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Characterization of rearrangement invariant spaces with
fixed points for the Hardy—Littlewood maximal operator

JOAQUIM MARTIN® AND JAVIER SORIAY

Abstract. We characterize the rearrangement invariant spaces for which there exists a non-
constant fixed point, for the Hardy—Littlewood maximal operator (the case for the spaces
LP(R™) was first considered in [7]). The main result that we prove is that the space
L2 (R™) N L*°(R™) is minimal among those having this property.

1 Introduction

The centered Hardy-Littlewood maximal operator M is defined on the Lebesgue space Li . (R™)
by

1
Mf@) =sup 2 [ 15— )l

where | B,| denotes the measure of the Euclidean ball B, centered at the origin of R".

In this paper we study the existence of non—constant fixed points of the maximal operator
M (i.e., Mf = f) in the framework of the rearrangement invariant (r.i.) functions spaces (see
Section 2 below). We will use some of the estimates proved in [7], where the case LP(R™) was
studied, and show that they can be sharpened to obtain all the rearrangement invariant norms
with this property (in particular we extend Korry’s result to the end point case p = n/(n — 2),
where the weak-type spaces have to considered.) The main argument behind this problem is
the existence of a minimal space L#-2"*°(R") N L°(R") contained in all the r.i. spaces with the
fixed point property.

2 Background on Rearrangement Invariant Spaces

Since we work in the context of rearrangement invariant spaces it will be convenient to start
by reviewing some basic definitions about these spaces.

A rearrangement invariant space X = X (R") (r.i. space) is a Banach function space on R"
endowed with a norm ||-[| y g such that
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whenever f* = ¢g*. Here f* stands for the non-increasing rearrangement of f, i.e., the non-
increasing, right-continuous function on [0, c0) equimeasurable with f.
An r.i. space X (R") has a representation as a function space on X (0, 00) such that

||f||X(R") = Hf*”X'(O,oo) .
Any r.i. space is characterized by its fundamental function
ox(s) = lIxel x @

(here E is any subset of R" with |E| = s) and the fundamental indices

- log Mx (s) - log Mx (s)
PR s M BT s
where .
Mx (s) = sup Ox(ts) 0.

o oxd) 07

It is well known that

0<8,<fx <1

(We refer the reader to [2] for further information about r.i. spaces.)

3 Main result

Before formulating our main result, it will be convenient to start with the following remarks

(see [7]):
Remark 3.1 By the Lebesgue’s differentiation theorem one easily obtains that
|f(x)] <K Mf(z) ae. z € R,

thus f is a fixed point of M, if and only if f is positive and
1

_ fly)dy < f(x) a.e. x € R,
|B(ZL‘, T)| B(z,r)
or equivalently f is a positive super—harmonic function (i.e. Af < 0, where A is the

Laplacian operator).

Remark 3.2 If f is a non-constant fixed point of M, and ¢ > 0 belongs to the Schawrtz class
S(R™), with [, ¢(z)dz =1, then the function fi(z) = (f * ¢;)(x), with ¢ (x) = t7"¢(x/t) is
also a non-constant fixed point of M which belongs to C*°(R") (notice that using the Lebesgue
differentiation theorem, there exists some ¢ > 0 such that f; is non-constant, since f is non-
constant). In particular if X (R") is an r.i. space and f € X (R") is a non-constant fixed point
of M, since S(R") C LY(R") N L®(R") we get that f; € X(R™) N C>®(R") is a non-constant
fixed point of M.



Remark 3.3 Using the theory of weighted inequalities for M (see [6]), if M f = f, in particular
f € Ay (the Muckenhoupt weight class), and hence f(z) dx defines a doubling measure. Hence,
f ¢ LY(R"™). Also, using the previous remark we see that if f € LP(R") is a fixed point, then
f e LiR"), for all p < ¢ < oo.

Definition 3.4 Given an r.i. space X (R™), we define

Dr(X(R") = {f € L'®") : [ Bof | gy < 0} .

where Iy is the Riesz potential,
() = [ e =yl F)dy.

It is not hard to see that the space Dy, (X (R™)) is either trivial or is the largest r.i. space
which is mapped by I into X (R"), and is also related with the theory of the optimal Sobolev
embeddings (see [4] and the references quoted therein).

