadratic field L is unramified outside U , the ramification set of K.
On the other hand, we know (by Cebotarev) that the restriction to GK of σ̄λ

is isomorphic to σ̄E,`. Let us assume that σ̄E,` is irreducible (*). Its image is
contained in N , and since the restriction of σ̄λ to GL is reducible, it follows
that the restriction of σ̄E,` to GL·K is reducible. We are again in the case of
“image contained in the normalizer of a Cartan subgroup” but now for a rep-
resentation of GK . Once again, the quadratic character ψ′ corresponding to
the extension L ·K/K is a quotient of the residual representation σ̄E,`. Using
the fact that the curve E is semistable we know that the restriction of this
residual representation to all inertia subgroups at places relatively primes to
` give unipotent groups, and this implies as in [Ri97] that ψ′ is unramified
outside (places above) `. But ψ′ corresponds to the extension L ·K/K, and
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L is unramified outside U , thus ψ′ is also unramified outside (places above
primes in) U . This two facts entrain that ` ∈ U , which is contrary to our
hypothesis.
This proves that the assumption (*) contradicts the hypothesis of the theo-
rem, i.e., that the restriction to GK of σ̄λ is reducible, as we wanted.

Keep the hypothesis of the theorem above, and assume furthermore that
the field K is real. Then, the conclusion of the theorem together with a stan-
dard trick show that the image of σ̄λ can not be (irreducible and) contained
in the normalizer of a non-split Cartan subgroup: the reason is simply that
the representation σλ is odd, thus the image of c, the complex conjugation,
has eigenvalues 1 and −1. In odd residual characteristic, this gives an ele-
ments which is not contained in a non-split Cartan, but if we assume that
K is real, we have c contained in the group GK , and we obtain a contra-
diction because as a consequence of theorem 1.1 the restriction of σ̄λ to GK

must be contained in the Cartan subgroup. This, combined with Ellenberg’s
generalizations of the results of Mazur and Momose (cf. [E]), shows that the
image has to be large except for very particular primes. In fact, we have the
following:

Corollary 1.2. Let E be a semistable Q-curve over a real quadratic field
K of square-free degree d. Assume that E does not have potentially good
reduction at all primes not dividing 6. Then, if D is the discriminant of K,
for every ` - dD, ` > 13 and λ | `, the image of the projective representation
P (σ̄λ) is the full PGL(2,F`).

2 Q-curves of composite degree over quadratic

fields

Let E be a Q-curve over a quadratic field K of square-free degree d. Let
λ be a prime of K and let us consider the projective representation P (σλ)
coming from E. We can characterize the image in a subgroup of PGL2(Fl)
with λ|l of the projective representation P (σλ) by points of modular curves
as follows (proposition 2.2 [E]):

1. P (σλ) lies in a Borel subgroup, then E is a point of X0(dl)K(Q),

2. P (σλ) lies in the normalizer of a split Cartan subgroup then E is a
point of Xs

0(d; l)K(Q),
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3. P (σλ) lies in the normalizer of a non-split Cartan subgroup, then E is
a point of Xns

0 (d; l)K(Q);

where XK(Q) is the subset of P ∈ X(K) such that P σ = wdP for σ a
generator of Gal(K/Q) where wd is the Fricke or Atkin-Lehner involution.

We have the following results ([E], propositions 3.2, 3.4):

Proposition 2.1. Let E be a Q-curve of square-free degree d over K a
quadratic field. We have:

1. Suppose P (σλ) is reducible for some l = 11 or l > 13 with (p, d) = 1
where λ|l. Then E has potentially good reduction at all primes of K of
characteristic greater than 3.

2. Suppose P (σλ) lies in the normalizer of a split Cartan subgroup of
PGL2(Fl) where λ|l for l = 11 or l > 13 with (l, d) = 1. Then E has
good reduction at all primes of K not dividing 6.

