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SYMMETRIZATION INEQUALITES AND SOBOLEV

EMBEDDINGS

JOAQUIM MARTÍN∗ AND MARIO MILMAN

Abstract. We prove new extended forms of the Pólya-Szegö symmetrization

principle. As a consequence new sharp embedding theorems for generalized
Besov spaces are proved, including a sharpening of the limiting cases of the

classical Sobolev embedding theorem. In particular, a surprising self improving

property of certain Sobolev embeddings is uncovered.

1. Introduction

The Pólya-Szegö symmetrization principle and its variants play a fundamental
role in many problems in analysis. The classical version of the Pólya-Szegö principle
states that

(1.1) ‖∇f◦‖Lp(Rn) ≤ ‖∇f‖Lp(Rn) ,

where f◦ denotes the symmetric rearrangement of f ∈W 1
1 (Rn) (cf. [24], [1]). More

generally, in [8] it is shown that

(1.2) |∇f◦|∗∗ (t) ≤ |∇f |∗∗ (t),

where f∗∗(t) = 1
t

∫ t
0
f∗(s)ds, and f∗ denotes the non-increasing rearrangement of

f ∈ C∞0 (Rn). It follows from (1.2) that for any rearrangement invariant space (r.i.
space) X(Rn) we have (cf. also [15])

(1.3) ‖∇f◦‖X(Rn) ≤ ‖∇f‖X(Rn) , f ∈ C
∞
0 (Rn).

A natural way to measure the oscillation of a decreasing function is provided by
the quantity (cf. [3])

f∗o (t) = f∗∗(t)− f∗(t).

Using (1.2) the following inequality for f∗o (t) was shown in1 [2]

(1.4) f∗o (t) ≤ cnt1/n |∇f |∗∗ (t), f ∈ C∞0 (Rn).
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1A different approach to a result involving f∗(t)− f∗(2t) had been given earlier in [17]. Note

(cf. [2]) that we always have f∗(t)− f∗(2t) ≤ 2f∗o (t), t > 0.
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2 JOAQUIM MARTÍN∗ AND MARIO MILMAN

In [2], [23] it is shown that (1.4) implies the following improvement to the
Hansson-Brézis-Wainger-Maz’ya2 limiting version of the Sobolev embedding the-
orem:

(1.5) W̊
k

n/k(Ω) ⊂ L(∞, n
k

)(Ω)  Hn
k

(Ω),

where Ω is a bounded domain in Rn and W̊k
n/k(Ω) denotes the closure of C∞0 (Ω)

in the norm ‖f‖
W̊
k
n/k(Ω)

= ‖∇kf‖Ln/k(Ω).

In this note we consider the fractional case. In fact we shall obtain rearrangement
inequalities for moduli of continuity which allow us to find a suitable replacement
for (1.4) in the fractional case, and derive applications to embeddings of Besov
spaces.

Recall the analogue of (1.1) for Lp moduli of continuity (cf. [10], [9] and the
references therein):

(1.6) ωp(t, f
◦) ≤ cωp(t, f).

A version of (1.6) for Orlicz spaces was given in [10], [9], with a complicated proof,
and one can find a version of (1.6) valid for r.i. spaces in dimension one in [22].

Our first result (see Section 3, Theorem 1 below) is a generalization of (1.6) for
r.i. spaces X(Rn)

(1.7) ωX(t, f◦) ≤ cωX(t, f),

where ωX : (0,∞)×X(Rn)→ [0,∞) is the X(Rn)−modulus of continuity defined
by

(1.8) ωX (t, g) = sup
|h|≤t

‖g(.+ h)− g(.)‖X .

It is of interest that our method of proof of (1.7), which is based on real interpo-
lation, simplifies considerably the combinatorial methods of Garsia-Rodemich [10],
where the case of Orlicz spaces is considered. Using (1.7) we can estimate the oscil-
lation f∗o (t), assuming apriori that f belongs to a r.i. space X(Rn) (see Theorem
2 below):

(1.9) f∗o (t) ≤ cωX(t1/n, f)

φX(t)
,

where φX(t) denotes the fundamental function3 of X(Rn). For an Lp([0, 1]n) version
of (1.9) see [16], [17] and the references quoted therein.

