

This is the **accepted version** of the journal article:

Martín i Pedret, Joaquim; Soria, Javier. «Characterization of rearrangement invariant spaces eith fixed points for the Hardy-Littlewood maximal operator». Annales Academiae Scientiarum Fennicae. Mathematica, Vol. 31 (2006), p. 39-46.

This version is available at https://ddd.uab.cat/record/271410

under the terms of the **CC** BY-NC license

Characterization of rearrangement invariant spaces with fixed points for the Hardy–Littlewood maximal operator

JOAQUIM MARTÍN[§] AND JAVIER SORIA[¶]

Abstract. We characterize the rearrangement invariant spaces for which there exists a nonconstant fixed point, for the Hardy–Littlewood maximal operator (the case for the spaces $L^p(\mathbb{R}^n)$ was first considered in [7]). The main result that we prove is that the space $L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ is minimal among those having this property.

1 Introduction

The centered Hardy–Littlewood maximal operator \mathcal{M} is defined on the Lebesgue space $L^1_{\text{loc}}(\mathbb{R}^n)$ by

$$\mathcal{M}f(x) = \sup_{r>0} \frac{1}{|B_r|} \int_{B_r} |f(x-y)| \, dy$$

where $|B_r|$ denotes the measure of the Euclidean ball B_r centered at the origin of \mathbb{R}^n .

In this paper we study the existence of non-constant fixed points of the maximal operator \mathcal{M} (i.e., $\mathcal{M}f = f$) in the framework of the rearrangement invariant (r.i.) functions spaces (see Section 2 below). We will use some of the estimates proved in [7], where the case $L^p(\mathbb{R}^n)$ was studied, and show that they can be sharpened to obtain all the rearrangement invariant norms with this property (in particular we extend Korry's result to the end point case p = n/(n-2), where the weak-type spaces have to considered.) The main argument behind this problem is the existence of a minimal space $L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ contained in all the r.i. spaces with the fixed point property.

2 Background on Rearrangement Invariant Spaces

Since we work in the context of rearrangement invariant spaces it will be convenient to start by reviewing some basic definitions about these spaces.

A rearrangement invariant space $X = X(\mathbb{R}^n)$ (r.i. space) is a Banach function space on \mathbb{R}^n endowed with a norm $\|\cdot\|_{X(\mathbb{R}^n)}$ such that

$$||f||_{X(\mathbb{R}^n)} = ||g||_{X(\mathbb{R}^n)}$$

MSC2000: 42B25, 46E30.

[§]Research partially supported by Grants MTM2004-02299, 2001SGR00069 and by Programa Ramón y Cajal (MCYT).

[¶]Research partially supported by Grants MTM2004-02299, 2001SGR00069.

Keywords: Fixed points, fractional integrals, maximal operators, rearrangement invariant spaces, super-harmonic functions.

whenever $f^* = g^*$. Here f^* stands for the non-increasing rearrangement of f, i.e., the non-increasing, right-continuous function on $[0, \infty)$ equimeasurable with f.

An r.i. space $X(\mathbb{R}^n)$ has a representation as a function space on $\overline{X}(0,\infty)$ such that

$$\|f\|_{X(\mathbb{R}^n)} = \|f^*\|_{\bar{X}(0,\infty)}$$

Any r.i. space is characterized by its fundamental function

$$\phi_X(s) = \|\chi_E\|_{X(\mathbb{R}^n)}$$

(here E is any subset of \mathbb{R}^n with |E| = s) and the **fundamental indices**

$$\overline{\beta}_X = \inf_{s>1} \frac{\log M_X(s)}{\log s}$$
 and $\underline{\beta}_X = \sup_{s<1} \frac{\log M_X(s)}{\log s}$

where

$$M_X(s) = \sup_{t>0} \frac{\phi_X(ts)}{\phi_X(t)}, \ s > 0.$$

It is well known that

$$0 \le \underline{\beta}_X \le \overline{\beta}_X \le 1$$

(We refer the reader to [2] for further information about r.i. spaces.)

3 Main result

Before formulating our main result, it will be convenient to start with the following remarks (see [7]):

Remark 3.1 By the Lebesgue's differentiation theorem one easily obtains that

$$|f(x)| \leq \mathcal{M}f(x)$$
 a.e. $x \in \mathbb{R}^n$,

thus f is a fixed point of \mathcal{M} , if and only if f is positive and

$$\frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) dy \le f(x) \text{ a.e. } x \in \mathbb{R}^n,$$

or equivalently f is a positive **super-harmonic** function (i.e. $\Delta f \leq 0$, where Δ is the Laplacian operator).

