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1. Introduction

The starting point of our research is the celebrated extrapolation theorem of
Rubio de Francia (cf. [22], [11] and the references therein) which, roughly speaking,
asserts that if an operator satisfies sufficiently many weighted Lp inequalities for a
fixed p then structurally similar weighted Lq, q 6= p, estimates follow as well. More
precisely, Rubio de Francia’s classical extrapolation theorem asserts that if T is a
linear operator such that for a given p0 ∈ (1,∞), and for all weights w ∈ Ap0(the
Muckenhoupt class Ap0) we have

(1.1) T : Lp0(w) → Lp0(w), boundedly,
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then it follows that for all p ∈ (1,∞) we have

T : Lp(w) → Lp(w),∀w ∈ Ap, boundedly.

Rubio de Francia’s theorem has become a fundamental tool in the theory of weighted
norm inequalities (cf. [11] and [12] for detailed accounts).

In his paper [23] (cf. also [24]) Rubio de Francia develops his ideas further
and shows how Lp spaces and other lattices can be constructed by means of unions
or intersections of other Lq spaces. This provides a beautiful explanation of why
if sufficient weighted norm estimates are known for one fixed index p then other
inequalities follow for other indices “by extrapolation”.

A different extrapolation process, which originated with Yano’s extrapolation
theorem (cf. [25] and [26]), was developed by Jawerth and Milman (cf. [13],
[19]), and deals with operators acting on interpolation scales in such a way that
the corresponding norm estimates deteriorate at the end points. This extrapolation
theory aims to obtain information about the operator from the speed of the norm
blow ups and, in particular, to derive alternative end point estimates. It turns out
that in the theory of [13] representing spaces as sums or intersections also plays a
fundamental role.

This led, many years ago, to the question if there was a connection between
these two disparate theories. In this paper we show that generalizing slightly the
setting of the theory of extrapolation spaces of Jawerth and Milman (or the setting
of the theory of Rubio de Francia!) we can create a framework that is general
enough to unify it with the theory of Rubio de Francia. Thus, in our framework,
one can prove Yano’s type extrapolation theorems via Rubio de Francia’s method,
which in our setting corresponds to taking limits in the estimates, or one can show
that the classical theory of weak interpolation of Calderón [9] follows from the
extrapolation of weighted norm inequalities for the Calderón operator. In partic-
ular, the celebrated interpolation theorem of Boyd [6] follows by extrapolation.
Likewise, in our setting Rubio de Francia’s theorem can be obtained in a suitable
functorial fashion using the ∆ or

∑
methods of [13]. This allows, for example, to

prove versions of Rubio de Francia’s theorem for many different classes of weights,
with a unified method. Our approach can be also used to obtain extrapolation of
weighted norm inequalities for other types of spaces, etc. In short, the

∑
and ∆

methods of extrapolation developed by [13] are naturally connected with
⋃

and⋂
of spaces studied by Rubio de Francia and thus connected with the geometry of

Banach spaces and factorization.
As it often happens in mathematics the added generality helps to clarify the

proofs and new connections emerge. The idea of factorization in our setting is
almost trivial but it is remarkably powerful. Let us consider informally the factor-
ization of operators mapping intersections of spaces. Suppose that T : X → X is a
bounded operator where X =

⋂
ν∈I Xν . We ask: What can be said about estimates

on individual spaces Xν? A factorization in this setting is simply the statement that
for each ν ∈ I there exists η ∈ I such that T : Xη → Xν with norm control. Sup-
pose that T is a fixed factorizable operator for which there are “enough” individual
norm estimates of the type T : Xη → Xν (think of T as a linearized version of a
maximal operator for example) and let G be some operator whose continuity on the
space X is in question. Suppose that individual estimates of the type T : Xη → Xν

imply the same type of estimates for G. Then we can extrapolate G : X → X (cf.
Section 5 and Section 6 below)
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In spite of it’s length the paper is just an invitation for readers to formulate a
more general theory. For example, we do not consider vector valued inequalities,
duality, etc. Hopefully this will be accomplished in the not too distant future, but
after so many years of delay it is time for us to publish our results. On the other
hand, in the tradition of this field, we present throughout the text concrete examples
and applications including the connection to the theory of Beurling algebras.

The paper is organized as follows. In Section 2 we introduce the basic construc-
tions or extrapolation methods, in Section 3 we discuss some of the basic examples
including rearrangement invariant spaces and connections to the geometry of Ba-
nach spaces as well as Beurling algebras, the connection with the theory of Jawerth
and Milman is discussed in 4, in Section 5 we introduce the idea of factorization as
a method to construct and deconstruct inequalities, these concepts are then applied
to prove extrapolation theorems in a very general setting in Section 6, the classical
extrapolation theorems of Rubio de Francia are discussed in Section 7. Section 8 is
devoted to Hardy type operators acting on rearrangement invariant spaces, we use
these results in Section 9 to show an approach to weak interpolation theory, includ-
ing Boyd’s interpolation theorem, using extrapolation of weighted norm inequalities
for Hardy operators.

Acknowledgement 1. The second named author acknowledges that the orig-
inal motivation for his contribution to this paper were many interesting conversa-
tions1 about extrapolation of weighted norm inequalities with Jose Luis Rubio de
Francia. The first preliminary results in connection with this paper were presented
by the second named author at the First Escorial Rubio de Francia Conference in
1989. The authors collaboration was started while the first named author was a Post
Doctoral fellow at Florida Atlantic University (1999-2000). This led to a completely
new and expanded manuscript with many new results, whose preparation for pub-
lication was unfortunately once again greatly delayed by the second named author.
The authors wish to acknowledge their debt to the late Professor Jose Luis Rubio
de Francia, from whom they have learned whatever is original in these notes, and
they wish to dedicate this work to his memory. The authors must still, however,
claim responsibility for all the shortcomings of the paper.

2. Intersections, Sums and Unions of Banach spaces.

2.1. Scales. It will be useful to establish some notation. Let E,F be a couple
of normed spaces such that E ⊂ F. Let c > 0, we shall write E

c
⊂ F if ‖x‖F ≤ c ‖x‖E

(x ∈ E).
Given E,F normed spaces, we let L (E,F ) be the space of linear bounded

operators T : E → F, provided with its usual operator norm.
A scale is an indexed family of Banach spaces {Xα}α∈A . We assume that the

index set A has been (partially) ordered in the following way:

(2.1) α � β ⇔ Xβ

1
⊂ Xα, (α, β ∈ A) .

We shall say that a scale is incomparable if

α � β ⇔ α = β.

1During his soujourn to Madrid in 1985
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A scale {Xα}α∈A is said to be compatible if there exists a Hausdorff topolog-
ical vector space U such that each Xα is algebraically and topologically embedded
in U . A scale {Xα}α∈A is strongly compatible if there exists a Banach space X̃

such that Xα

1
⊂ X̃, α ∈ A.

Given a scale {Xα}α∈A, the norm of each space Xα is usually denoted by ‖.‖α.

2.2. ∆ and
⋂

Methods. Let {Xα}α∈A be a compatible scale. Let

∆{Xα}α∈A =

{
x ∈

⋂
α∈A

Xα : ‖x‖∆{Xα}α∈A
:= sup

α∈A
‖x‖α < ∞

}
.

It is easy to see that
(
∆{Xα}α∈A, ‖.‖∆{Xα}α∈A

)
is a Banach space with the fol-

lowing properties:

(a) ∆{Xα}α∈A

1
⊂ Xα for any α ∈ A.

(b) If F is a Banach space such that F
1
⊂ Aα (∀α ∈ A) , then

F
1
⊂ ∆{Xα}α∈A.

A scale {Xα}α∈A is said to be ∆−total if

∆ {Xα}α∈A =
⋂

α∈A

Xα

as linear spaces.

Remark 1. It is easy to construct scales that are not ∆−total. Consider the
scale {Lp [0, 1]}1<p<∞, then ∆ {Lp [0, 1]}1<p<∞ = L∞ [0, 1]  

⋂
1<p<∞

Lp [0, 1], since

ln t ∈
⋂

1<p<∞
Lp [0, 1].

2.3.
∑

and
⋃

Methods. Let {Xα}α∈A be a scale. Let⋃
{Xα}α∈A = {x : x ∈ Xα for some α ∈ A} .

There is a natural homogenous functional that can be defined on
⋃
{Xα}α∈A:

‖x‖∪{Xα}α∈A
:= inf

α∈A
‖x‖α .

We will say that the scale {Xα}α∈A is
⋃
−complete if

(⋃
{Xα}α∈A, ‖.‖∪{Xα}α∈A

)
is a Banach space.

Remark 2. It is easy to see that, in general,
(⋃

{Xα}α∈A, ‖.‖∪{Xα}α∈A

)
is

not a Banach space, in fact it may not even have a linear structure. For example,
for the scale {Lp(0,∞)}1≤p<∞, the set

⋃
{Lp(0,∞)}1≤p<∞ does not have a linear

structure. To see this pick f ≥ 0 such that f ∈ L2 but f /∈ Lp if p 6= 2. Then f and
f2 ∈

⋃
{Lp(0,∞)}1≤p<∞ but f + f2 /∈

⋃
{Lp(0,∞)}1≤p<∞ since∥∥f + f2

∥∥
p
≤ ‖f‖p +

∥∥f2
∥∥

p
≤ 2

∥∥f + f2
∥∥

p
.

Example 1. The scale {Lp(0, 1)}1<p<∞ is not
⋃
−complete,

⋃
{Lp(0, 1)}1<p<∞

is a normed space but it is not complete. It is easy to establish the triangle inequality
for
⋃
{Lp(0, 1)}1<p<∞. Indeed, let f0, f1 ∈

⋃
{Lp(0, 1)}1<p<∞ , and let ε > 0. Then
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there exist p0, p1 > 1, f0
i ∈ Lpi , i = 0, 1, such that ‖fi‖pi

≤ ‖fi‖∪{Lp(0,1)}1<p<∞
+ ε.

Moreover, since f0, f1 ∈ Lmin(p0,p1)(0, 1), we have

‖f0 + f1‖∪{Lp(0,1)}1<p<∞
≤ ‖f0 + f1‖min(p0,p1)

≤ ‖f0‖p0
+ ‖f1‖p1

≤ ‖f0‖∪{Lp(0,1)}1<p<∞
+ ‖f1‖∪{Lp(0,1)}1<p<∞

+ 2ε.

Letting ε → 0 we obtain the triangle inequality. To see that
⋃
{Lp(0, 1)}1<p<∞

is not complete pick f ∈ L1(0, 1) such that f /∈ Lp(0, 1) for p > 1. We can write
f =

∑∞
i=1 fi (in L1), with fi ∈ Lpi , pi ↓ 1, and

∑∞
i=1 ‖fi‖pi

< ∞. Let sn =
∑n

i=1 fi.

Given ε > 0, select n < m so large that
∑m

i=n ‖fi‖pi
< ε, and pick 1 < p < pm.

Then

‖sm − sn‖∪{Lp(0,1)}1<p<∞
≤ ‖sm − sn‖p ≤

m∑
i=n

‖fi‖p

≤
m∑

i=n

‖fi‖pi
< ε.

But f /∈
⋃
{Lp(0, 1)}1<p<∞ .

Example 2. Let 0 < α < 1, I =
{

u ∈ L
α

1−α : u > 0, ‖u‖
L

α
1−α

= 1
}

. Consider

the scale
{
L1(u−1)

}
u∈I

. It follows that I is ordered by

u, v ∈ I, u � v ⇔ v ≤ u a.e.