In Section 4 we use (1.9) to derive sharp embedding theorems for general-
ized Besov spaces. In particular, we are able to sharpen known limiting em-
bedding theorems for classical Besov spaces (based on Lp spaces) as follows: Let

1 ≤ q ≤ ∞, 0 < α < 1, then if we let B̊αn/α,q(R
n) be the closure of C∞0 (Rn) under

(
∫∞

0
(t−αωLn/α(t, f))

q dt
t )1/q, we have

(1.10) B̊
α

n/α,q(Rn) ⊂ L(∞, q)(Rn).

2Here L(∞, n
k

)(Ω) = {f : ‖f‖n/k
L(∞,n

k
)

=
∫ |Ω|
0 f∗o (s)n/k ds

s
< ∞}, and Hansson-Brezis-Wainger

space (cf. [11], [5]) is defined by Hn/k(Ω) =

{
f : ‖f‖n/k

Hn/k(Ω)
=
∫ |Ω|
0

(
f∗∗(s)

(1+ln
|Ω|
s

)

)n/k
ds
s
<∞

}
.

We should note that the embedding W̊1
n(Ω) ⊂ Hn(Ω) can be also obtained using some fundamental

capacitary inequalities due to Maz’ya [21] .
3See Section 2 below.
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This extends4 the Herz-Peetre Sobolev embedding (cf. [13], [25]) to the limiting
case n/α. The proof of (1.10) can be obtained by means of applying (1.9) with
X = Ln/α, for then we have

f∗o (t) ≤ cωLn/α(t1/n, f)

tα/n
.

Therefore, ∫ ∞
0

f∗o (t)q
dt

t
≤ c

∫ ∞
0

(
t−αωLn/α(t, f)

)q dt
t

= c ‖f‖q
B̊
α
n/α,q

,

and (1.10) follows. It is interesting to stress here that the general form of (1.9)
allows us to extend (1.10) as follows: let X = L(nα ,∞), then φL(nα ,∞)(t) = tα/n,
the proof given above self improves to

B̊
α

n/α,q(Rn) ⊂ B̊
α

L(nα ,∞),q(Rn) ⊂ L(∞, q)(Rn).

More generally, all the Sobolev type embeddings we prove in this note have the
following apparently new self improving property5: if X,Y, Z are r.i. spaces, then

B̊
α

X,Y ⊂ Z ⇒ B̊
α

M(X),Y ⊂ Z,

where M(X) = {f : ‖f‖M(X) = supt>0{f∗(t)φX(t)} < ∞} is the Marcinkiewicz

space associated with X (note that φM(X)(t) = φX(t)).
Using (1.10) and the known embedding theorems of potential spaces in Besov

spaces [27, Theorem 5 (A) page 155] we obtain6

L̇n/αα (Rn) ⊂ L(∞, n
α

)(Rn), n ≥ 2α.

If we observe that d
dtf
∗∗(t) = −t−1f∗o (t) we see that (1.9) implies the following

extension to r.i. spaces of a result in [4, Theorem 4.19, page 345] (see also [10] for
related results obtained in the context of Orlicz spaces)

f∗∗(t) ≤ c
∫ ∞
t1/n

ωX (s, f)

φX(sn)

ds

s
, if f∗(∞) = 0.

2. Preliminaries

2.1. Background on Rearrangement Invariant Spaces. Let X(Rn) be a r.i.
space. Recall that X = X(Rn) has a representation as a function space on (0,∞),
Xˆ(0,∞) such that (cf. [4])

‖f‖X(Rn) = ‖f∗‖Xˆ(0,∞) ,

where f∗ denotes the non-increasing rearrangement defined by

f∗(t) = inf {λ > 0 : mes {x ∈ Rn : |f(x)| > λ} ≤ t} .
The symmetric spherical decreasing rearrangement f◦, is defined by

f◦(x) = f∗ (cn |x|n) , x ∈ Rn,

4The Herz-Peetre embedding also follows directly from (1.9).
5This self improving property is reminiscent of the self improving properties of the method of

truncation due to Maz’ya (cf. [20], [12]).
6This partially extends (1.5) to Potential spaces. For other limiting cases of the Sobolev

embedding theorem for potential spaces see [11], [5], [7].
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where cn = measure of the unit ball in Rn. It is plain that f◦ is equimeasurable
with f, and therefore

‖f‖X(Rn) = ‖f◦‖X˜(Rn) .