Remark 3.2 If f is a non-constant fixed point of \mathcal{M} , and $\varphi \geq 0$ belongs to the Schawrtz class $\mathcal{S}(\mathbb{R}^n)$, with $\int_{\mathbb{R}^n} \varphi(x) dx = 1$, then the function $f_t(x) = (f * \varphi_t)(x)$, with $\varphi_t(x) = t^{-n} \varphi(x/t)$ is also a non-constant fixed point of \mathcal{M} which belongs to $\mathcal{C}^{\infty}(\mathbb{R}^n)$ (notice that using the Lebesgue differentiation theorem, there exists some t > 0 such that f_t is non-constant, since f is non-constant). In particular if $X(\mathbb{R}^n)$ is an r.i. space and $f \in X(\mathbb{R}^n)$ is a non-constant fixed point of \mathcal{M} , since $\mathcal{S}(\mathbb{R}^n) \subset L^1(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ we get that $f_t \in X(\mathbb{R}^n) \cap \mathcal{C}^{\infty}(\mathbb{R}^n)$ is a non-constant fixed point of \mathcal{M} .

Remark 3.3 Using the theory of weighted inequalities for \mathcal{M} (see [6]), if $\mathcal{M}f = f$, in particular $f \in A_1$ (the Muckenhoupt weight class), and hence f(x) dx defines a doubling measure. Hence, $f \notin L^1(\mathbb{R}^n)$. Also, using the previous remark we see that if $f \in L^p(\mathbb{R}^n)$ is a fixed point, then $f \in L^q(\mathbb{R}^n)$, for all $p \leq q \leq \infty$.

Definition 3.4 Given an r.i. space $X(\mathbb{R}^n)$, we define

$$D_{I_2}(X(\mathbb{R}^n)) = \left\{ f \in L^0(\mathbb{R}^n) : \|I_2 f\|_{X(\mathbb{R}^n)} < \infty \right\},\$$

where I_2 is the Riesz potential,

$$(I_2 f)(x) = \int_{\mathbb{R}^n} |x - y|^{2-n} f(y) dy.$$

It is not hard to see that the space $D_{I_2}(X(\mathbb{R}^n))$ is either trivial or is the largest r.i. space which is mapped by I_2 into $X(\mathbb{R}^n)$, and is also related with the theory of the optimal Sobolev embeddings (see [4] and the references quoted therein).

Theorem 3.5 Let $X(\mathbb{R}^n)$ be an r.i. space. The following statements are equivalent:

- 1. There is a non-constant fixed point $f \in X(\mathbb{R}^n)$ of \mathcal{M}
- 2. $n \ge 3$ and $|x|^{2-n} \chi_{\{x:|x|>1\}}(x) \in X(\mathbb{R}^n)$.
- 3. $n \geq 3$ and $\chi_{[0,1]}(t) + t^{2/n-1}\chi_{[1,\infty)}(t) \in \bar{X}(0,\infty).$
- 4. $n \geq 3$ and $(L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)) \subset X(\mathbb{R}^n).$
- 5. $n \geq 3$ and $D_{I_2}(X(\mathbb{R}^n)) \neq \{0\}$.

Proof. $(1 \to 2)$ Since if n = 1 or n = 2, the only positive super-harmonic functions are the constant functions (see [8, Remark 1, p. 210]), necessarily $n \ge 3$. Moreover, it is proved in [7] that, if $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ is a non-constant fixed point of \mathcal{M} , then

$$f(x) \ge c |x|^{2-n} \chi_{\{x:|x|>1\}}(x).$$

Since $f \in X(\mathbb{R}^n)$, then $|x|^{2-n} \chi_{\{x:|x|>1\}}(x) \in X(\mathbb{R}^n)$. (2 \rightarrow 3) Since if $|x|^{2-n} \chi_{\{x:|x|>1\}}(x) \in X(\mathbb{R}^n)$, then

$$F(x) = \chi_{\{x:|x| \le 1\}}(x) + |x|^{2-n} \chi_{\{x:|x| > 1\}}(x) \in X(\mathbb{R}^n).$$

An easy computation shows that

$$F^*(t) \simeq \chi_{[0,1]}(t) + t^{2/n-1}\chi_{[1,\infty)}(t).$$

$$(3 \to 4)$$
 Since $f \in (L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n))$ if and only if
$$\sup_{t>0} f^*(t)W(t) < \infty,$$

where $W(t) = \max(1, t^{1-2/n})$, we have that

$$f^{*}(t) \leq \|f\|_{L^{\frac{n}{n-2},\infty}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n})} W^{-1}(t)$$

and since $W^{-1}(t) = \chi_{[0,1]}(t) + t^{2/n-1}\chi_{[1,\infty)} \in \bar{X}(0,\infty)$ we have that

$$||f||_{X(\mathbb{R}^n)} = ||f^*||_{\bar{X}(0,\infty)} \le c ||f||_{L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)}$$

with $c = \|W^{-1}\|_{\bar{X}(0,\infty)}$.