By Hölder’s inequality and its converse,

(2.2) ‖f‖Lα = inf
{∫

|f |u−1 : u > 0, ‖u‖
L

α
1−α

= 1
}

.

Therefore,
Lα =

⋃{
L1(u−1)

}
u∈I

.

Thus,
⋃{

L1(u−1)
}

u∈I
is not a normed space. The scale

{
L1(u−1dµ)

}
u∈I

is com-
patible since L1(u−1) ⊂ L0, where L0 is the space of all real, almost everywhere
finite valued, Lebesgue−measurable functions. But

{
L1(u−1dµ)

}
u∈I

is not strongly

compatible. In fact, if for some Banach space X we have L1(u−1)
1
⊂ X ∀u ∈ I,

then
‖f‖X ≤ inf

u∈I
‖f‖L1(u−1) = ‖f‖Lα .

Therefore Lα
1
⊂ X, which is not possible since otherwise (Lα)′ 6= {0} .

Suppose that {Xα}α∈A is a strongly compatible scale. Let2∑
{Xα}α∈A =

{∑
α∈A

xα; absolutely in X̃, xα ∈ Xα for some α ∈ A

}
.

We endow
∑
{Xα}α∈A with the norm

‖x‖∑
{Xα}α∈A

:= inf

{∑
α∈A

‖xα‖α : x =
∑
α∈A

xα, xα ∈ Xα for some α ∈ A

}
.

2We use the usual notation of unordered sums (cf. [13]).
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Then
(∑

{Xα}α∈A, ‖.‖∑
{Xα}α∈A

)
is the smallest Banach space with the property

Xβ

1
⊂
∑

{Xα}α∈A (β ∈ A).

The next theorem gives necessary and sufficient conditions for a strongly com-
patible scale to be

⋃
−complete.

Theorem 1. Let {Xα}α∈A be a strongly compatible scale, then
(i)

(⋃
{Xα}α∈A, ‖.‖∪{Xα}α∈A

)
is a normed space if and only if ∀α, β ∈ A,

Xα + Xβ

1
⊂
⋃
{Xα}α∈A.

(ii) The following conditions are equivalent
a.
(⋃

{Xα}α∈A, ‖.‖∪{Xα}α∈A

)
is a Banach space.

b.
⋃
{Xα}α∈A =

∑
{Xα}α∈A.

c. ∀ {αn}n∈N ⊂ A,
∑
{Xαn

}n∈N ⊂
⋃
{Xα}α∈A.

Proof. (i) Suppose that
(⋃

{Xα}α∈A, ‖.‖∪{Xα}α∈A

)
is a normed space. Given

x ∈ Xα + Xβ , ε > 0, we can find a decomposition x = x0 + x1 such that

‖x0‖α + ‖x1‖β ≤ ‖x‖Xα+Xβ
+ ε.

Moreover,

‖x‖∪{Xα}α∈A
= ‖x0 + x1‖∪{Xα}α∈A

≤ ‖x0‖∪{Xα}α∈A
+ ‖x1‖∪{Xα}α∈A

≤ ‖x0‖α + ‖x1‖β .

Combining these two inequalities and letting ε → 0 proves that Xα + Xβ

1
⊂⋃

{Xα}α∈A. Assume now that Xα + Xβ

1
⊂
⋃
{Xα}α∈A. We shall verify that

‖.‖∪{Xα}α∈A
defines a norm on

⋃
{Xα}α∈A. It is plain that

inf
α∈A

‖λx‖α = |λ| inf
α∈A

‖x‖α .

Suppose that for a given x ∈
⋃
{Xα}α∈A we have infα∈A ‖x‖α = 0. Then

0 = inf
α∈A

‖x‖α ≥ ‖x‖∑
{Xα}α∈A

⇒ x = 0 (since ‖.‖∑
{Xα}α∈A

is a norm).

Finally, given x, y ∈
⋃
{Xα}α∈A, and ε > 0, ∃α, β ∈ A such that x ∈ Xα,

y ∈ Xβ , and ‖x‖α ≤ ‖x‖∪{Xα}α∈A
+ ε, ‖y‖β ≤ ‖y‖∪{Xα}α∈A

+ ε. From x + y ∈
Xα + Xβ ⊂

⋃
{Xα}α∈A, it follows that

‖x + y‖∪{Xα}α∈A
≤ ‖x + y‖Xα+Xβ

≤ ‖x‖
α

+ ‖y‖β

≤ ‖x‖∪{Xα}α∈A
+ ‖y‖∪{Xα}α∈A

+ 2ε.

ii) a→b) If
(⋃

{Xα}α∈A, ‖.‖∪{Xα}α∈A

)
is a Banach space, then the inclu-

sion
∑
{Xα}α∈A

1
⊂
⋃
{Xα}α∈A follows directly from the fact

∑
{Xα}α∈A is the

smallest Banach space with the property Xα

1
⊂
⋃
{Xα}α∈A. Conversely, given
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x ∈
⋃
{Xα}α∈A, and ε > 0, there exists α ∈ A such that x ∈ Xα, and ‖x‖α ≤

‖x‖∪{Xα}α∈A
+ ε. It follows that

‖x‖∑
{Xα}α∈A

≤ ‖x‖α ≤ ‖x‖∪{Xα}α∈A
+ ε.

We conclude letting ε → 0.
b→c) trivial.
c→a) By part (i) of this theorem

⋃
{Xα}α∈A is a normed space. We prove

the completeness. Suppose that
∑
‖xn‖∪{Xα}α∈A

< ∞, and let ε > 0. There exist
αn ∈ A such that

‖xn‖αn
≤ ‖xn‖∪{Xα}α∈A

+ ε/2n, n = 1, ...

Therefore

‖xn‖∑
{Xαn}n∈N

≤ ‖xn‖αn
≤ ‖xn‖∪{Xα}α∈A

+ ε/2n,

∑
n

‖xn‖∑
{Xαn}n∈N

< ∞.

By the completeness of
∑
{Xαn

}n∈N there exists x ∈
∑
{Xαn

}n∈N such that
x =

∑
n xn (in

∑
{Xαn

}n∈N sense). Since by hypothesis,∑
{Xαn

}n∈N

1
⊂ ∪{Xα}α∈A.

It follows that

x =
∑

n

xn (in
⋃
{Xα}α∈A).

�

Remark 3. It is plain that the condition (i) in the previous Theorem is equiv-
alent to: ∀α1, · · · , αn ∈ A, Xα1 + · · ·+ Xαn

⊂ ∪{Xα}α∈A.

Remark 4. Combining (i) and (ii) in the previous theorem we see that if A
is finite then

⋃
{Xα}α∈A is a normed space if and only if

⋃
{Xα}α∈A is a Banach

space.

The next corollary follows immediately from Theorem 1:

Corollary 1. Let {Xα}α∈A be a strongly compatible scale. Then
(i) Suppose that for all α0, α1 ∈ A, ∃α ∈ A such that αi � α. Then

⋃
{Xα}α∈A

is a normed space.
(ii) Suppose that ∀ {αn}n∈N ⊂ A, ∃α ∈ A such that αn � α. Then

⋃
{Xα}α∈A

is a Banach space.

Remark 5. The converse to the Theorem 1 is in general not true. For example,
we claim that the scale

{
p

p−1Lp[0, 1]
}

1<p≤2
is strongly compatible and condition (i)

of Theorem 1 is satisfied but
{

p
p−1Lp[0, 1]

}
1<p≤2

is incomparable. To prove this
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claim we first note that by Hardy’s inequality,

‖f‖L log L =
∫ 1

0

f∗(s) log
1
s
ds =

∫ 1

0

f∗∗(s)ds

≤
(∫ 1

0

f∗∗(s)pds

) 1
p

≤ p

p− 1
‖f‖Lp .

Therefore
p

p− 1
Lp[0, 1]

1
⊂ L log L.

Thus
{

p
p−1Lp[0, 1]

}
1<p≤2

is strongly compatible. To show that
{

p
p−1Lp[0, 1]

}
1<p≤2

is incomparable let us suppose that p ≤ q and, moreover, that

(2.3)
q

q − 1
Lq[0, 1]

1
⊂ p

p− 1
Lp[0, 1].

Applying the norm inequality implied by (2.3) to the function χ[0,1] gives p
p−1 ≤

q
q−1 .

Therefore we get q ≤ p. Finally, we prove condition (i): if f = f0 + f1 with
f0 ∈ q

q−1Lq[0, 1], f1 ∈ p
p−1Lp[0, 1], then

‖f‖L log L =
∫ 1

0

(f0 + f1)
∗ (s) log

1
s
ds =

∫ 1

0

(f0 + f1)
∗∗ (s)ds

≤
∫ 1

0

f∗∗0 (s)ds +
∫ 1

0

f∗∗1 (s)ds

≤ q

q − 1
‖f0‖Lq +

p

p− 1
‖f1‖Lp .

This shows that
q

q − 1
Lq[0, 1] +

p

p− 1
Lp[0, 1]

1
⊂ L log L.

We shall now prove that
∑
{Xα}α∈A is in a suitable sense the completition of⋃

{Xα}α∈A.

Theorem 2. Let {Xα}α∈A be a strongly compatible scale and let

Y =
{∑′

x
i
: xi ∈

⋃
{Xα}α∈A

}
(here the sum with a dash (

∑′) is used to indicate that we only consider finite
sums). Equip Y with

‖x‖Y = inf
∑′

‖xi‖∪{Xα}α∈A
.

Then (Y, ‖.‖)Y is a normed space, and for any normed space Z such that
⋃
{Xα}α∈A

1
⊂

Z we have

Y
1
⊂ Z.

Furthermore, if Ŷ denotes the completition of Y then

Ŷ =
∑

{Xα}α∈A.
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Proof. By Theorem 1-(i), it follows readily that ‖.‖Y defines a norm on Y.
Let Z be a normed space such that⋃

{Xα}α∈A

1
⊂ Z.

Then given y ∈ Y, there exist α1, · · · , αn ∈ A such that y =
∑n

1 yαi , and

‖y‖Z ≤
n∑
1

‖yαi
‖

Z
≤

n∑
1

‖yαi
‖αi

≤ (1 + ε) ‖y‖Y .

On the other hand, since Xα

1
⊂ Y

1
⊂ Ŷ , we have∑

{Xα}α∈A

1
⊂ Ŷ .

Conversely, since Y
1
⊂
∑
{Xα}α∈A and

∑
{Xα}α∈A is a Banach space it follows

that
Ŷ

1
⊂
∑

{Xα}α∈A.

�

Corollary 2. Let {Xα}α∈A be a strongly compatible scale such that
⋃
{Xα}α∈A

is a normed space. Let Z be a subspace which is dense in each Xα, α ∈ A. Then,
for all x ∈ Z, we have

‖x‖∑
{Xα}α∈A

= inf
α∈A

‖x‖α .

3. Examples

For future reference and, moreover, in order to give the reader a better idea
of the scope of the theory we are developing in this paper, we now illustrate with
concrete examples how the constructions given in the previous section are connected
with familiar mathematical objects studied in functional and harmonic analysis.

3.0.1. Banach Lattices. Our first example deals with
∑
−
⋃

constructions
in the setting of lattices. Our basic reference here is [15].

Let (Ω, µ) be a σ−finite measure space. Let L0 = L0 (Ω, µ) denote the space
of all real µ−almost everywhere finite valued µ−measurable functions on Ω, with
the usual identification of µ−almost equal functions. We shall say that a linear
subspace X = X(Ω) ⊂ L0 is a Banach lattice if the following properties are
satisfied
(3.1)

1) If |x| ≤ |y| , x ∈ L0, y ∈ X ⇒ x ∈ Y and ‖x‖X ≤ ‖y‖X (Lattice property)
2) 0 ≤ xn ↑ x µ− a.e. ⇒ ‖xn‖X ≤ ‖x‖X (Fatou property)
3) ∃x ∈ X such that x(ω) > 0 a.e. ω ∈ Ω.
4) For all A ⊂ Ω s.t. µ(A) < ∞⇒ χA ∈ X.