We refer the reader to [4], [18] and [24] for further information on non-increasing
rearrangements and symmetric spherical rearrangements. Moreover, since the am-
bient domain will be always clear from the context it is convenient to “drop the
hats and tildes” and use the same letter X to indicate the different versions of the
space X that we use. Moreover, since it will simplify our considerations we shall
assume in what follows that C∞0 (Rn) is dense in X(Rn).

Let
◦
W 1
X =

◦
W 1
X(Rn) = {f ∈ X : ∇f ∈ X}. We equip

◦
W 1
X with the seminorm

‖f‖ ◦
W 1
X

= ‖∇f‖X .

It follows (cf. [4], [14])) that the K−functional for the pair (X,
◦
W 1
X) defined by

K(t, f ;X,
◦
W 1
X) = inf

g∈
◦
W 1
X

{‖f − g‖X + t ‖∇g‖X},

is equivalent to the X(Rn)−modulus of continuity (cf. (1.8) above):

K(t, f ;X,
◦
W 1
X) ' ωX(t, f),

where as usual, the symbol f ' g will indicate the existence of a universal constant
c > 0 (independent of all parameters involved) so that (1/c)f ≤ g ≤ c f , while the
symbol f � g means that f ≤ c g.

2.1.1. Indices. Let D 1
s
f(t) = f

(
t
s

)
, s > 0, be the dilation operator, and let hX(s)

be the norm of the dilation operator i.e.

hX(s) = sup
f∈X

∥∥∥D 1
s
f
∥∥∥
X

‖f‖X
, s > 0.

The upper and lower Boyd indices associated with a r.i. space X are defined by

(2.1) αX = inf
s>1

lnhX(s)

ln s
and αX = sup

s<1

lnhX(s)

ln s
.

It is also useful sometimes to consider a slightly different set of indices obtained by
means of replacing hX(s) in (2.1) by7

MX(s) = sup
t>0

φX(ts)

φX(t)
, s > 0.

The corresponding indices are denoted βX , β
X

, and will be referred to as the upper

and lower fundamental indices of X. Actually, the relationship between MX(s) and
hX(s) is that the computation of the former is exactly the computation of the latter
but done only over functions of the form f = χ(0,a). Therefore we have (cf. [4])

0 ≤ αX ≤ βX ≤ βX ≤ αX ≤ 1.

7φX(s) is the fundamental function of X : φX(s) = ‖χE‖X , with E any measurable subset of

Ω with |E| = s.
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We shall usually formulate conditions on r.i spaces in terms of the Hardy oper-
ators defined by

Pf(t) =
1

t

∫ t

0

f(x)dx; Qf(t) =

∫ ∞
t

f(x)
dx

x
.

In particular, it is well known (cf. [4]) that if X is a r.i. space, P : X(0,∞) →
X(0,∞) (resp. Q) is bounded if and only if αX < 1 (resp. 0 < αX).

2.1.2. Some new function spaces. Following [23] and [26] we shall now construct
the range spaces for our generalized Sobolev embedding theorem. Suppose that X
and Y are r.i. spaces, and let s ∈ R, we define

Y (∞, s,X) =

{
f : ‖f‖Y (∞,s,X) =

∥∥∥∥t−sφX(t)

φY (t)
(f∗∗(t)− f∗(t))

∥∥∥∥
Y

<∞
}

where f∗∗(t) = Pf∗(t). Note that these spaces are not necessarily linear and, in
particular, ‖.‖Y (∞,s,X) is not necessarily a norm.

Given a r.i. space X we shall say that Y satisfies the Q(s,X)−condition if there
exists a constant C > 0 such that∥∥∥∥t−sφX(t)

φY (t)
Qf(t)

∥∥∥∥
Y

≤ C
∥∥∥∥t−sφX(t)

φY (t)
f(t)

∥∥∥∥
Y

.

Note that if b < s then we have

t−b
∫ ∞
t

f(x)
dx

x
≤ t−s

∫ ∞
t

xs−bf(x)
dx

x
.

Thus, if Y satisfies the Q(s,X)−condition for some s, then Y also satisfies the
Q(b,X)−condition for every b < s.

The following lemmas will be useful in what follows. A consequence of our first
lemma is that if Y satisfies the Q(s,X)−condition then Y (∞, s,X) is a Banach
space.