 $(4\rightarrow 5)$ Since (see [9] and [1])

$$(I_2 f)^*(t) \le c_1 \left(t^{2/n-1} \int_0^t f^*(s) ds + \int_t^\infty f^*(s) s^{2/n-1} ds \right) \le c_2 \left(I_2 f^0 \right)^*(t)$$

where $f^0(x) = f^*(c_n |x|^n)$, c_n = measure of the unit ball in \mathbb{R}^n . (Observe that $(f^0)^* = f^*$). Rewriting the middle term in the above inequalities, using Fubini's theorem, we get

$$(I_2 f)^*(t) \le d_1 \left(\frac{n}{n-2} \int_t^\infty f^{**}(s) s^{2/n-1} ds\right) \le d_2 \left(I_2 f^0\right)^*(t),$$

where $f^{**}(t) = t^{-1} \int_0^t f^*(s) \, ds$. Thus, $f \in D_{I_2}(X(\mathbb{R}^n))$ if and only if

$$\left\|\int_{t}^{\infty} f^{**}(s)s^{2/n-1}ds\right\|_{\bar{X}(0,\infty)} < \infty.$$

$$\tag{1}$$

Since

$$F(t) = \int_{t}^{\infty} \chi_{[0,1]}^{**}(s) s^{2/n-1} ds = c(\chi_{[0,1]}(t) + t^{2/n-1}\chi_{[1,\infty)}(t))$$

is a decreasing function, and

$$F^{0}(x) = F(c_{n} |x|^{n}) \simeq \left(\chi_{\{x:|x|\leq 1\}}(x) + |x|^{2-n} \chi_{\{x:|x|>1\}}(x)\right) \in L^{\frac{n}{n-2},\infty}(\mathbb{R}^{n}) \cap L^{\infty}(\mathbb{R}^{n})$$

we get that $\chi_{[0,1]}^{\circ} \in D_{I_2}(X(\mathbb{R}^n)).$

Another argument to prove this part is the following:

Since, if $n \ge 3$ (see [2, Theorem 4.18, p. 228])

$$I_2: L^1(\mathbb{R}^n) \to L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \text{ and } I_2: L^{\frac{n}{2},1}(\mathbb{R}^n) \to L^{\infty}(\mathbb{R}^n)$$

is bounded, we have that

$$I_2: (L^1(\mathbb{R}^n) \cap L^{\frac{n}{2},1}(\mathbb{R}^n)) \to (L^{\frac{n}{n-2},\infty}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)) \subset X(\mathbb{R}^n)$$

is bounded, and hence $L^1(\mathbb{R}^n) \cap L^{\frac{n}{2},1}(\mathbb{R}^n) \subset D_{I_2}(X(\mathbb{R}^n)).$

 $(5 \rightarrow 1)$ Since $n \ge 3$, we can use the classical formula of potential theory (see [10, p. 126])

$$-h = \triangle(I_2h)$$

to conclude that there is a positive function $f = I_2 \chi_{[0,1]}^{\circ} \in X(\mathbb{R}^n)$. Then $0 \leq f_t = I_2(\chi_{[0,1]}^{\circ} * \varphi_t) \in X(\mathbb{R}^n) \cap \mathcal{C}^{\infty}(\mathbb{R}^n)$ and $\Delta f_t \leq 0$.

We now consider particular examples, like the Lorentz spaces:

Corollary 3.6 Let $1 \leq p < \infty$, and assume $\Lambda^p(\mathbb{R}^n, w)$ is a Banach space (i.e., $w \in B_p$ if $1 or <math>p \in B_{1,\infty}$ if p = 1, see [3]). Then, there exists a non-constant function $f \in \Lambda^p(\mathbb{R}^n, w)$ such that $\mathcal{M}(f) = f$ if and only if $n \geq 3$ and

$$\int_1^\infty \frac{w(t)}{t^{p(1-2/n)}} \, dt < \infty.$$

In particular, this condition always holds, for p > 1 and n large enough.

Proof. The integrability condition follows by using the previous theorem. Now, if $w \in B_p$, then there exists an $\varepsilon > 0$ such that $w \in B_{p-\varepsilon}$, and hence, it suffices to take $n > 2/\varepsilon$. Observe that if w = 1 and p = 1, then $\Lambda^1(\mathbb{R}^n, w) = L^1(\mathbb{R}^n)$, which does not have the fixed point property for any dimension n.