Theorem 3.5 Let X (R™) be an r.i. space. The following statements are equivalent:

1. There is a non-constant fized point f € X(R"™) of M
2. n >3 and |a]"" X (w1 (2) € X(RY).

3. n >3 and xp1(t) + 7" xp.00)(t) € X(0,00).

4. n >3 and (L72°°(R") N L®(R")) C X(R™").

5. n>3 and D, (X(R™)) # {0}.

Proof. (1 — 2) Since if n = 1 or n = 2, the only positive super-harmonic functions are the
constant functions (see [8, Remark 1, p. 210]), necessarily n > 3. Moreover, it is proved in [7]
that, if f € C>°(R™) is a non-constant fixed point of M, then

f(x) >c ’x‘2in X{z:lx\>1}(x)'

Since f € X (R"), then |2[>™" Y (uia)>1 () € X (R).
(2 — 3) Since if [2]*7" Xgefoj>1y (2) € X (R™), then

2—n n
F(z) = X<y (2) + 277 Xgapor>ny () € X (R?).
An easy computation shows that

F*(t) = Xpo.0)(t) + " X100y (1)



(3 — 4) Since f € (L#2°(R™) N L>°(R")) if and only if
sup f*(t)W (t) < oo,

t>0

where W (t) = max(1,t'=2/"), we have that
f*<t) S ”f”Lﬁ’oo(Rn)mLoo(Rn) W_l(t)
and since WL(t) = xo.1(t) + ¥ xX(1.00) € X(0,00) we have that
ey = 15 0y < €171 mme gy
with ¢ = 1750
(4 — 5) Since (see [9] and [1])
t 00
() @ e (P [ s [T as) < e (1) 0
0 ¢

where fO(x) = f*(c, |z|"), ¢, = measure of the unit ball in R™. (Observe that (f°)" = f*).
Rewriting the middle term in the above inequalities, using Fubini’s theorem, we get

Ly @) <d ([ einds) < dy () (),
() )

n—2

where f*(t) =t~" [\ f*(s)ds. Thus, f € Dp,(X(R")) if and only if

‘ / f**(S)SQ/nflds
t

F(t) = / Xt (8)s*/™ Mds = c(xpo.(t) + 17" X100 (1))
t
is a decreasing function, and
FO(x) = Flen |2]") = (Xgaei<ny (@) + 277" Xgatas1y (2)) € L2 (R") N L¥(R")

we get that X}, ;) € D, (X(R")).
Another argument to prove this part is the following:
Since, if n > 3 (see [2, Theorem 4.18, p. 228))

L : LYR™) — L»2°(R") and I, : L3'}(R") — L=(R")

) < 00. (1)
X (0,00)

Since

is bounded, we have that
I (L\R™) N LEI(RY) — (LE(R") 0 L¥(R™) € X(R")
is bounded, and hence L'(R") N L3 (R") C Dy, (X (R™)).
(5 — 1) Since n > 3, we can use the classical formula of potential theory (see [10, p. 126])
—h = A(Iyh)

to conclude that there is a positive function f = Irxj, ;; € X(R"). Then 0 < f; = (X} 1 *t) €
X(R")NC®R") and Af; <0. =



We now consider particular examples, like the Lorentz spaces:

Corollary 3.6 Let 1 < p < oo, and assume AP(R",w) is a Banach space (i.e., w € B, if
l <p<ooorp€ Biw if p =1, see [3]). Then, there exists a non-constant function
f € AP(R™ w) such that M(f) = f if and only if n > 3 and

/looﬂdt<oo.

tp(1-2/n)
In particular, this condition always holds, for p > 1 and n large enough.
Proof. The integrability condition follows by using the previous theorem. Now, if w € B,
then there exists an € > 0 such that w € B,_., and hence, it suffices to take n > 2/e. Observe

that if w = 1 and p = 1, then A'(R™, w) = L'(R"), which does not have the fixed point property

for any dimension n. =

Corollary 3.7 Let 1 < p,q < oo (if p = 1 we only consider ¢ = 1). Then, there exists a
non-constant function f € LP4(R™) such that M(f) = f if and only if n > 3 and

n/(n—2)<p<oo
or
p=n/(n—2) and g = .
Corollary 3.8 (See [7]) Let 1 < p < oo. There exists a non-constant function f € LP(R")
such that M(f) = f if and only if n > 3 and n/(n —2) < p < oc.