Lemma 1. Let X,Y be two r.i. spaces. If Y satisfies the Q(s,X)−condition, then
for all f∗∗(∞) = 0,

‖f‖Y (∞,s,X) '
∥∥∥∥t−sφX(t)

φY (t)
f∗∗(t)

∥∥∥∥
Y

,

with constants of equivalence independent of f.

Proof. Obviously,∥∥∥∥t−sφX(t)

φY (t)
(f∗∗(t)− f∗(t))

∥∥∥∥
Y

≤
∥∥∥∥t−sφX(t)

φY (t)
f∗∗(t)

∥∥∥∥
Y

.

Conversely, from d
dtf
∗∗(t) = f∗(t)−f∗∗(t)

t and the Fundamental Theorem of Calculus,
we have

f∗∗(t) =

∫ ∞
t

(f∗∗(s)− f∗(s)) ds
s

= Q (f∗∗ − f∗) (t),

and the result follows by the Q(s,X)−condition. �

The next result gives a useful criteria to check the validity of aQ(s,X)−condition.
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Lemma 2. Let X,Y be two r.i. spaces. Suppose that

(2.2) Q(s,X;Y ) =

∫ ∞
1

tshY

(
1

t

)
MY (t)MX(

1

t
)
dt

t
<∞,

then Y satisfies the Q(s,X)−condition.

Proof. We have

t−s
φX(t)

φY (t)
Qf(t) =

∫ ∞
t

t−s
φX(t)

φY (t)
f(x)

dx

x
=

∫ ∞
1

t−s
φX(t)

φY (t)
f(tx)

dx

x

≤
∫ ∞

1

(xt)
−s
f(tx)

φX(xt)

φY (xt)
sup
t>0

φX(t)

φX(xt)
sup
t>0

φY (xt)

φY (t)
xs−1dx

=

∫ ∞
1

(xt)
−s
f(tx)

φX(xt)

φY (xt)
MX(1/x)MY (x)xs−1dx.

Applying Minkowski’s inequality we obtain∥∥∥∥t−sφX(t)

φY (t)
Qf(t)

∥∥∥∥
Y

≤
∫ ∞

1

∥∥∥∥(xt)
−s
f(tx)

φX(xt)

φY (xt)

∥∥∥∥
Y

MX(1/x)MY (x)xs−1dx

≤
∫ ∞

1

hY (1/x)MX(1/x)MY (x)xs−1dx

∥∥∥∥t−sf(t)
φX(t)

φY (t)

∥∥∥∥
Y

.

�

Remark 1. In terms of indices, it is easy to see that (2.2) is equivalent to the
inequality

s < αY − βY + β
X
.

Moreover, if φX(t)/φY (t) is equivalent to an increasing function, then starting from

t−s φX(t)
φY (t)Qf(t) ≤ c

∫∞
t
t−s φX(x)

φY (x)f(x)dxx and following the same steps as in the proof

of the previous lemma we see that if

Q(s,X;Y ) =

∫ ∞
1

tshY

(
1

t

)
dt

t
<∞

then Y satisfies the Q(s,X)−condition.

3. Symmetrization inequalities for moduli of continuity

Our first result is a general version of the Pólya-Szegö principle (1.6) valid for
r.i. spaces.

Theorem 1. Let X = X(Rn) be a r.i. space. Then, there exists an absolute
constant c > 0 such that for all f ∈ X,

(3.1) ωX(t, f◦) ≤ cωX(t, f).

Proof. We use the interpolation argument given in [22] where the case n = 1 is
proved. We shall use (1.3) and the following auxiliary results, that will be proved
below:

(3.2) ‖f◦ − g◦‖X ≤ ‖f − g‖X f, g ∈ X,
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and

K(t, f ;X,
◦
W 1
X) = inf

g∈
◦
W 1
X

{‖f − g‖X + t ‖∇g‖X}(3.3)

= inf
g∈C∞0 (Rn)

{‖f − g‖X + t ‖∇g‖X}.

Assuming that (3.2) and (3.3) hold, we can write

K(t, f◦;X,
◦
W 1
X) = inf

g∈C∞0 (Rn)
{‖f◦ − g‖X + t ‖∇g‖X} (by (3.3))

≤ inf
g∈C∞0 (Rn)

{‖f◦ − g◦‖X + t ‖∇g◦‖X}

≤ inf
g∈C∞0 (Rn)

{‖f − g‖X + t ‖∇g‖X} (by (3.2) and (1.3))

= K(t, f ;X,
◦
W 1
X) (by (3.3)).