The associate space X ′ is the Banach lattice defined by

X ′ =

w ∈ L0 : ‖w‖X′ = sup
{x∈X:‖x‖X≤1}

∫
Ω

|xw| dµ < ∞

 .

It is well known that X ′′ = X, in particular

(3.2) ‖x‖X = sup
{∫

Ω

|xw| dµ : w ∈ X ′, ‖w‖X′ ≤ 1
}

.
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We summarize our findings using the language of scales:

Lemma 1. Let I = {w ∈ X ′ : w ≥ 0, ‖w‖X′ ≤ 1} , and consider the scale
{
L1(w)

}
w∈I

.
Then

(i) X = ∆
{
L1(w)

}
w∈I

.
(ii)

{
L1(w)

}
w∈I

is a ∆−total scale.
(iii) The order in I is given by w � u ⇔ w ≤ u, µ−a. e.

Proof. (i) Follows from (3.2).

(ii) From X
1
⊂ L1(w), ∀w ∈ I, we get X ⊂

⋂
w∈I L1(w). Conversely,

x ∈
⋂
w∈I

L1(w) ⇒ x ∈ L1(w), ∀w ∈ I

⇒ |x|w ∈ L1, ∀w ∈ I

⇒ x ∈ X ′′ = X.

(iii) Remark that given w, u ∈ I such that w � u, then for all measurable sets A
we have ∫

A

w ≤
∫

A

u.

This implies w ≤ u. Since the converse is trivial we have shown that w � u⇔ w ≤ u,
µ−a.e. �

3.1. p−Convex and q−Concave spaces. Our basic references in what fol-
lows are [23] and [15]. In this section given a Banach lattice X we let

X+ := {w ∈ X : w > 0 µ− a.e.} .

3.1.1. p−Convex spaces. Let p ≥ 1. Recall that a Banach lattice X is said to
be p−convex if there exists a positive constant C > 0 such that ∀x1, ...., xn ∈ X we
have ∥∥∥∥∥∥

(
n∑

i=1

|xi|p
)1/p

∥∥∥∥∥∥
X

≤ C

(
n∑

i=1

‖xi‖p
X

)1/p

.

Since the constant C will play no role in what follows, we assume without loss of
generality that C = 1.

Let X be a Banach lattice and let p ≥ 1. Recall the following well known
constructions

Xp = {x : |x|1/p ∈ X},

‖x‖Xp =
∥∥∥|x|1/p

∥∥∥p

X
.

Note that
X is p− convex ⇔ Xp is a Banach lattice.

Moreover, the associate space (Xp)′ is also a Banach lattice.

Example 3. If X = Lp(w) with p > 2, then X is 2−convex and(
X2
)′

= Lp∗(w1−p∗), where p∗ =
p

p− 2
.

The import of these concepts for our purposes here stems from the following
elementary fact:
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Theorem 3. Let 1 ≤ p < ∞, and X be a p−convex space, let I =
{

w ∈
(
(Xp)′

)+
, ‖w‖(Xp)′ ≤ 1

}
.

Then
(i) {Lp(w)}

w∈I
is a ∆−total scale such that w � u ⇔ w ≤ u, µ− a.e.

(ii) X = ∆{Lp(w)}
w∈I

.

Proof. (i) Since X ⊂ Lp(w), ∀w ∈ I, it follows that X ⊂
⋂

w∈I

Lp(w). Con-

versely, if y ∈ Lp(w) then ∀w ∈
(
(Xp)′

)+
we have |y|p w ∈ L1 and therefore |y|p ∈

(Xp)′′ = Xp, which implies that y ∈ X. Finally, the fact that w � u ⇔ w ≤ u, can
be proved as in Lemma 1.

(ii) Let x ∈ X, then |x|p ∈ Xp, and

‖x‖p
X = ‖|x|p‖Xp .

Therefore,

‖x‖p
X = sup

{w∈((Xp)′)+:‖w‖(Xp)′≤1}

∫
Ω

|x|p wdµ.

�

3.1.2. q−Concave spaces. Let q ≥ 1. A Banach lattice X is said to be q−concave
if there exists a positive constant C > 0 such that ∀x1, ...., xn ∈ X we have(

n∑
i=1

‖xi‖q
X

)1/q

≤ C

∥∥∥∥∥∥
(

n∑
i=1

|xi|q
)1/q

∥∥∥∥∥∥
X

.

Since the constant C will play no role in what follows, we assume without loss of
generality that C = 1.

Let 1 < p, q < ∞, 1/p + 1/q = 1. Let X̂q be defined by

X̂q =
{

x ∈ L0 : |x|1/p |g|1/q ∈ X, ∀g ∈ L1
}

endowed with the norm

‖x‖X̂q
= sup
‖g‖L1≤1

∥∥∥|x|1/p |g|1/q
∥∥∥

X
.

The next result follows easily from the definitions, but we provide the proof for
the sake of completeness.

Theorem 4. Let 1 < q ≤ ∞, and let X be a q−concave space, then
(
X̂q, ‖x‖X̂q

)
is a Banach lattice such that (

X̂q

)′
= (X ′)p

.

(Notice that X̂∞ = X).

Proof. Since

X is q − concave ⇔ X ′ is p− convex,

it follows that (X ′)p and Z =
(
(X ′)p)′ are both Banach lattices. Moreover,

Z ′ =
(
(X ′)p)′′ = (X ′)p

.
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Therefore we only need to prove that Z = X̂q. But

x ∈ X̂q ⇔ |x|1/p |g|1/q ∈ X, ∀g ∈ L1

⇔ |x|1/p
g ∈ X, ∀g ∈ Lq

⇔ |x|1/p
gy ∈ L1, ∀y ∈ X ′, ∀g ∈ Lq

⇔ |x|1/p
y ∈ Lp, ∀y ∈ X ′

⇔ x |y|p ∈ L1, ∀y ∈ X ′

⇔ x ∈
(
(X ′)p)′ = Z.

The equality ‖.‖X̂q. = ‖.‖Z follows by taking supremum over all g, y, such that
‖g‖L1 ≤ 1 and ‖y‖X′ ≤ 1. �

Example 4. If X = Lp(w) with 1 < p < 2, then X is 2−concave and

X̂2 = Lp∗(w1+p∗), where p∗ =
p

2− p
.

If X is q−concave then X ′ is p−convex, therefore combining Theorem 3 and
Theorem 4, we have

‖x‖X′ = sup{
w∈(((X′)p)′)+:‖w‖((X′)p)′≤1

}
(∫

Ω

|x|p wdµ

) 1
p

= sup{
w∈(X̂q)+

:‖w‖
(X̂q)+

≤1

}
(∫

Ω

|x|p wdµ

) 1
p

.

By duality we have

i) if ‖w‖X̂q
= 1 ⇒ Lq(w1−q)

1
⊂ X,

ii) ∀x ∈ X, ∃w ∈
(
X̂q

)+

with ‖w‖X̂q = 1 such that ‖x‖X = ‖x‖Lq(w1−q) .

To see the second claim take y ∈ (X ′)+ with ‖y‖X′ = 1 and such that ‖x‖X =∫
xydµ, then let u be defined by x = ‖x‖X y

1
q−1 u.

We have thus proved the following

Theorem 5. Let X be a q−concave space, let I =
{

w ∈
(
X̂q

)+

, ‖w‖X̂q
≤ 1
}

.

Then
(i)
{
Lq(w1−q)

}
w∈I

is a
⋃
−complete scale, such that w � u ⇔ u ≤ w, µ− a.e.

(ii) X =
⋃{

Lq(w1−q)
}

w∈I
.

Remark 6. Note that in this case if w � u then for all measurable sets A∫
A

w1−q ≤
∫

A

u1−q ⇔ w1−q ≤ u1−q ⇔ u ≤ w.
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3.2. Beurling Spaces. Our basic reference for this section is [5].
Let Π be a locally compact Abelian group with Haar invariant measure dx.

Let Ω be a subcone of the cone of strictly positive functions w on Π which are
measurable, and summable respect to dx. Consider a norm N(w) on Ω such that

(3.3) 0 <

∫
wdx ≤ N(w) < ∞, for all w ∈ Ω,

and, moreover, such that Ω is complete in the following sense: for any sequence
{wn}n ⊂ Ω such that

∑
n N(wn) < ∞ it follows that w =

∑
n wn ∈ Ω, and

N(w) ≤
∑

n N(wn). Let Ω0 = {w : w ∈ Ω and N(w) = 1}.
Let 1 < p, q < ∞, 1/p + 1/q = 1, Beurling’s spaces are defined by

Ap =

{
F ∈

⋃
w∈Ω0

Lp(w1−p) : ‖F‖Ap = inf
w∈Ω0

‖F‖Lp(w1−p) < ∞

}
,

Bq =

{
G ∈

⋂
w∈Ω0

Lq(w) : ‖G‖Bp = sup
w∈Ω0

‖G‖Lq(w) < ∞

}
,

where ‖f‖Lr(w) =
(∫
|f |r w

)1/r. It follows readily from the definitions that Bq is
a Banach space. The same is true of (Ap, ‖.‖Ap), but, as it often happens with

⋃
constructions, the proof that Ap is a Banach space requires more effort. Indeed,
Beurling’s approach (cf. [5]-Theorem 1) to this problem is to find a new expression
for ‖·‖Ap :

‖F‖Ap = inf
w∈Ω

W (F,w)

where

W (F,w) =
1
p
‖F‖p

Lp(w1−p) +
1
q
N(w).

This allows Beurling to see that (Ap, ‖.‖Ap) is a Banach space and in fact Beurling
proves that

(Bq)′ = Ap.

Remark 7. In our context Beurling’s results can be restated as follows: the
scale {Lq(w)}w∈Ω0

is ∆−total, and the scale Lp(w1−p)w∈Ω0 is
⋃
−complete.

Remark 8. If we assume that Ω is closed under convolution, and the norm N
satisfies

N(w1 ∗ w2) ≤ N(w1)N(w2), w1, w2 ∈ Ω,

then Ap is a Banach algebra under addition and convolution.

Remark 9. Although in our discussion we assumed for convenience that 1 <
p < ∞, it is also possible to consider in a similar fashion the limiting cases p = 1
and p = ∞ (cf. [5]).

3.3. Rearrangement invariant Banach Lattices. We return to the study
of Banach lattices (cf. Section 3.0.1 above) but here we assume additionally that
our spaces are rearrangement invariant. Our basic references for this section are [4]
and [14].

A Banach lattice X over (R+, dx) (dx =Lebesgue measure) will be called re-
arrangement invariant if the following property is satisfied:

f ∈ X ⇔ f∗ ∈ X and ‖f‖X = ‖f∗‖X .
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(Here f∗(t) = inf {λ > 0 : m {x ∈ R+ : |f(x)| > λ} ≤ t} is the so-called non-increasing
rearrangement of f ).

We let Xd denote the cone of all non-negative and non-increasing functions
(briefly decreasing functions) of X.

The associate space X ′ is given by

(3.4) X ′ =

{
f ∈ L0 : ‖g‖X′ = sup

‖f‖X≤1

∫ ∞

0

f∗(x)g∗(x)dx < ∞

}
.

X ′ is also a rearrangement invariant Banach lattice and

(3.5) X ′′ = X.