Corollary 3.7 Let $1 \leq p, q \leq \infty$ (if p = 1 we only consider q = 1). Then, there exists a non-constant function $f \in L^{p,q}(\mathbb{R}^n)$ such that $\mathcal{M}(f) = f$ if and only if $n \geq 3$ and

$$\begin{cases} n/(n-2)$$

Corollary 3.8 (See [7]) Let $1 \le p \le \infty$. There exists a non-constant function $f \in L^p(\mathbb{R}^n)$ such that $\mathcal{M}(f) = f$ if and only if $n \ge 3$ and n/(n-2) .

It is interesting to know when given an r.i. space $X(\mathbb{R}^n)$, the space $D_{I_2}(X(\mathbb{R}^n))$ is not trivial, or equivalently

$$\overline{D_{I_2}(X(\mathbb{R}^n))} := \left\{ f \in L^0([0,\infty)) : \left\| \int_t^\infty f^{**}(s) s^{2/n-1} ds \right\|_{\bar{X}(0,\infty)} < \infty \right\}$$
(2)

is not trivial. This will be done in terms of the fundamental indices of X. We start by computing the fundamental function of $D_{I_2}(X(\mathbb{R}^n))$.

Lemma 3.9 Let X be an r.i. space on \mathbb{R}^n , $n \geq 3$. Let Y be given by (2). Then

$$\phi_Y(s) \simeq s^{n/2} \| P_{1-2/n} \chi_{[0,s]} \|_X$$

where $P_{1-2/n}f(t) = t^{2/n-1} \int_0^t f(s)s^{-2/n}ds$.

Proof.

$$s^{n/2} P_{1-2/n} \chi_{[0,s]}(t) \simeq s^{n/2} (\chi_{[0,s]}(t) + \left(\frac{s}{t}\right)^{1-2/n} \chi_{[s,\infty)}(t))$$
$$\simeq \int_{t}^{\infty} \chi_{[0,s]}^{**}(r) r^{2/n-1} dr.$$

Theorem 3.10 Let X be an r.i. space on \mathbb{R}^n , $n \geq 3$. Let Y be given by (2). Then

- 1. If $\overline{\beta}_X < 1 2/n$, then $Y \neq \{0\}$.
- 2. If $Y \neq \{0\}$ then $\underline{\beta}_X \leq 1 2/n$.

Proof. 1.) Let $\chi_r = \chi_{[0,r]}$. Then

$$P_{1-2/n}\chi_r(t) = \int_0^1 \chi_r(\xi t) \frac{d\xi}{\xi^{n/2}} \le c \sum_{k=0}^\infty 2^{-k(1-n/2)} \chi_{2^k r}(t).$$

Thus

$$\left\|P_{1-2/n}\chi_r\right\|_X \le c \sum_{k=0}^{\infty} 2^{-k(1-n/2)} \phi_X(2^k r) \le c \phi_X(r) \sum_{k=0}^{\infty} 2^{-k(1-n/2)} M_X(2^k).$$

Let $\varepsilon > 0$ be such that $\overline{\beta}_X + \varepsilon < 1 - 2/n$. Then by the definition of $\overline{\beta}_X$ it follows readily that there is a constant c > 0 such that

$$M_X(2^k) \le c 2^{k(\overline{\beta}_X + \varepsilon)},$$

and hence

$$\sum_{k=0}^{\infty} 2^{-k(1-n/2)} M_X(2^k) \le \sum_{k=0}^{\infty} 2^{-k(1-n/2-\overline{\beta}_X-\varepsilon)} < \infty,$$

which implies that $\chi_r \in Y$.

2.) Since $Y \neq \{0\}$ if and only if $\left\|P_{1-2/n}\chi_{[0,1]}\right\|_X < \infty$ and

$$\sup_{t>0} \left(P_{1-2/n}\chi_{[0,1]} \right)^{**} (t)\phi_X(t) \le \left\| P_{1-2/n}\chi_{[0,1]} \right\|_X < \infty, \tag{3}$$

and easy computations show that (3) implies that

$$1 \le \sup_{t \ge 1} \frac{\phi_X(t)}{t^{1-2/n}} = c < \infty,$$
(4)

then, by (4)

$$M_{X}(a) = \max\left(\sup_{t \ge 1/a} \frac{\phi_{X}(ta)}{\phi_{X}(t)}, \sup_{t < 1/a} \frac{\phi_{X}(ta)}{\phi_{X}(t)}\right)$$