Combining the last inequality with the well known fact that (cf. [14], [4])

K(t, g;X,
◦
W 1
X) ' ωX(t, g),

concludes the proof of (3.1) modulo (3.2) and (3.3). To see (3.2) recall that in
[18, Theorem 3.5], it is shown that for any convex function J : R → R such that
J(0) = 0, we have∫

Rn
J(f◦(x)− g◦(x))dx ≤

∫
Rn
J(f(x)− g(x))dx,

for all f, g positive. We apply this result with Jλ(t) = [|t| − λ]+, where λ > 0 is

fixed and [x]
+

= max(x, 0). It follows that for all λ > 0,

(3.4)

∫
Rn

[|f◦(x)− g◦(x)| − λ]
+
dx ≤

∫
Rn

[|f(x)− g(x)| − λ]
+
dx.

But on account of [4, Exercise 1, page 87], we can write

(3.5) |f◦ − g◦|∗∗ (t) = inf
λ>0

{
λ+

1

t

∫
Rn

[|f◦(x)− g◦(x)| − λ]
+
dx

}
.

Combining (3.5) and (3.4) we get

|f◦ − g◦|∗∗ (t) ≤ |f − g|∗∗ (t),

and (3.2) follows.
To prove (3.3) we only need to show that for all f ∈ X, t > 0,

inf
g∈C∞0 (Rn)

{‖f − g‖X + t ‖∇g‖X} ≤ K(t, f ;X,
◦
W

1

X).

Given ε > 0, t > 0, and f ∈ X, select g ∈
◦
W 1
X such that

(3.6) K(t, f ;X,
◦
W 1
X) ≥ ‖f − g‖X + t ‖∇g‖X − ε.

In
◦
W 1
X consider the norm ‖f‖W 1

X
= ‖f‖X + ‖∇f‖X . Then C∞0 (Rn) is dense in

(
◦
W 1
X , ‖.‖W 1

X
) and therefore we can select {gn}n∈N ⊂ C∞0 (Rn) such that ‖g − gn‖X
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and ‖∇g −∇gn‖X both converge to zero as n → ∞. Using the triangle inequality
we see that

‖f − g‖X ≥ ‖f − gn‖X − ‖g − gn‖X
and

t ‖∇g‖X ≥ t ‖∇gn‖X − t ‖∇g −∇gn‖X .
It follows that

‖f − g‖X + t ‖∇g‖X ≥ (‖f − gn‖X + t ‖∇gn‖X)− ‖g − gn‖X − t ‖∇g −∇gn‖X
≥ inf
g∈C∞0 (Rn)

{‖f − g‖X + t ‖∇g‖X} − ‖g − gn‖X − t ‖∇g −∇gn‖X .

Letting n→∞ we get

‖f − g‖X + t ‖∇g‖X ≥ inf
g∈C∞0 (Rn)

{‖f − g‖X + t ‖∇g‖X}

and therefore combining with (3.6) and letting ε → 0 we obtain (3.3) concluding
the proof of the Theorem. �

Remark 2. It is interesting to point out that, although the Pólya-Szegö inequality

implies that the non linear map Θ(f) = f◦ is bounded on
◦
W 1
X(Rn), Almgren-Lieb [1]

proved that the map Θ is not a continuous operator on
◦
W 1
X(Rn) if n ≥ 2. Previously

it had been known (cf. Coron [6]) that in one dimension Θ is continuous on W 1
p (R).

In their paper Almgren-Lieb [1] also show that the map Θ is not only bounded but
also continuous on the Besov spaces Bαp,p(Rn), 0 < α < 1.

Remark 3. The method of proof of Theorem 1 also applies for the general class of
rearrangements discussed in [28].

The main tool in our analysis of embeddings of Besov spaces is the following
result

Theorem 2. Let X = X(R) be a r.i. space, then there exists a constant c = c(n) >
0 such that for all t > 0

(3.7) f∗0 (t) = f∗∗(t)− f∗(t) ≤ c
ωX
(
t1/n, f

)
φX(t)

.