Given a decreasing function w, the Lorentz space associated to w is the
rearrangement invariant Banach lattice defined by (cf. [17]):

Λ(w) =
{

f ∈ L0 : ‖f‖Λ(w) =
∫ ∞

0

f∗(x)w(x)dx < ∞
}

.

It follows readily from (3.4) that

Lemma 2. Let X be a rearrangement invariant Banach lattice, and let I ={
w ∈ (X ′)d : ‖w‖X′ ≤ 1

}
. Then {Λ(w)}w∈I is a ∆−total scale, X = ∆{Λ(w)}w∈I ,

and w � u ⇔ w ≺ u, where ≺ is the Hardy-Littlewood order (i.e. w ≺ u ⇔
∫ r

0
w ≤∫ r

0
u, ∀r > 0).

Proof. Let w, u ∈ I, then w � u implies that

(3.6)
∫ r

0

w =
∥∥χ[0,r)

∥∥
Λ(w)

≤
∥∥χ[0,r)

∥∥
Λ(u)

=
∫ r

0

u, ∀r > 0.

But since w, u are decreasing (3.6) is equivalent to w ≺ u in the Hardy-Littlewod
order.

To prove that {Λ(w)}w∈I is a ∆−total scale note that

X ⊂ Λ(w) ∀w ∈ I ⇒ X ⊂
⋂
w∈I

Λ(w).

Conversely, suppose that y ∈
⋂

w∈I

Λ(w), then y ∈ Λ(w) ∀w ∈ (X ′)d ⇔ y∗ ∈ Λ(w)

∀w ∈ (X ′)d
. This means that

y∗w ∈ L1 ∀w ∈ (X ′)d

thus
y∗ ∈ X ′′ = X.

Therefore, since X is a rearrangement invariant Banach lattice, we have y ∈ X. �

Let w be a decreasing function. The Marcinkiewicz space M(w) associated
to w is the rearrangement invariant Banach lattice defined by:

M(w) =

{
f ∈ L0 : ‖f‖M(w) = sup

x>0

∫ x

0
f∗(t)dt∫ x

0
w(t)dt

< ∞

}
.



EXTRAPOLATION METHODS 15

In particular, given f ∈ X we can consider the Marcinkiewicz space M(f∗).
Then

‖f‖M(f∗) = sup
x>0

∫ x

0
f∗(t)dt∫ x

0
f∗(t)dt

= 1.

Consequently f ∈ M(f∗). Moreover, if g ∈ M(f∗) then

(3.7)
∫ x

0

g∗(t)dt ≤ ‖g‖M(f∗)

∫ x

0

f∗(t)dt.

Therefore (cf. [9]) g ∈ X. Thus, M(f∗)
1
⊂ X for all f ∈ X. But from (3.7) we have

‖g‖X ≤ ‖g‖M(f∗) ‖f‖X .

If we set f = g/ ‖g‖M(f∗) the inequality above becomes an equality. Therefore we
have

‖g‖X = inf
{f∈X:‖f‖X=1}

‖g‖M(f∗) .

Hence we have proved that

Theorem 6. Let X be a rearrangement invariant Banach lattice, and let I ={
w ∈ Xd, ‖w‖X ≤ 1

}
. Then,

X =
⋃
{M(w)}w∈I .

{M(w)}w∈I is a
⋃
−complete scale such that w � u ⇔ u ≺ w (Hardy-Littlewood

order).

4. The Jawerth-Milman Theory

In the extrapolation theory developed in [13] and [19] and the references therein
one also finds two basic functors ∆ and

∑
. In this section we show how our setting

unifies the theory of Jawerth-Milman with the theory of Rubio de Francia.
Our basic references in this section are [13] and [19].
We need the following technical Lemma (cf. [16] Example 23.3 (iv)), whose

proof we include for the sake of completeness.

Lemma 3. Let (Ω, µ) be a finite measure space. Let {fα}α∈A ⊂ L1 (Ω, µ) be a
family of non-negative functions. The following statements hold:

(i) If for each α0, α1 ∈ A, ∃β ∈ A such that fα0 ≤ fβ and fα1 ≤ fβ (µ−a.e.).
Then

sup
α∈A

∫
fαdµ =

∫
sup
α∈A

fαdµ.

(ii) If for each α0, α1 ∈ A, ∃β ∈ A such that fα0 ≥ fβ and fα1 ≥ fβ (µ−a.e.).
Then

inf
α∈A

∫
fαdµ =

∫
inf
α∈A

fαdµ.

Proof. (i) First assume that the functions fα are uniformly bounded; 0 ≤
fα ≤ M , µ−a.e. on Ω. Then the set of numbers{∫

fαdµ : α ∈ A

}
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is bounded by Mµ (Ω) and therefore P = supα∈A

∫
fαdµ is a finite number. Pick

an increasing sequence {fαn}n∈N such that∫
fαndµ ↑ P as n →∞.

The pointwise supremum f0(x) = sup fαn(x) is a µ−measurable function such that∫
f0dµ = P, moreover every fα satisfies fα(x) ≤ f0(x) µ−a.e. This shows that

f0 = supα∈A fα. If the f ′αs are not necessarily bounded on Ω, then for n = 1, 2. . . .
we consider the functions fα,n = inf(fα, n). Then fn = sup {fα,n : α ∈ A} exists in
L0 (Ω, µ), and it follows readily that

f0 = sup {fα,n : α ∈ A, n = 1, 2. . . .} = sup
α∈A

fα.

(ii) If fα0 ∈ {fα}α∈A, then the set {fα : fα ≤ fα0} has the same lower bounds as
the set {fα}α∈A . Therefore it is sufficient to prove that {fα : fα ≤ fα0} has an
infimum. To this end note that the set

{fα0 − fα : fα ≤ fα0}

satisfies 0 ≤ fα0 − fα ≤ fα0 and therefore w = sup {fα0 − fα} exists by part (i) of
the theorem. But then we have

fα0 − w = inf
α∈A

fα.

�

Remark 10. Note that the supremum (resp. the infimum) of the set {fα}α∈A

is obtained as the supremum (resp. the infimum) of an appropriate countable subset.
Note also that the lemma above can be immediately extended to the case that (Ω, µ)
is σ−finite.

Consider the following example

Example 5. (Yano’s Extrapolation Theorem (cf. [25])). Let T : Lp[0, 1] →
Lp[0, 1] be a bounded linear operator such that ‖T‖L(Lp[0,1],Lp[0,1]) ≤

c
p−1 , p > 1.

Then
T : LLogL[0, 1] → L1[0, 1] is bounded.

Proof. We consider the following strongly compatible scales
{

1
p−1Lp[0, 1]

}
p>1

and {Lp[0, 1]}p>1 . By Theorem 1-1
⋃{

1
p−1Lp[0, 1]

}
p>1

, and
⋃
{Lp[0, 1]}p>1 are

normed spaces. By Corollary 2, if f ∈
⋂
{Lp[0, 1]}p>1 ,

‖f‖∑{ 1
p−1 Lp[0,1]}

p>1
= inf

p>1

1
p− 1

‖f‖p .

Now, since Lp,1[0, 1]
p1−1/p

⊂ Lp[0, 1], we have

inf
p>1

1
p− 1

‖f‖p ≤ inf
p>1

p1−1/p

p− 1
‖f‖p,1 .

Thus
p1−1/p

p− 1
‖f‖p,1 =

p1−1/p

p− 1

∫ 1

0

t1/p−1f∗(t)dt ≤ p

p− 1

∫ 1

0

t1/p−1f∗(t)dt.
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But the family
{

pt1/p−1

p−1 ; (0 < t < 1)
}

p>1
satisfies the hypothesis of Lemma 3, hence

inf
p>1

∫ 1

0

pt1/p−1

p− 1
f∗(t)dt =

∫ 1

0

inf
p>1

pt1/p−1

p− 1
f∗(t)dt.

On the other hand, since 0 < t < 1,

inf
p>1

p

p− 1
t1/p−1 = inf

0<θ<1

1
θtθ

= log
1
t
,

(where θ = 1− 1/p). Hence

inf
p>1

p

p− 1
‖f‖p ≤

∫ 1

0

f∗(t) log
1
t
dt.

Let P be Hardy’s operator (cf. 7.3) then it is well-known that

‖Pf‖p ≤
p

p− 1
‖f‖p .

Now

‖Pf∗‖1 = inf
p>1

‖Pf∗‖p ≤
∫ 1

0

f∗(t) log
1
t
dt,

and by Fubini

‖Pf∗‖1 =
∫ 1

0

1
t

∫ t

0

f(s)dsdt =
∫ 1

0

f∗(t) log
1
t
dt.

So we have proved that if f ∈
⋂
{Lp[0, 1]}p>1 then

‖f‖∑{ 1
p−1 Lp[0,1]}

p>1
=
∫ 1

0

f∗(t) log
1
t
dt = ‖f‖L log L .

Now using that
⋂
{Lp[0, 1]}p>1 is dense in each Lp[0, 1], we conclude that

T : LLogL[0, 1] → L1[0, 1] is bounded.

�

Let A be a Banach pair, and let ρ be a quasi-concave function, the space Aρ,1,J

consists of all a ∈
∑

(A) such that

‖a‖Aρ,1,J
= inf

u

∫ ∞

0

J(t, u(t);A)
ρ(t)

dt

t
< ∞,

where the infimum is taken over all representations a =
∫∞
0

u(t)dt
t (with conver-

gence in
∑

(A), u(t) : (0,∞) → ∆(A) strongly measurable), and where the J-
functional is defined by

J(t, a;A) = max
{
‖a‖A0

, t ‖a‖A1

}
.

Theorem 7. (cf. [13] Theorem 3.1) Let {ρθ}θ∈(0,1) a family of quasi-concave
functions. If supθ ρθ(t) = ρ(t) < ∞, then

(4.1)
∑

θ
Aρθ,1,J = Aρ,1,J .
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In order to recover this result using unions instead of sums, consider for each
{θ1, . . . , θn} ⊂ (0, 1) the set

(4.2) A = {φ = sup {ρθ1 , . . . , ρθn} : n ∈ N} .

Note that A is a set of quasi-concave functions such that {ρθ}θ∈(0,1) ⊂ A. Moreover,
by Theorem 2,

⋃{
Aφ,1,J

}
φ∈A

is a normed space. Now, A0

⋂
A1 is dense in each

Aφ,1,J , therefore, by Corollary 2, if x ∈ A0

⋂
A1,

‖x‖∑{Aρθ,1,J}
θ∈(0,1)

= ‖x‖∑{Aφ,1,J}
φ∈A

= inf
φ∈A

‖x‖φ

= inf
φ∈A

inf
u

∫ ∞

0

J(t, u(t);A)
φ(t)

dt

t

= inf
u

inf
φ∈A

∫ ∞

0

J(t, u(t);A)
φ(t)

dt

t

= inf
u

∫ ∞

0

inf
φ∈A

J(t, u(t);A)
φ(t)

dt

t
(by Lemma 3)

= inf
u

∫ ∞

0

J(t, u(t);A)
supφ∈A φ(t)

dt

t
.

Since φ = sup {ρθ1 , . . . , ρθn} , it is plain that supθ ρθ = supφ∈A φ. Thus∫ ∞

0

J(t, u(t);A)
supφ∈A φ(t)

dt

t
=
∫ ∞

0

J(t, u(t);A)
supθ ρθ(t)

dt

t

=
∫ ∞

0

inf
θ

J(t, u(t);A)
ρθ(t)

dt

t
.

So we have proved that

inf
φ∈A

‖x‖Aφ,1,J
= ‖x‖Aρ,1,J

.