=
$$\max\left(\sup_{t \ge 1/a} \frac{\phi_{X}(ta)}{(at)^{1-2/n}} \frac{(at)^{1-2/n}}{\phi_{X}(t)}, \sup_{t < 1/a} \frac{\phi_{X}(ta)}{\phi_{X}(t)}\right)$$

$$\simeq \max\left(a^{1-2/n} \sup_{t \ge 1/a} \frac{t^{1-2/n}}{\phi_{X}(t)}, \sup_{t < 1/a} \frac{\phi_{X}(ta)}{\phi_{X}(t)}\right).$$

Thus, if a < 1, using again (4) we get

$$M_X(a) \ge a^{1-2/n} \sup_{t \ge 1/a} \frac{t^{1-2/n}}{\phi_X(t)} \ge a^{1-2/n}$$

which implies that

$$\underline{\beta}_X \le 1 - 2/n$$

Let us see that the converse in the previous theorem is not true.

Proposition 3.11 There are rearrangement invariant spaces X such that

- 1. $Y \neq \{0\}$ and $\overline{\beta}_X \ge 1 2/n$.
- 2. $Y = \{0\}$ and $\underline{\beta}_X < 1 2/n$.

Proof. Let $\varphi(t) = t^a \chi_{[0,1]}(t) + t^b \chi_{[1,\infty)}(t)$, with $0 \le a, b \le 1$. Let

$$X = \left\{ f \in L^0([0,\infty)) : \sup_{t>0} f^{**}(t)\varphi(t) < \infty \right\}.$$

Since φ is a quasi-concave function, we have that

$$\varphi(t) = \phi_X(t)$$

and

$$\underline{\beta}_X = \min(a, b), \, \overline{\beta}_X = \max(a, b)$$

On the other hand, the space Y defined by (2) is not trivial if and only if

$$b \le 1 - 2/n$$

Now, to prove 1) take $b \le 1 - 2/n$ and $a \ge 1 - 2/n$. And to see 2) take b > 1 - 2/n and $a \le 1 - 2/n$.

Remark 3.12 If we consider

$$X_0 = \left\{ f \in L^0([0,\infty)) : \sup_{t>0} f^{**}(t)t^{1-2/n}(1+\log^+ t) < \infty \right\}$$

and

$$X_1 = \left\{ f \in L^0([0,\infty)) : \sup_{t>0} f^{**}(t) \frac{t^{1-2/n}}{(1+\log^+ t)} < \infty \right\}$$

1 - 2/n, $Y_0 = \{0\}$ and $Y_1 \neq \{0\}.$

then $\underline{\beta}_{X_i} = \overline{\beta}_{X_i} = 1 - 2/n, Y_0 = \{0\} \text{ and } Y_1 \neq \{0\}.$

Remark 3.13 It was proved in [7] that if we consider the strong maximal function (i.e, the maximal operator associated to centered intervals in \mathbb{R}^n), then there were no fixed points in any $L^p(\mathbb{R}^n)$ space, regardless of the dimension. The same argument works to show that $L^p(\mathbb{R}^n)$ cannot be replaced by any different r.i. space. Also, if we study this question for other kind of sets, like, e.g., Buseman–Feller differentiation bases (see [5]), then the only possible fixed points are the constant functions. This observation applies to any non-centered maximal operator (with respect to balls, cubes, etc.)

References

- C. Bennett and K. Rudnick, On Lorentz-Zygmund Spaces, Dissertationes Math. (Rozprawy Mat.) 175, 1980.
- [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
- [3] M. Carro, L. Pick, J. Soria, and V. Stepanov, On embeddings between classical Lorentz spaces, Math. Inequal. Appl. 4 (2001), 397–428.
- [4] D. E. Edmunds, R. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2000), 307–355.
- [5] M. de Guzmán, Differentiation of Integrals in \mathbb{R}^n , Lecture Notes in Mathematics **481**, Springer-Verlag, Berlin-New York, 1975.
- [6] J. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, North-Holland Publishing Co., Amsterdam, 1985.
- [7] S. Korry, Fixed points of the Hardy-Littlewood maximal operator, Collect. Math. 52 (2001), 289–294.
- [8] E. H. Lieb and M. Loss, Analysis, American Mathematical Society, Providence, 2001.
- [9] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158.
- [10] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, New Jersey, 1970.

Joaquim Martín Dept. Mathematics U. Autònoma de Barcelona E-08193 Bellaterra (Barcelona), SPAIN *E-mail:* jmartin@mat.uab.es Javier Soria Dept. Appl. Math. and Analysis University of Barcelona E-08071 Barcelona, SPAIN *E-mail:* soria@mat.ub.es