Proof. Let λf = distribution function of f, then, as is well known and easy to see,

(3.8) tf∗o (t) =

∫ t

0

(f∗(s)− f∗(t)) dt =

∫ ∞
f∗(t)

λf (s)ds.

More generally for all y > 0 we have8,

(3.9)

∫
{f◦>y}

f◦(x)dx = yλf◦(y) +

∫ ∞
y

λf◦(s)ds.

8 ∫
{f◦>y}

f◦(x)dx =

∫ ∞
0

(f◦(x)− y)+dx+ yλf◦ (y) =

∫ ∞
0

λ(f◦−y)+ (s)ds+ yλf◦ (y)

=

∫ ∞
y

λf◦ (s)ds+ yλf◦ (y).
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Inserting y = f∗(t) in (3.9) we get

∫
{f◦>f∗(t)}

f◦(x)dx = f∗(t)λf◦(f
∗(t)) +

∫ ∞
f∗(t)

λf◦(s)ds

= f∗(t)

∫
{f◦>f∗(t)}

dx+

∫ ∞
f∗(t)

λf◦(s)ds.

Therefore

∫
{f◦>f∗(t)}

(f◦(x)− f∗(t)) dx =

∫ ∞
f∗(t)

λf◦(s)ds(3.10)

=

∫ ∞
f∗(t)

λf (s)ds (since λf◦ = λf )

= tf∗o (t) (by (3.8)).

It will be convenient to introduce some notation. LetA = {x ∈ Rn : f◦(x) > f∗(t)} ,
and let B(x, h) = ball with center x and radius h. Then

|A| = λf◦(f
∗(t)) = λf (f∗(t)) ≤ t.

Pick h =
(

2t
cn

)1/n

and for each x ∈ A let

Ax = {y ∈ B(x, h) : f◦(y) ≤ f∗(t)} .

Since

2t = |B(x, h)| = |Ax|+ |{y ∈ B(x, h) : f◦(y) > f∗(t)}|
≤ |Ax|+ |A| ≤ |Ax|+ t,

we get that

(3.11) |Ax| ≥ t.
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Rewriting (3.10) using this notation we have

tf∗o (t) =

∫
A

(f◦(x)− f∗(t)) dx

≤
∫
A

(
f◦(x)− 1

|Ax|

∫
Ax

f◦(y)dy

)
dx

=

∫
A

(
1

|Ax|

∫
Ax

(f◦(x)− f◦(y)) dy

)
dx

≤ 1

t

∫
A

∫
Ax

(f◦(x)− f◦(y)) dydx (by (3.11))

≤ 1

t

∫
A

(∫
B(x,h)

|f◦(x)− f◦(y)| dy

)
dx

=
1

t

∫
A

(∫
B(0,h)

|f◦(x)− f◦(x+ u)| du

)
dx

=
1

t

∫
B(0,h)

(∫
A

|f◦(x)− f◦(x+ u)| dx
)
du

≤ 1

t

∫
B(0,h)

‖f◦(·)− f◦(·+ u)‖X φX′(|A|)du (Hölder’s inequality)

≤ φX′(t)

t

∫
B(0,h)

ωX(h, f◦)du

=
φX′(t)

t
ωX((2t/cn)

1/n
, f◦)

(
(2t/cn)

1/n
)n

≤ cφX′(t)ωX(t1/n, f◦) (since ωX(αt, f) ≤ (1 + α)ωX(t, f)).

Applying Theorem 1, and recalling that φX′(t)φX(t) = t, we therefore see that,

f∗o (t) ≤ cωX(t1/n, f)
φX′(t)

t
= c

ωX(t1/n, f)

φX(t)
,

concluding the proof. �

The integrated version of Theorem 2 extends and simplifies a result stated in [4,
Chapter 5, Theorem 4.19] for Lp spaces.

Corollary 1. There exists a constant c > 0 such that for all f ∈ X, with f∗(∞) =
0,

(3.12) f∗∗(t) ≤ c
∫ ∞
t1/n

ωX(s, f)

φX(sn)

ds

s
.

Proof. By the Fundamental Theorem of Calculus

f∗∗(t) =

∫ ∞
t

(f∗∗(s)− f∗(s))ds
s

≤ c
∫ ∞
t

ωX
(
s1/n, f

)
φX(s)

ds

s
(by (3.7))

and (3.12) follows. �
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4. Embedding Theorems for Besov Spaces

Let X = X(Rn), let Y a r.i space over [0,∞) and let 0 < s < 1. We define the

Besov space B̊sX,Y (Rn) to be the closure of C∞0 (Rn) under the seminorm

‖f‖B̊sX,Y =

∥∥∥∥∥ t−s/nωX
(
f, t1/n

)
φY (t)

∥∥∥∥∥
Y

.