It is interesting to know when given an r.i. space X(R"), the space Dp,(X(R")) is not
trivial, or equivalently

/ f**(S)SQ/n—ldS
t

< 00 (2)
X(0,00)

is not trivial. This will be done in terms of the fundamental indices of X. We start by computing
the fundamental function of Dy, (X (R™)).

Dp,(X(R")) := {f € L°([0,00)) :

Lemma 3.9 Let X be an r.i. space on R", n > 3. Let Y be given by (2). Then
Oy () = 8" || PioaymXpoa |
where Py o f(t) = 2771 [ f(s)s~2/"ds.

Proof.

S

n/2 n/2 1-2/n
s Pia/X0,5(t) = 8" (Xp0,9(t) + (;) Xis,00) (1))

~ / X’[“&s](r)rwn_ldr.
t



Theorem 3.10 Let X be an r.i. space on R", n > 3. Let Y be given by (2). Then
1. If By <1—2/n, then' Y # {0}.
2. If Y #{0} then 3, <1—2/n.

Proof. 1.) Let x, = x[o,]- Then

1 d oo B 3
Puaanlt) = [ (€ g <320 ()
0 k=0

Thus
[Picayxel| < €272 (2Fr) < eox(r) Y 27H0/2 My (2F).

k=0 k=0
Let € > 0 be such that By +¢ < 1 —2/n. Then by the definition of 3y it follows readily that
there is a constant ¢ > 0 such that

My (2%) < c2kBxte),
and hence

ZQ—k(l—n/Q 2k S Z k(1-n/2—Bx —¢) < o0,
_ k=0

which implies that y, € Y.
2.) Since Y # {0} if and only if HPl,Q/nX[O,l] HX < o0 and

b (Proa/mxpo)” (O)éx(t) < ||PioamXon]| x < oo, (3)

and easy computations show that (3) implies that

ox (1)
1<
= St;]? A—2/n

= ¢ < o0, (4)

then, by (4)

_ X gbx(ta) ¢X(ta)
Mx(a) = ma 21jn 0x(B) 1rfn ¢X<t>>

ox(ta) (at)' 2" ¢X<ta>>

= max [ sup , sup
>1/a (@)1 Ox(t) Ticija Ox(t)

1-2/n ¢ Px (ta)> .

12

max | a sup , sup

t>1/a (bX( ) t<l/a QbX( )

Thus, if a < 1, using again (4) we get

t172/n
1>1/a Px (1)

6



which implies that
B L S1-2 /n.

Let us see that the converse in the previous theorem is not true.
Proposition 3.11 There are rearrangement invariant spaces X such that

1. Y #{0} and Bx > 1—2/n.

2. Y ={0} and B, <1-2/n.

Proof. Let ¢(t) = t“X(0.1(t) + t*X[1,00)(t), With 0 < a,b < 1. Let
x = { € £90.00)) s sup £ ()010) < o0
t>0

Since ¢ is a quasi-concave function, we have that

p(t) = ox(1)

and
B, = min(a,b), Bx = max(a,b).

On the other hand, the space Y defined by (2) is not trivial if and only if
b<1-2/n.

Now, to prove 1) take b < 1—2/n and a > 1 —2/n. And to see 2) take b > 1 — 2/n and
a<1l-—2/n. =

Remark 3.12 If we consider

Xo = {f € L°([0,00)) : sup f*(£)t'72/"(1 + log™ t) < oo}

t>0

and

1-2/n
X, = {f € L(0.00) ssup £ (0 s < oo}

then 3, = fx, =1—2/n, ¥y = {0} and Y} # {0}.

Remark 3.13 It was proved in [7] that if we consider the strong maximal function (i.e, the
maximal operator associated to centered intervals in R™), then there were no fixed points
in any LP(R"™) space, regardless of the dimension. The same argument works to show that
LP(R™) cannot be replaced by any different r.i. space. Also, if we study this question for other
kind of sets, like, e.g., Buseman—Feller differentiation bases (see [5]), then the only possible
fixed points are the constant functions. This observation applies to any non-centered maximal
operator (with respect to balls, cubes, etc.)
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