Since A0

⋂
A1 is dense in each Aφ,1,J we obtain⋃{

Aφ,1,J

}
φ∈A

=
∑

θ
Aρθ,1,J = Aρ,1,J .

It is also known (cf. [13]) that if we work with the classical real interpolation
spaces (A0, A1)θ,q,K , and M is a tame function in the sense that M(θ) ' M(2θ),
for θ close to 0, and M(θ) ' M(1−2(1−θ)), for θ close to 1, then for all 1 ≤ q ≤ ∞,∑{

M(θ) (A0, A1)θ,q;K

}
0<θ<1

=
∑{

M(θ) (A0, A1)θ,1;J

}
0<θ<1

.

Since A0

⋂
A1 is dense in each Aθ,1,J , we have that if x ∈ A0

⋂
A1,

‖x‖∑{M(θ)(A0,A1)θ,q;K}0<θ<1
= inf

φ∈A
‖x‖Aφ,1,J

where the set A is defined as in (4.2).
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5. Operators ∆ and
∑
−factorizable: basic concepts

In this section we initiate the study of extrapolation of operators acting on
families of spaces. This study can be considerably simplified for operations that
satisfy suitable conditions which we shall call “factorizations”. The import of these
notions for extrapolation of inequalities should become clear in the next section.
For this reason, rather than to read through all the definitions of all the different
types of factorizations at once, we suggest to the reader that after going through
Definition 1 she/he should go directly to Theorem 8 below and section 6 and, in
particular, to the proof of the extrapolation Theorem 10 in that section (and return
back and forward to this section as needed).

Let {Xw}w∈I0 and {Yν}ν∈I1 two scales. Suppose that T : ∆{Xw}w∈I0 →
∆{Yν}ν∈I1 (resp. T :

⋃
{Xw}w∈I0 →

⋃
{Yν}ν∈I1), is a bounded operator. We then

ask what can be said about the action of T on each of the spaces of the family
{Xw}w∈I0 , {Yν}ν∈I1? Conversely, how many estimates on members of the family
are needed to guarantee that an operator is bounded on ∆ (resp

⋃
)?

In this context the following definition is very natural. Let {Xw}w∈I be a
scale. A subset J ⊂ I will be called ∆−abundant if ∆ {Xw}w∈J ' ∆ {Xw}w∈I .

Analogously J ⊂ I will be called
⋃
−abundant3 if

⋃
{Xw}w∈J '

⋃
{Xw}w∈I .

Example 6. Let X be a Banach Lattice and let I = {w ∈ X ′ : w ≥ 0, ‖w‖X′ ≤ 1} .

By Lemma 1)
{
L1(w)

}
w∈I

is a ∆−total scale and X = ∆
{
L1(w)

}
w∈I

. Then the
sets

J0 = {w ∈ X ′ : w > 0, ‖w‖X′ ≤ 1} and J1 = {w ∈ X ′ : w ≥ 0, ‖w‖X′ ≤ 2}

are ∆−abundant.

Proof. J0 is abundant: Given ε > 0, and x ∈ X, ∃w ≥ 0, ‖w‖X′ ≤ 1 such
that ∫

Ω

|x|wdµ + ε ≥ ‖x‖X .

By (3.1) (3) there exists u ∈ X ′, u > 0, such that ‖u‖X′ ≤ 1. Therefore

‖x‖X ≤
∫

Ω

|x|wdµ + ε ≤
∫

Ω

|x| (w + εu)dµ + ε

≤ ‖(w + εu)‖X′ sup
{w∈X′:w>0 ‖w‖X′≤1}

‖x‖L1(w) + ε

≤ (1 + ε) sup
{w∈X′:w>0 ‖w‖X′≤1}

‖x‖L1(w) + ε.

It is plain that J1 is abundant. �

We now give several definitions of factorizations. We suggest to the reader that
right after reading Definition 1 she/he goes directly to Theorem 8 and to Section
6, and returns here for more definitions as needed.

Definition 1. Let {Xw}w∈I0 , {Yν}ν∈I1 be two compatible scales and let T be
a bounded linear operator

T : ∆ {Xw}w∈I0
→ ∆{Yν}ν∈I1 .

3If the operation ∆ or
⋃

is clear from the context we simply say that a set J is “abundant”.
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We shall say that T is strongly ∆−factorizable if ∃C(T ) > 0 such that ∀ν ∈ I1,
∃w ∈ I0 such that

(i) T can be extended to a bounded operator T : Xw → Yν with norm ≤ C(T ).
(ii) ‖T‖L(∆{Xw}w∈I0

,∆{Yν}ν∈I1) ≤ C(T ).

(iii) The set

J = {w ∈ I0 : (ν, w) satisfies (i) above for some ν ∈ I1}
is ∆−abundant.

We shall say that T is ∆−factorizable if ∀ν ∈ I1, ∃w ∈ I0 such that
(i) T can be extended to a bounded operator T : Xw → Yν .
(ii) The set

J = {w ∈ I0 : (ν, w) satisfies (i) above for some ν ∈ I1}
is ∆−abundant.

Definition 2. Suppose that T is a bounded linear operator

T : ∆{Xw}w∈I0 → ∆{Xw}w∈I0 .

We shall say that T is strongly ∆−diagonal factorizable if ∃C(T ) > 0 such
that ∀w ∈ I0, ∃w̃ ∈ I0 such that

(i) T can be extended to a bounded operator T : Xw̃ → Xw̃ with norm ≤ C(T ).
(ii) Moreover ‖T‖L(∆{Xw}w∈I0 ,∆{Xw}w∈I0) ≤ C(T ).
(iii) The set

J = {w̃ ∈ I0 : w is associated with some w ∈ I0 as in (i)}
is ∆−abundant.

Definition 3. Let {Xw}w∈I0 , {Yν}ν∈I1 be two
⋃
−complete scales, and let T

be a bounded linear operator,

T :
⋃
{Xw}w∈I0

→
⋃
{Yν}ν∈I1 .

We shall say that T is strongly
∑
−factorizable if ∃C(T ) > 0 such that ∀w ∈ I0,

∃ν ∈ I1 such that
(i) T : Xw → Yν , with ‖T‖Xw→Yν

≤ C(T ).
(ii) ‖T‖L(∪{Xw}w∈I0

,∪{Yν}ν∈I1) ≈ C(T ).

(iii) The set

J = {ν ∈ I1 : (w, ν) satisfies (i) for some w ∈ I0}
is
⋃
−abundant.
We shall say that T is

∑
−factorizable if ∀w ∈ I0, ∃ν ∈ I1 such that

(i) T : Xw → Yν is bounded.
(ii) The set J = {ν ∈ I1 : (w, ν) satisfies (i) above for some w ∈ I0} is

⋃
–

abundant.

Definition 4. Suppose that T is a bounded linear operator

T :
⋃
{Xw}w∈I0

→
⋃
{Xw}w∈I0

.

We shall say that T is strongly
∑
−diagonal factorizable if ∃C(T ) > 0 such

that ∀w ∈ I0, ∃w̃ ∈ I0 such that
(i) T : Xw̃ → Xw̃, ‖T‖Xw̃→Xw̃

≤ C(T ).
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(ii) ‖T‖L(∪{Xw}w∈I0
,∪{Xw}w∈I0)

≈ C(T ).

(iii) The set J = {w̃ ∈ I0 : associated with some index w ∈ I0 as in (i)} is
⋃

–
abundant.

We shall say that T is
∑
−diagonal factorizable if ∀w ∈ I0, ∃w̃ ∈ I0 such

that
(i) ∀w ∈ I0, ∃w̃ ∈ I0 such that T : Xw̃ → Xw̃ is bounded.
(ii) The set J = {w̃ ∈ I0 : associated with some index w ∈ I0 as in (i)} is

⋃
–

abundant.

Remark 11. When we work with scales of Banach lattices the definitions above
also make sense when dealing with quasi-linear operators.

In the next section we show that for strongly factorizable operators it is possi-
ble to reconstruct the “indexed” norm inequalities for T from the estimates of T on
extrapolation spaces and conversely. We shall exploit this idea to prove “extrapo-
lation theorems”.

Remark 12. If an operator T satisfies that ∀ν ∈ I1, ∃w ∈ I0 such that T :
Xw → Yν is bounded, and the set

J = {w ∈ I1 : such that T : Xw → Yν is bounded for some ν ∈ I1}
is ∆−abundant, then it is not necessarily true that T is bounded from ∆ {Xw}w∈I0

to ∆{Yν}ν∈I1 . For example, consider the scale {Lp [0, 1]}1≤p<∞ and the operator

Qf(x) =
∫ 1

x
f(s)ds

s , then Q : Lp [0, 1] → Lp [0, 1] is bounded for all 1 ≤ p <
∞, thus Q is defined from the linear space

⋂
1≤p<∞ Lp [0, 1] to the linear space⋂

1≤p<∞ Lp [0, 1] . However Q is not bounded if we endow
⋂

1≤p<∞ Lp [0, 1] with
the ∆−norm ‖f‖∆{Lp[0,1]}1≤p<∞

:= sup
1≤p<∞

‖f‖p , since sup
1≤p<∞

∥∥Qχ[0,1]

∥∥
p

= ∞. The

point here is that {Lp [0, 1]}1≤p<∞ is not a ∆−total scale (see Remark 1).
In other words we need some type of control of the norm to be able to extrapolate

when we work with non ∆−total scales, notice that in the previous example the norm
of Q blows up like p as p →∞.

For ∆−total scales on the other hand we have the following

Theorem 8. Let {Xw}w∈I0
, {Yν}ν∈I1 two ∆−total scales. If T is a linear

operator which satisfies that ∀ν ∈ I1, ∃w ∈ I0 such that
(i) T : Xw → Yν is bounded.
(ii) The set {w ∈ I0 : (ν, w) satisfy (i) above for some ν ∈ I1} is ∆−abundant.
Then

T : ∆ {Xw}w∈I0
→ ∆{Yν}ν∈I1 is bounded.

Proof. It is clear that T is defined from the linear space
⋂

w∈I0
Xw to the

linear space
⋂

ν∈I1
Yν . Since the scales are ∆−total, if we consider on

⋂
w∈I0

Xw

(resp. on
⋂

ν∈I1
Yν) the usual norm, then⋂
w∈I0

Xw = ∆ {Xw}w∈I0
and

⋂
ν∈I1

Yν = ∆{Yν}ν∈I1 .

On the other hand, since by hypothesis ∀ν ∈ I1, the set J(ν) = {w ∈ I0 such
that T : Xw → Yν is bounded } is not empty and J =

⋃
ν∈I1

J(ν) is ∆−abundant,
we have

∆ {Xw}w∈I0
= ∆ {Xw}w∈J .
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To prove that T is continuous, we use the closed graph theorem. Suppose that
‖xn‖∆{Xw}w∈J . → 0 and ‖Txn − y‖∆{Yν}ν∈I1

→ 0 for some y ∈ ∆{Yν}ν∈I1 . For

every ν ∈ I1 select w ∈ J , then since ∆{Xw}w∈J

1
⊂ Xw we have ‖xn‖Xw

→ 0 and
‖Txn − y‖Yν

→ 0, which implies that y = 0 since T : Xw → Yν is bounded. �

For the next result we shall consider strongly compatible scales {Zw}w∈I such
that each Zw is reflexive, ∆ {Zw}w∈I is dense in each Zw, (this ensures that the
scale {Z∗w}w∈I is strongly compatible). Let us also assume that ∆ {Z∗w}w∈I is dense
in each Z∗w. Then we have the following:

Theorem 9. Let {Xw}w∈I0
, {Yν}ν∈I1 be two

⋃
−total scales, as above. If T is

a linear operator which satisfies that ∀w ∈ I0, ∃ν ∈ I1, such that
(i) T : Xw → Yν is bounded.
(ii) The set {ν ∈ I1 : (ν, w) satisfy (i) above for some w ∈ I0} is

⋃
−abundant.