Remark 4. If in the definition of B̊sX,Y (Rn) we let X = Lp (Rn) and Y =

Lq ([0,∞)) , 1 ≤ q <∞, then φY (t) = t1/q and we have∥∥∥∥∥ t−s/nωLp
(
t1/n, f

)
φY (t)

∥∥∥∥∥
Y

=

(∫ ∞
0

(
t−s/nωLp

(
t1/n, f

))q dt
t

)1/q

'
(∫ ∞

0

(
t−sωLp (t, f)

)q dt
t

)1/q

.

Thus, f ∈ B̊
s

Lp,Lq (Rn) if and only if f belongs to the classical Besov space B̊sp,q (Rn).
The usual modifications apply when q =∞.

From Theorem 2 we immediately get

Corollary 2. Let X,Y be r.i. spaces, 0 < s < 1. Then

B̊
s

X,Y (Rn) ⊂ Y (∞, s
n
,X)(Rn).

Proof. By Theorem 2

‖f‖Y (∞, sn ,X) ≤ c

∥∥∥∥∥ t−s/nωX
(
f, t1/n

)
φY (t)

∥∥∥∥∥
Y

.

�

Remark 5. The extension to higher order (s ≥ 1) Besov spaces, as well as the
embeddings of Besov spaces on domains, will be considered in a forthcoming paper
[19].

4.1. Some concrete examples. Suppose that Y = Lq(Rn) then we can give a
more precise version of Lemma 1 (see also [23])

Lemma 3. Let X be a r.i space. Let s ∈ (−1, 1) and suppose q ≥ 1. Let v(t) =
t−s−1/qφX(t). Then the following statements are equivalent

i) s < β
X
.

ii) Lq(Rn) satisfies the Q(s,X)−condition.
iii) If f∗(∞) = 0,

‖f‖Lq(∞,X) = ‖v(t) (f∗∗(t)− f∗(t))‖q ' ‖v(t)f∗∗(t)‖q .

Proof. (i) → (ii) An easy computation shows that condition (2.2) holds and then
Lemma 2 applies. ii) → iii) Follows from Lemma 1. To conclude the proof we
show iii)→ i): By Fubini we readily see that (we need f∗(∞) = 0, otherwise Qf∗

does not exist)

Qf∗∗ = Q ◦ Pf∗ = Qf∗ + Pf∗ = P ◦Qf∗ = (Qf∗)
∗∗
.

Thus

(4.1) (Qf∗)
∗∗

(t)−Qf∗(t) = Pf∗(t) = f∗∗(t).
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Consider now the r.i. space H defined by the norm

‖h‖H = ‖v(t)f∗∗(t)‖q .

Then, by condition iii)

φH(r) =
∥∥χ[0,r]

∥∥
H
'
∥∥∥v(t)

(
χ∗∗[0,r](t)− χ[0,r](t)

)∥∥∥
q

= r

(∫ ∞
r

v(t)q
dt

tq

)1/q

.

On the other hand, since φX is increasing∫ ∞
r

v(t)q
dt

tq
=

∫ ∞
r

t−sq−1φX(t)q
dt

tq
≥ φX(r)qr−sq−q

q(s− 1)
.

Similarly

φX(r)qr−sq−q � φX(r)qr−sq−q
∫ 2r

r

dt

t
�
∫ 2r

r

φX(t)qt−sq−q
dt

t

≤
∫ ∞
r

t−sq−1φX(t)q
dt

tq
=

∫ ∞
r

v(t)q
dt

tq
.

Thus
φH(r) ' φX(r)r−s

and
β
H

= −s+ β
X
.

Finally, since

‖f‖H =
∥∥v(t)((Qf∗)

∗∗
(t)−Qf∗(t))

∥∥
q

(by (4.1))

'
∥∥v(t) (Qf∗)

∗∗
(t)
∥∥
q

(by condition iii))

= ‖Qf∗‖H
it follows that Q : H → H is bounded, which implies that β

H
> 0. �
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