After this result we need to study what happens when the image lies in
the non-split Cartan situation. For this case, Ellenberg obtains for the situ-
ation of K an imaginary quadratic field, that there is a constant depending
of the degree d and the quadratic imaginary field K such that if the image
of P (σλ) lies in a non-split Cartan and l > Md,K then E has potentially
good reduction at all primes of K, see proposition 3.6 [E]. He centers in the
twisted version for XK to obtain this result. We obtain a similar result in a
non-twisted situation for XK , and with K non necessarily imaginary.

We impose once for all that d, the degree, is even. We denote d = 2d̃.
First, let us construct an abelian variety quotient of the Jacobian of Xns

0 (2d̃; l)
on which w2d̃ acts as 1 and having Q-rang zero. Then using “standard”
arguments, that we will reproduce here for reader’s convenience, we obtain
our result on the non-split Cartan situation.

By the Chen-Edixhoven theorem, we have an isogeny between Jns
0 (2; l)

and J0(2l
2)/wl2 . Darmon and Merel [DM, prop.7.1] construct an optimal

quotient Af with Q-rang zero. They construct Af as the associated abelian
variety to a form f ∈ S2(Γ0(2l

2)) with wl2f = f and w2f = −f .
Then, in this situation, we construct now a quotient morphism

πf : J0(2d̃l2) → A′
f
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such that the actions of w2d̃ and wl2 on J0(2d̃l2) give both the identity on A′
f

if d̃ 6= 1. Moreover, we can see that A′
f is preserved by the whole group W

of Atkin-Lehner involutions. We construct A′
f from f ∈ S2(Γ0(2l

2)) and we
go to increase the level.

We denote by Bn the operator on modular forms of weight 2 that acts

as: f |Bn(τ) = f(nτ) = n−1f |An , where An =

(
n 0
0 1

)
from level M to level

Mk with n|k. We denote by

Bn : J0(M) → J0(Mk)

the induced map on jacobians.

Lemma 2.2. With the above notation and supposing that (ñ, k) = 1 and g
is a modular form which is an eigenform for the Atkin-Lehner involution wñ

in J0(M), then g|Bn is also an eigenform for the Atkin-Lehner involution wñ

in J0(Mk) with the same eigenvalue.

Proof. We only need to show that there exist wñ,M and wñ,Mk, the Atkin-
Lehner involution of ñ at level M and Mk respectively, such that:

Anwñ,Mk = wñ,MAn

which is easy to check.

With the above lemma we can rewrite lemma 26 in [AL] as follows

Lemma 2.3 (Atkin-Lehner). Let g a form in Γ0(M), eigenform for all the
Atkin-Lehner involutions wl at this level. Let q be a prime. Then the form

g|Bqα ± q(δ−2α)g|B1=Id

is a form in Γ0(Mqα) which is an eigenform for all Atkin-Lehner involutions
at level Mqα where δ is defined by qγ−δ||M and qγ||Mqα. Moreover, let us
impose that δ 6= 2α. Then the eigenvalue of this form for wqvq(Mqα) is ± the
eigenvalue of wqvq(M) on g.

Remark 2.4 (AL). In the case δ = 2α let us take the form g|Bα
q
. Then it

satisfies the following: it is an eigenform for the Atkin-Lehner involutions at
level Mqα with eigenvalue for the Atkin-Lehner involution at q equal to that
of the Atkin-Lehner involution at q on g (g of level M).
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Let us remark that if the condition δ 6= 2α is satisfied we can choose a
form in level Mqα with eigenvalue of the Atkin-Lehner involution at q as one
wishes: 1 or -1. This condition is always satisfied if (M, q) = 1, situation
that we will use in this article. With this remarks the following lemma is
clear by induction:

Lemma 2.5. Let g be a modular form of level M which is an eigenvector for
all the Atkin-Lehner involutions at level M . Then we can construct by the
above lemma a modular form f of level Mk (k ∈ N) which is an eigenvector
for all the Atkin-Lehner involutions at level Mk, and moreover the eigenvalue
at the primes q|M with (q, k) = 1 is the same that the one for the Atkin-
involution of this prime at g at level M , and we can choose (1 or -1) the
eigenvalue for the Atkin-Lehner involution at the primes q with (q, k) 6= 1 if
this prime satisfies the condition δ 6= 2α of the above lemma.