Then

T :
⋃
{Xw}w∈I0

→
⋃
{Yν}ν∈I1 is bounded.

Proof. Since J(w) = {ν ∈ I1 such that T : Xw → Yν is bounded} is not empty
and J =

⋃
w∈I0

J(w) is
⋃
−abundant we get⋃
{Yν}ν∈I1 =

⋃
{Yν}ν∈J =

∑
ν∈J

Yν .

Since there is a common dense subset (cf. [13] chapter 5)

(⋃
{Yν}ν∈I1

)∗
=

(∑
ν∈J

Yν

)∗
= ∆{Y ∗

ν }ν∈J .

Thus {Y ∗
ν }ν∈J is a ∆−total. Similarly we also have that(⋃

{Xw}w∈I0

)∗
= ∆{X∗

w}w∈I0 .

Considering now the scales {Y ∗
ν }ν∈J and {X∗

w}w∈I0 , it follows readily that the
operator T ∗ satisfies the hypothesis of Theorem 8, hence

T ∗ : ∆{Y ∗
ν }ν∈J → ∆{X∗

w}w∈I0.

is bounded. Since each Xw (resp. Yν) has a common dense subset, we have that (cf.
[10]) (∆{X∗

w}w∈I0.)
∗ =

∑
w∈I0

X∗∗
w =

∑
w∈I0

Xw (resp. (∆{Y ∗
ν }ν∈J)∗ =

∑
ν∈J Yν

), thus

T :
⋃
{Xw}w∈I0

→
⋃
{Yν}ν∈I1 is bounded.

�

Remark 13. If we work with scales of Banach lattices, then X∗ = X ′, Y ∗ = Y ′.
The adjoint operator T ∗ X ′ → Y ′ is well defined. Moreover, since X ′′ = X, the
previous result remains true without the reflexivity assumption.
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6. Extrapolation Theorems of Rubio de Francia type

The purpose of this section is to show how factorizations can be used to ex-
trapolate estimates from one operator to another operator. The motivation for this
type of extrapolation comes from the fact that, in classical analysis and elsewhere,
a few basic operators control the norm estimates of large families of operators.
For example, a good deal of the theory of weighted norm inequalities for singular
integral operators can be reduced to the study of the weighted norm inequalities
of (the simpler) maximal operator of Hardy-Littlewood or other related maximal
operators. Likewise, in interpolation theory, many interpolation estimates can be
reduced to estimates for the so called Calderón operators, etc. This explains the
fundamental importance of extrapolation in the applications.

In the general context we have developed in this paper the extrapolation process
takes a very simple form. The main ideas are an extension of Rubio de Francia’s
beautiful papers [23], [24], where on can also find applications of the theory. In
connection with applications we refer the reader to the monograph [11].

Let T be an operator acting on certain spaces of two given scales {Xw}w∈I0

and {Yv}v∈I1 . We associate to T a set of indices which we call the signature of T
on ({Xw}w∈I0 , {Yv}v∈I1):

S(T, {Xw}w∈I0 , {Yν}ν∈I1) = S(T ) = {(w, ν) ∈ I0 × I1 : T : Xw → Yν is bounded}.
In case the domain and range scales are the same, {Xw}w∈I0 = {Yν}ν∈I1 , it will be
also useful to consider what we shall call the diagonal signature of T :

Sd(T ) = {w ∈ I : (w,w) ∈ S(T )}.
Given H,T two operators acting on the same scale, we write S(H) ⊂ S(T ) to

indicate that

H : Xw → Yν bounded ⇒ T : Xw → Yν bounded,

while Sd(H) ⊂ Sd(T ) means that

H : Xw → Xw bounded ⇒ T : Xw → Xw bounded.

In this context we shall use the symbol b to indicate that an inclusion holds
with norm estimates. Thus, S(H) b S(T ) means that there is a universal constant
c > 0 such that

H : Xw → Yν with ‖H‖L(Xw,Yν) ≤ C ⇒ T : Xw → Yν with ‖T‖L(Xw,Yν) ≤ cC.

An analogous interpretation stands for the notation Sd(H) b Sd(T ).

Theorem 10. (cf. [23]) Let {Xw}w∈I0 , {Yν}ν∈I1 be two scales (resp.
⋃

–
complete scales) and let X = ∆{Xw}w∈I , Y = ∆{Yν}ν∈I1 (resp. X =

⋃
{Xw}w∈I ,

Y =
⋃
{Yν}ν∈I1). Then

(i) Let H : X → Y be a strongly ∆−factorizable (resp. strongly
∑
−factorizable)

linear operator. Suppose that T is a linear operator acting on some spaces of the
family ({Xw}w∈I0 , {Yν}ν∈I1). The following extrapolation result holds:

S(H) b S(T ) ⇒ T : X → Y is bounded.

(ii) Let H : X → X be a strongly ∆−diagonal factorizable (resp. strongly∑
−diagonal factorizable) linear operator. Suppose that T is a linear operator act-

ing on some spaces of the family {Xw}w∈I . The following extrapolation holds

Sd(H) b Sd(T ) ⇒ T : X → X is bounded.
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Proof. (i). Suppose that H : X → Y is strongly ∆−factorizable and S(H) b
S(T ). It follows that there exists C(T ) > cC(H) > 0 such that ∀ν ∈ I1, the set
J(ν) = {w ∈ I0 such that T : Xw → Yν is bounded with norm ≤ C(T )} is not
empty and in fact J =

⋃
ν∈I1

J(ν) is ∆−abundant. Thus,

‖Tx‖Yν
≤ C(T ) sup

w∈J(ν)

‖x‖Xw
, for each ν ∈ I1

sup
ν∈I1

‖Tx‖Yν
≤ C(T ) sup

ν∈I1

sup
w∈J(ν)

‖x‖Xw

≤ C(T ) sup
w∈I0

‖x‖Xw
(since J is abundant).

Therefore,
‖T‖L(∆{Xw}w∈I0 ,∆{Yν}ν∈I1 ) ≤ C(T ).

Suppose now that H : X → Y is strongly
∑
−factorizable and S(H) b

S(T ). Then T satisfies that ∃C(T ) > 0 such that ∀w ∈ I0, ∃ν ∈ I1 such that
T : Xw → Yν is bounded with norm ≤ C(T ), and the set J =

⋃
w∈I0

J(w) =⋃
w∈I0

{
ν ∈ I1 : T : Xw → Yν , ‖T‖L(Xw,Yν) ≤ C(T )

}
is
⋃
−abundant. Therefore

‖Tx‖Yν
≤ C(T ) ‖x‖Xw

for all ν ∈ J(w).

Thus
inf

ν∈J(w)
‖Tx‖Yν

≤ C(T ) ‖x‖Xw
, for all w ∈ I0.

Taking infimum we get

inf
w∈I0

inf
ν∈J(w)

‖Tx‖Yν
≤ C(T ) inf

w∈I0
‖x‖Xw

inf
ν∈J

‖Tx‖Yν
≤ C(T ) inf

w∈I0
‖x‖Xw

.

But since J is abundant we get

inf
v∈I1

‖Tx‖Yν
' inf

ν∈J
‖Tx‖Yν

≤ C(T ) inf
w∈I0

‖x‖Xw
.

In other words,
T :
⋃
{Xw}w∈I0

→
⋃
{Yν}ν∈I1 .

Note that since our scales were assumed to be
⋃
− complete the last statement is

equivalent to
T :
∑

{Xw}w∈I0
→
∑

{Yν}ν∈I1

with
‖T‖L(

∑
{Xw}w∈I0

,
∑
{Yν}ν∈I1 ) ≤ C(T ).

The proof of (ii) for the diagonal case is obtained mutatis-mutandis. �

Remark 14. When we work with scales of Banach lattices the previous result
remains true for quasi-linear operators

Theorem 11. (cf. [23]) Let ({Xw}w∈I0 , {Yν}ν∈I1) be two ∆−total scales, and
let X = ∆{Xw}w∈I0 , Y = ∆{Yν}ν∈I1 .

(i) Let H : X → Y be a ∆−factorizable linear operator. Suppose that T is a
linear operator acting on some spaces of the family ({Xw}w∈I0 , {Yν}ν∈I1) in such
a way that S(H) ⊂ S(T ). Then we can extrapolate T : X → Y.
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(ii) Let H : X → X be a diagonal ∆− factorizable linear operator. Suppose
that T is a linear operator acting on some spaces of the family {Xw}w∈I in such a
way that Sd(H) ⊂ Sd(T ). Then we can extrapolate T : X → X.

Proof. (i) If H : X → Y is ∆−factorizable then ∀ν ∈ I1, ∃w ∈ I0 such
that H can be extended to a bounded operator H : Xw → Yν , and the set
J = {w ∈ I0 : H : Xw → Yν for some ν ∈ I1} is ∆−abundant. But the assumption
S(H) ⊂ S(T ) allow us to transfer the estimates for the operator H to the operator
T. Therefore by Theorem 8 T : X → Y is bounded.

(ii) Can be proved in the same way. �

Note that, in general, the definitions of strongly factorizable and strongly di-
agonal factorizable are not equivalent. We shall say that a scale has the Rubio de
Francia property if every ∆−strongly factorizable operator (resp. Σ−strongly
factorizable) on the scale is strongly diagonal factorizable (resp. Σ−strongly diag-
onal factorizable).

To prove that a given scale {Xw}w∈I has the Rubio de Francia property
usually is related with some “extra” properties of the index set I, for example if
the index set is a convex subset of a Banach lattice (cf. Section 3.0.1 and Section
3.3 above). In such cases we can implement an abstract version of the so called
“Rubio de Francia Algorithm” to prove that these scales have the Rubio de Francia
property.

A prototype of the results we can prove is the following

Theorem 12. Let Z be a Banach lattice, and let I ⊂ {w : w > 0, ‖w‖Z ≤ 1} .
Let {Xw}w∈I be a scale such that

(i)
∆{Xw}w∈I is dense in each Xw.

(ii) There exists p ≥ 1 such that

(6.1) ∀λ > 0, x ∈ Xw ⇔ x ∈ Xλw and ‖x‖p
Xλw

= λ ‖x‖p
Xw

and ∀ {wj}j∈N ⊂ I such
∑

j ‖wj‖Z ≤ 1 then
∑

j wj ∈ I and

(6.2)
∑

j

‖x‖p
Xwj

= ‖x‖p
X∑

wj
.

Then any linear operator T is strongly ∆− factorizable if and only if it is strongly
∆−diagonal factorizable.

Proof. Suppose that T is strongly ∆−factorizable. Let w ∈ I, and define
inductively the sequence {wj} ∞

j=0 in I so that: w0 = w and T : Xwj+1 → Xwj
,

with ‖T‖L(Xwj+1 ,Xwj ) ≤ C(T ) ≤ c. Since

∞∑
j=0

∥∥2−j−1wj

∥∥
Z

=
∞∑

j=0

2−j−1 ‖wj‖Z ≤
∞∑

j=0

2−j−1 = 1,

we see that

w̃ =
∞∑

j=0

2−j−1wj ∈ I.
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Let p ≥ 1 such that (6.1) and (6.2) are satisfied, and let x ∈ ∆{Xw}w∈I then

‖Tx‖p
Xw̃

=
∑
j≥0

‖Tx‖p
X2−j−1wj

(by (6.2))

=
∑
j≥0

2−j−1 ‖Tx‖p
Xwj

(by (6.1))

≤ C(T )p
∑
j≥0

2−j−1 ‖x‖p
Xwj+1

(since ‖T‖L(Xwj+1 ,Xwj ) ≤ C(T ))

= 2C(T )
∑
j≥0

2−j−2 ‖x‖p
Xwj+1

≤ 2C(T )

∑
j≥0

‖x‖p
X2−j−2wj+1

+ ‖x‖p
X2−1w0


= 2C(T ) ‖x‖p

X∑
j≥0 2−j−1wj

= 2C(T ) ‖x‖p
Xw̃

.

Since ∆{Xw}w∈I is densely embedded in Xw̃, T can be extended to a bounded
operator T : Xw̃ → Xw̃. It remains to prove that J = {w̃ : w ∈ I} is abundant. We
obviously have

∆{Xw}w∈I ⊂ ∆{Xw̃}w̃∈J .

Conversely, since

‖x‖p
Xw̃

=
∑
j≥0

2−j−1 ‖x‖p
Xwj

≥ 2−1 ‖x‖p
Xw0

= 2−1 ‖x‖p
Xw

we have

∆{Xw̃}w̃∈J

21/p

⊂ ∆{Xw}w∈I .

�

Remark 15. Conditions (6.1) and (6.2) are satisfied by the ∆−scales that
appear in Banach lattices, p−convex spaces, Beurling spaces and rearrangement
invariant Banach lattices (cf. the examples in Section 3).

To prove that on given scale an operator is factorizable is usually a difficult
step that may involve a deep theorem on the structure of the spaces involved.

For example, let X, Y be 2−convex spaces. By Theorem 34

X = ∆{L2(w)}w∈I0 , Y = ∆{L2(ν)}ν∈I1 .

In our language Rubio de Francia’s Theorems A and A’ in [23] can be stated as
follows

Theorem 13. (Rubio de Francia [23]) Let X, Y be 2−convex spaces. Then
every bounded linear operator T : X → Y is ∆−strongly factorizable and every
bounded linear map T : X → X is ∆−strongly diagonal factorizable

We comment briefly on the proof of Theorem 13 given in [23]. The fact that
any bounded linear operator

T : X = ∆{L2(w)}w∈I0 → Y = ∆{L2(ν)}ν∈I1

4Recall that the index sets in the situation at hand are given by I0 ={
w ∈

(
X2

)′
+

, ‖w‖(X2)′ ≤ 1
}

and I1 =
{

ν ∈
(
Y 2

)′
+

, ‖ν‖(Y 2)′ ≤ 1
}

.
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is ∆−strongly factorizable is a deep result. Rubio de Francia’s proof uses a mini
max theorem and an extension of Grothendieck’s theorem due to Krivine: If X, Y
are 2−convex, then any bounded linear operator T : X → Y can be extended to a
bounded operator T : X(l2) → Y (l2). The Rubio de Francia algorithm then is used
to prove the ∆−strong diagonal factorizability.

Likewise, since by duality:

X is 2− concave ⇔ X ′ is 2− convex,

then Rubio de Francia’s Theorems B and B’ in [23]) state

Theorem 14. (Rubio de Francia [23]) Let X, Y be 2−concave spaces. By
Theorem 4

X =
⋃
{L2(

1
w

)}w∈I0 , Y =
⋃
{L2(

1
ν

)}ν∈I1 .

Then every linear operator T : X → Y is strongly
∑
−strongly factorizable. More-

over, every linear operator T : X → X is
∑
−strongly diagonal factorizable.

Example 7. (cf. [23]) If X, Y are p−convex, (resp. q−concave) then any
positive linear operator T : X → Y is strongly ∆−factorizable. (resp. strongly∑
−factorizable). This is a consequence of the fact that in this case T can be

extended to a bounded operator T : X(lp) → Y (lp). (cf. [15]-Proposition 1.d.9).

Example 8. Closely related to these results is the so called Maurey-Pisier ex-
trapolation theorem. We refer to [3] p. 22 for a statement and a proof using the lan-
guage of extrapolation, in particular the proof uses the Rubio de Francia algorithm.
Interestingly, the Maurey-Pisier extrapolation implies a form of Grothendieck’s in-
equality formulated in terms of p−summing operators. We review the main points
of this connection since extrapolation techniques could have other applications in
this area. Let X, Y, be Banach spaces, 0 < p < ∞. We say that an operator
T : X → Y is p− summing if there exists a positive constant c, such that for every
finite sequence {xi}n

i=1 ⊂ X, we have

(6.3)

{
n∑

i=1

(‖T (xi)‖Y )p

}1/p

≤ c sup
‖x∗‖X∗≤1

{
n∑

i=1

|x∗(xi)|p
}1/p

.

In this case we write T ∈ Πp(X, Y ), and let

‖T‖Πp(X,Y ) = inf{c : (6.3) holds}

The limiting case p = ∞, is simply a reformulation that T is bounded, in other words
Π∞(X, Y ) = B(X, Y ) = bounded operators. A basic fact concerning p−summing
operators is the Pietsch factorization theorem which states that if T ∈ Πp(X, Y ),
then there exists a Radon measure µ, on BX∗ , the unit ball of X∗, with the σ(X∗, X)
topology, such that

(6.4) ‖Tx‖Y ≤ ‖T‖Πp(X,Y )

{∫
BX∗

|f(x)|p dµ(f)
}1/p

.

Conversely if there exists a measure µ such that (6.4) holds (with ‖T‖Πp(X,Y ) re-
placed by some constant c) then it follows that T ∈ Πp(X, Y ) and ‖T‖Πp(X,Y ) ≤ c.

An immediate consequence of this representation is the fact that the spaces Πp(X, Y )
are ordered,

(6.5) Πp(X, Y ) ⊂ Πq(X, Y ),
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in fact
‖T‖Πq(X,Y ) ≤ ‖T‖Πp(X,Y ) .

As is well known an equivalent form of Grothendieck’s theorem can be stated as
follows. Let H be a Hilbert space and for a measure space (Ω, µ), let L1 = L1(Ω, µ),
then

(6.6) Π1(L1,H) = B(L1,H).

Let us review a route to prove (6.6) following Maurey-Pisier (cf. [21]). One first
establishes that

Πp(L1,H) = B(L1,H), 1 < p < ∞.

In view of (6.5) we therefore conclude that

(6.7) Πp(L1,H) = Π2(L1,H), 1 < p < 2

At this point an “extrapolation” argument is invoked which allows to establish (6.7)
also for p = 1. More precisely it is shown that if for some 0 < p < q we have

(6.8) Πq(L1,H) = Πp(L1,H)

then it also holds for all r ≤ p < q that

(6.9) Πq(L1,H) = Πr(L1,H).

The connection with the extrapolation method discussed in this section is via the
Pietsch factorization theorem. In fact in view of Pietsch’s result we can rephrase
(6.8) as saying ∃ C > 0 such that ∀ λ ∈ P (BX∗) =probability measures on BX∗ ,
there exists µ ∈ P (BX∗) such that ∀ x ∈ X, we have

(6.10)
{∫

BX∗

|f(x)|q dλ(f)
}1/q

≤ C

{∫
BX∗

|f(x)|p dµ(f)
}1/p

.

Thus (6.9) will follow by establishing that (6.10) implies that ∃ c > 0 such that
for each probability measure λ ∈ P (BX∗), there exists µ ∈ P (BX∗) such that for
0 < r < p we have ∀x ∈ X,

(6.11)
{∫

BX∗

|f(x)|q dλ(f)
}1/q

≤ c

{∫
BX∗

|f(x)|r dµ(f)
}1/r

.

This follows by Maurey-Pisier extrapolation. The proof of this fact given in [3] (cf.
Lemma 5.1) emphasizes the role of the Rubio de Francia algorithm.

7. The Classical Extrapolation Theorem of Rubio de Francia

In this section we give a streamlined argument to prove Rubio de Francia’s
celebrated extrapolation theorem for Ap weights. We also show that the same
argument can be used to prove extrapolation theorems for other classes of weights.

Let us start by recalling some basic definitions.

Definition 5. A weight w > 0 belongs to Ap = Ap(Rn), (1 < p < ∞ and
1/p + 1/q = 1) if

‖w‖Ap
= sup

Q

(
1
|Q|

∫
Q

w(x)dx

)(
1
|Q|

∫
Q

1
w(x)q−1

dx

)p−1

< ∞.

Here the supremum is taken over all cubes Q on Rn with sides parallel to the
coordinate axes and where |Q| =measure of Q.
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The celebrated extrapolation theorem of Rubio de Francia for Ap−weights
states (cf. [11]-Theorem 5.19)

Theorem 15. Let T be a quasi-linear operator. Let 1 < r < ∞, and suppose
that T is bounded in Lr(w) for every weight w ∈ Ar, so that its norm as an operator
on Lr(w) depends only on ‖w‖Ar

. Then, for every w ∈ Ap (1 < p < ∞), T is
bounded on Lp(w).

We organize the proof of Theorem 15 in a “functorial” fashion using the ∆ and∑
methods of [13]. The proof consists of two steps. The first step is familiar:

to represent Lp spaces as suitable ∆ or
⋃

extrapolation spaces (Lemma 4). This
representation is then combined with a factorization theorem for the Ap classes
of weights (Lemma 5) and further application of the ∆ and

∑
methods to finally

obtain Rubio de Francia’s theorem. A similar argument yields an extrapolation
theorem with the so called Calderón weights replacing the Ap weights (cf. Theorem
16 below).

Lemma 4. Let 1 < p 6= r < ∞, then

Lp(µ) =
{

∆ {Lr(udµ)}u∈I if p < r⋃{
Lr(u−1dµ)

}
u∈I

if p > r
.

where
I = {u ∈ Ls : u > 0, ‖u‖Ls = 1} .

(s =
∣∣∣ p
p−r

∣∣∣). In other words: if p < r, then {Lr(udµ)}u∈I is a ∆−total scale and if

p > r,
{
Lr(u−1dµ)

}
u∈I

is a
⋃
−complete scale.

Proof. Suppose that r < p, then p
r > 1, and

‖f‖r
Lp(dµ) =

(∫
(|f |r)

p
r dµ

)r/p

= ‖|f |r‖
L

p
r (dµ)

.

By duality

‖|f |r‖
L

p
r (dµ)

= sup
{∫

|f |r udµ : u > 0, ‖u‖
L

p
p−r (dµ)

= 1
}

.

If p < r, then (use (2.2) with α = p
r < 1)

‖f‖r
Lp(dµ) = ‖|f |r‖

L
p
r (dµ)

= inf
{∫

|f |r u−1dµ : u > 0, ‖u‖
L

p
r−p (dµ)

= 1
}

.

�

Lemma 5. (cf. [11]-Lemma 5.18) Let 1 < p, r < ∞. Let s be defined by
1
s =

∣∣∣1− r
p

∣∣∣ . Let w ∈ Ap. Then for every u ≥ 0 in Ls(w) there exists ν ≥ 0 in
Ls(w), such that

1) u ≤ ν, a.e.
2) ‖ν‖s ≤ C ‖u‖s

3)
{

νw ∈ Ar if r < p
w
ν ∈ Ar if r > p

Moreover, in either alternative of case 3) above, ‖νw‖Ar
(resp.

∥∥w
v

∥∥
Ar

) depends
only on ‖w‖Ap

.

We are now ready for our proof of Theorem 15:
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Proof. Suppose that p > r. Let w ∈ Ap and let Lp(w) = Lp(dµ) (here dµ =
w(x)dx). By Lemma 4

Lp(dµ) = ∆ {Lr(udµ)}u∈I .