Let us write a result in the form that will be usefull for our exposition,
noting here that the even level condition can be removed.

Corollary 2.6. Let us write d̃ = pα1
1 . . . pαr

r with (d̃, 2p2) = 1. We have a
map

Iχp1 ,...,χpr
: J0(2p

2) → J0(2d̃p2)

whose image is stable under the action of W , and we can choose the action of
w2d̃ on the quotient as ± the action of w2 for an initial form g ∈ S2(Γ0(2p

2))
eigenform for the Atkin-Lehner involutions at level 2p2.

Proof. From lemma 27 in [AL], we have a base for the modular forms which
are eigenforms for the Atkin-Lehner involutions. Applying the lemma of
Atkin-Lehner above we have the result for d̃ = pα1

1 , we have to consider
Iχp1

= |B
p
α1
1

+χ(p1)p
−α1
1 |B1=Id, where we can choose χ(p1) as 1 or -1 depending

on how we want the Atkin-Lehner involution at the prime p1 to act on the
quotient. Inductively we obtain the result.

Applying the above corollary with d̃ square-free (αi = 1) in our situation
(d̃ 6= 1) and choosing w2d̃ = 1, we take

A′
f := Iχp1 ,...,χpr

(Af ),

which is by construction a subvariety of J0(2d̃l2) isogenous to Af which is
stable under W (at level 2d̃l2) on which w2d̃ and wl2 acts as identity. In par-
ticular the Q-rank of A′

f is zero (recall that we started with an Af of Q-rank
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zero).

By the Chen-Edixhoven isomorphism, we obtain a quotient map

π′f : Jns
0 (2d̃; l) → A′

f .

π′f is compatible with the Hecke operators Tn with (n, 2d̃l) = 1 (see for
example lemma 17 [AL]) and moreover π′f ◦ w2d̃ = π′f . Let us recall that we

are interested in points on Xns
0 (2d̃; l)K(Q) (we want to study the non-split

Cartan situation). We have the following commutative diagram:

Jns
0 (2d̃; l) → A′

f

↓ i ↓ id

J := Jns
0 (2d̃; l)K → A′

f

where i is an isomorphism such that iσ = w2d̃ ◦ i with σ the non-trivial
element of Gal(K/Q). Observe that ψf := π′f ◦ i−1 : J → A′

f is defined over
Q because,

ψσ
f = (π′f )

σ ◦ (i−1)σ = π′f ◦ w2d̃ ◦ i−1 = π′f ◦ i−1 = ψf .

Let R0 be the ring of integers of K(ζl + ζ−1
i ) and R = R0[1/2d̃l], then

Xns
0 (2d̃; l) has a smooth model over R and the cusp ∞ of Xns

0 (2d̃; l) is defined
over R [DM]. We define

h : Xns
0 (2d̃; l)/R → Jns

0 (2d̃; l)/R

by h(P ) = [P ]− [∞]. Then it follows by lemma 3.8 [E]

Lemma 2.7. Let β be a prime of R. Then the map,

π′f ◦ h : Xns
0 (2d̃; l)/R → A′

f/R

is a formal immersion at the point ∞ of Xns
0 (2d̃; l)(Fβ).

We can prove a result for the non-split Cartan situation with a constant
independent of the quadratic field.
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Proposition 2.8. Let K be a quadratic field, and E/K be a Q-curve of
square-free degree d = 2d̃, with d̃ > 1. Suppose that the image of P (σλ) lies
in the normalizer of a non-split Cartan subgroup of PGL2(Fl) with λ|l for
l > 13 with (2d̃, l) = 1. Then E has potentially good reduction at all primes
of K.

Proof. We can follow closely the proof of prop.3.6 in [E], let us reproduce it
here for reader’s convenience. Take β a prime of K where E has potentially
multiplicative reduction, if β|l then the image of the decomposition group
Gβ under P (σλ) lies in a Borel subgroup. By hypothesis this image lies in
the normalizer of a non-split Cartan subgroup. We conclude that the size of
this image has order at most 2, which means that Kβ contains Q(ζl + ζ−1

l ),
which is impossible once l ≥ 7.

Now let us suppose that E has potentially multiplicative reduction over
β with β - l, denote by l′ the prime of Q such that β|l′. It corresponds
to a cusp on Xns

0 (2d̃; l) where we will take reduction modulo β. The cusps
of Xns

0 (2d̃; l) have minimal field of definition Q(ζl + ζ−1
l ) [DM,§5], and K

is linearly disjoint from Q(ζl + ζ−1
l ); it follows that the cusps of Xns

0 (2d̃; l)
which lie over ∞ ∈ X0(2d̃) form a single orbit under GK . If β̃ is a prime
of L = K(ζl + ζ−1

l ) over β, then the point P ∈ Xns
0 (2d̃; l)(K) parametrizing

E reduces mod β̃ to some cusp c. By applying Atkin-Lehner involutions at
the primes dividing 2d̃, we can ensure that P reduces to a cusp which lies
over ∞ in X0(2d̃). By the transitivity of the Galois action, we can choose β̃
so that P actually reduces to the cusp ∞ mod β̃. Using the condition that
a K-point of Xns

0 (2d̃; l) reduces to ∞, we have then that the residue field
OK/β contains ζl + ζ−1

l , and this implies that (l′)4 ≡ 1 mod l, in particular
l′ 6= 2, 3 when l ≥ 7.
We have constructed a form f and an abelian variety A′

f isogenous to the
one associated to f with Q-rank zero and w2d̃ acting as 1 on it, and we have
a formal immersion φ = π′f ◦ h at ∞

Xns
0 (d; l)K/R → A′

f/R.

Let us consider y = P our point from the Q-curve and x = ∞ at the curve
X = Xns

0 (2d̃; l)/Rβ, we know that they reduce at β to the same cusp if P has
multiplicative reduction. Let us consider then φ(P ) the point in A′

f (L) with

L = K(ζl + ζ−1
l ). Let n be an integer which kills the subgroup of Jns

0 (2d̃; l)
generated by cusps, it exists by Drinfeld-Manin, then nh(P ) ∈ Jns

0 (2d̃; l) and
let τ ∈ Gal(L/Q) and not fixing K, then P τ = w2d̃P and we obtain that
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nφ(P )τ = nφ(P ) then lies in A′
f (Q) which is a finite group and then torsion,

concluding that φ(P ) is torsion (this is getting a standard argument [DM,
lemma 8.3]).

Since l′ > 3 the absolute ramification index of Rβ at l′ is at most 2.
Then it follows from known properties of integer models (see for example [E,
prop.3.1]) that x and y reduce to distinct point of X at β, in contradiction
with our hypothesis on E.

Putting together propositions 2.1 and 2.8, we obtain:

Corollary 2.9. Let E be a Q-curve over a quadratic field K of square-free
composite degree d = 2d̃, with d̃ > 1. Assume that E does not have potentially
good reduction at all primes not dividing 6. Then, for every ` - 2d̃, ` > 13 and
λ | `, the image of the projective representation P (σ̄λ) is the full PGL(2,F`).

To conclude, observe that if we take a Q-curve over a quadratic field whose
degree d is odd and composite (and square-free), there are more cases where
the above result still holds: for example if 3 | d the result holds because all
the required results from [DM] (in particular, the existence of a non-trivial
Winding Quotient in S2(3p

2)) are also proved in this case. Moreover, since
the only property of the small primes q = 2 or 3 required for all the results
we need from [DM] to hold is the fact that the modular curve X0(q) has
genus 0, we can apply them to any of q = 2, 3, 5, 7, 13, and so we conclude
that the above result applies whenever d is composite (and square-free) and
divisible by one such prime q.
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