For u ∈ I we let

J(u) = {ν ∈ Ls(dµ) : (u, ν) satisfies the conditions of Lemma 5} ,

and
J =

⋃
u∈I

J(u).

We claim that J is ∆−abundant. Indeed, let f ∈ Lp(dµ) and c > 1, then there
exists ν such that (u, ν) ∈ J, and we have

‖f‖r
p ≤ c

∫
|f |r udµ ≤ c

∫
|f |r νdµ (by condition 1 Lemma 5)

≤ c ‖|f |r‖ p
r
‖ν‖s (by Hölder’s inequality)

≤ cC ‖|f |r‖ p
r
‖u‖s (by condition 2 Lemma 5)

≤ cC ‖|f |r‖ p
r

= cC ‖f‖r
p (since ‖u‖s = 1).

Therefore

(7.1) Lp(w) ' ∆ {Lr(νw)}ν∈J .

By property 3, νw ∈ Ar, thus for all ν ∈ J,

T : Lr(νw) → Lr(νw)

with

‖T‖L(Lr(νw),Lr(νw)) ≤ c ‖νw‖Ar ≤ c̃ ‖w‖Ap (by condition 3 Lemma 5).

Extrapolating using the ∆−method we obtain

T : ∆ {Lr(νw)}ν∈J → ∆ {Lr(νw)}ν∈J ,

and by (7.1) we thus get

T : Lp(w) → Lp(w) with ‖T‖L(Lp(w),Lp(w)) ≤ c̃ ‖w‖Ap .

Now consider the case p < r. Let w ∈ Ap, Lp(w) = Lp(dµ) (dµ = w(x)dx). By
Lemma 4,

Lp(dµ) =
⋃{

Lr(u−1dµ)
}

u∈I
.

In this case the set J is
⋃
−abundant. Indeed, let f ∈ Lp(dµ), 0 < c < 1. Then

there exists u ∈ I such that

‖f‖r
p ≥ c

∫
|f |r dµ

u
≥ c

∫
|f |r dµ

ν
(by condition 1 Lemma 5)

≥ c
‖|f |r‖ p

r

‖ν‖s

(by Hölder’s inequality, recall that
p

r
< 1)

≥
c ‖|f |r‖ p

r

C ‖u‖s

(by condition 2 Lemma 5)

≥ c

C
‖|f |r‖ p

r
=

c

C
‖f‖r

p (since ‖u‖s = 1).
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Therefore,

(7.2) Lp(dµ) '
⋃{

Lr(ν−1dµ)
}

ν∈J
.

By condition 3 of Lemma 5, w
ν ∈ Ar, thus

T : Lr(
w

ν
) → Lr(

w

ν
),

is bounded with

‖T‖L(Lr( w
ν ),Lr( w

ν )) ≤ c
∥∥∥w

ν

∥∥∥
Ar
≤ c̃ ‖w‖Ap (by condition 3 Lemma 5).

Extrapolating using the
∑
−method

T :
∑{

Lr(
w

ν
)
}

ν∈J
→
∑{

Lr(
w

ν
)
}

ν∈J
.

It follows from (7.2) that
⋃{

Lr(ν−1dµ)
}

ν∈J
is a Banach space, hence by Theorem

1-2, ∑{
Lr(

w

ν
)
}

ν∈J
=
⋃{

Lr(ν−1dµ)
}

ν∈J

i.e.
T : Lp(w) → Lp(w) is bounded with ‖T‖L(Lp(w),Lp(w)) ≤ c̃ ‖w‖Ap .

�

Remark 16. We have actually proved that if r < p, then T is a strongly
∆−factorizable operator respect to the scale {Lr(νw)}v∈I , and if r > p then is a
strongly

∑
−factorizable operator respect to the scale

{
Lr(ν−1dµ)

}
ν∈I

.

We now show an analogous result for the so called Calderón weights Cp−weights
(cf. [2]).

Definition 6. A weight w > 0 belongs Cp,1 ≤ p < ∞ (a Calderón weight)
if w ∈ Mp

⋂
Mp, where

w ∈ Mp i.e. sup
t>0

(∫∞
t

w(x)
xp dx

)1/p (∫ t

0
w(x)1−p′

)1/p′

= ‖w‖Mp
< ∞.

w ∈ Mp i.e. sup
t>0

(∫ t

0
w(x)

)1/p
(∫∞

t
w(x)1−p′

xp′ dx

)1/p

= ‖w‖Mp < ∞.

Let
‖w‖Cp

:= max
(
‖w‖Mp

, ‖w‖Mp

)
.

Remark 17. The Mp−condition is equivalent to the boundedness of the Hardy
operator

(7.3) Pf(t) =
1
t

∫ t

0

f(x)dx

on Lp(w). The Mp−condition is equivalent to the boundedness of the conjugate
Hardy operator

(7.4) Qf(t) =
∫ ∞

t

f(x)
dx

x

on Lp(w) (cf. [20]).

Then we have the following extrapolation theorem
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Theorem 16. (cf. [2] Proposition 2.7) Let T be a quasi-linear operator. Let
1 < r < ∞, and suppose that T is bounded in Lr(w) for every weight w ∈ Cr, with
norm that depends only on ‖w‖Cr

. Then, for every w ∈ Cp (1 < p < ∞), T is
bounded on Lp(w).

We replace Lemma 5 by the following Lemma (cf. [2] Lemma 2.6)

Lemma 6. Let 1 < r, p < ∞. Denote by s the exponent given by 1
s =

∣∣∣1− r
p

∣∣∣ .
Let w ∈ Cp. Then for every u ≥ 0 in Ls(w) there exists ν ≥ 0 in Ls(w), such that

1) u ≤ ν, a.e.
2) ‖ν‖Ls(w) ≤ C ‖u‖Ls(w)

3)
{

νw ∈ Cr if r < p
w
ν ∈ Cr if r > p

Moreover, in either alternative of case 3) above, ‖νw‖Cr
(resp.

∥∥w
v

∥∥
Cr

) depends
only on ‖w‖Cp

.

For linear operators we can easily give proofs of the extrapolation theorems
stated in this section directly via factorization. We illustrate this with the following

Theorem 17. Let T be a linear operator. Let 1 < r < ∞, and suppose that T is
bounded on L2(w) for every weight w ∈ C2. Then, for every w ∈ Cp (1 < p < ∞),
T is bounded on Lp(w).

Proof. Let S = P + Q be the Calderón operator (cf. (7.3) and (7.4) above).
Let w ∈ Cp, then S is bounded on Lp(w). Suppose that p > 2, then Lp(w) is
2−convex and can be written as ∆{L2(ν)}ν∈I⊂C2 . By Theorem 13 S is ∆−strongly
diagonal factorizable. By definition Sd(S) = C2 ⊂ Sd(T ). Therefore, by Theorem
11, T is bounded on Lp(w). Likewise if p < 2, Lp(w) is 2−concave and an analogous
argument using the

∑
−method, Theorem 14 and Theorem 9 allows us to conclude.

�

Remark 18. In the case of Calderón operators or Hardy operators one can
show the factorization properties directly and in an elementary fashion (i.e. without
using Grothendieck’s inequality) (cf Theorem 18 and Theorem 19 below).

8. Hardy operators acting on Rearrangement invariant spaces

In this section we study operators acting on rearrangement invariant spaces
using extrapolation methods. We focus our attention on Hardy type operators.

Throughout this section we shall work on the measure space (R+, dx), (where
R+ = [0,∞) and dx will denote the Lebesgue measure on R+). Given f, g ∈ L0,
f ≺ g means that f is less or equal than g in the Hardy-Littlewood order. The
following well-known result will be useful in what follows

Lemma 7. (Hardy’s Lemma (cf. [4] Chapter 2, Proposition 3.6)). Let w0 and
w1 be two non-negative and measurable functions on R+ and suppose that∫ t

0

w0(x)dx ≤
∫ t

0

w1(x)dx, for all t > 0.

Then for any decreasing function f,∫ ∞

0

f(x)w0(x)dx ≤
∫ ∞

0

f(x)w1(x)dx.
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Definition 7. For 0 ≤ λ < 1 the Hardy operators P1−λ and their correspond-
ing conjugate operators Qλ, are defined by

P1−λf(t) =
1

t1−λ

∫ t

0

f(x)
dx

xλ
, Qλf(t) =

1
tλ

∫ ∞

t

f(x)
dx

x1−λ
, t > 0.

Here the fact that P1−λ and Qλ are adjoint operators means that

(8.1)
∫ ∞

0

P1−λf(t)g(t)dt =
∫ ∞

0

f(t)Qλg(t)dt.

Therefore, if X, Y are rearrangement invariant Banach lattices we have

(8.2) P1−λ : X → Y bounded ⇔ Qλ : Y ′ → X ′ bounded.

Moreover, since
|P1−λf(t)|∗ ≤ (P1−λ |f | (t))∗ ≤ P1−λf∗(t),

and (cf. [4] III-Proposition 5.2)

|Qλf(t)| ≺ Qλf∗(t),

It follows that P1−λ (resp. Qλ) is bounded on X, if and only if P1−λ (resp. Qλ) is
bounded on decreasing functions (i.e. ‖P1−λf‖X ≤ c ‖f‖X , ∀f ∈ Xd).

For the next result recall that if Z is a rearrangement invariant Banach lattice,
Z = ∆{Λ(w)}w∈I where {Λ(w)}w∈I is a ∆− total scale with index given by I ={

w ∈ (Z ′)d
, ‖w‖Z′ ≤ 1

}
.

Theorem 18. Let X, Y be a couple of rearrangement invariant Banach lattices.
Let T denote any of the operators P1−λ or Qλ, and let T ∗ be the corresponding
adjoint operator. Then following statements are equivalent:

(i) T : X → Y is bounded.
(ii) T is ∆−factorizable.
(iii) T is ∆−strongly factorizable.

Proof. (i) ⇒ (iii). Given w ∈ I, let

w̃ =
T ∗w

‖T ∗‖L(Y ′,X′)

.

It is plain that w̃ ∈ (X ′)d, ‖w̃‖X′ ≤ 1, therefore J =
{

w̃ : w ∈ (Y ′)d
}

is ∆−abundant.
Moreover, for all decreasing functions f∗

‖Tf∗‖Λ(w) =
∫ ∞

0

Tf∗(t)w(t)dt =
∫ ∞

0

f∗(t)T ∗w(t)dt

= ‖T ∗‖L(Y ′,X′)

∫ ∞

0

f∗(t)w̃(t)dt.

Therefore T : Λ(w̃) → Λ(w) is bounded.
(iii) ⇒ (ii). Is obvious.
(ii) ⇒ (i). Since X = ∆{Λ(w)}w∈I0 and Y = ∆{Λ(ν)}ν∈I1 , and both scales

are ∆−total, then Theorem 8 applies. �

In the case X = Y , we now show that the Hardy operators are ∆−diagonal
factorizable operators.
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Theorem 19. Let X be a rearrangement invariant Banach lattice. Let T denote
any of the operators P1−λ or Qλ, and let T ∗ be the corresponding adjoint operator.
The following statements are equivalent

(i) T : X → X is bounded.
(ii) ∃C > 0 and C ′ > 0 such that ∀w ∈ (X ′)d ∃w̃ ∈ (X ′)d such that w ≺ w̃,

‖w̃‖X′ ≤ C ′ ‖w‖X′ , and T : Λ(w̃) → Λ(w̃) is bounded with ‖T‖L(Λ(w̃),Λ(w̃)) ≤ C.

Moreover,

inf C = ρX(T ).

(iii) ∃C,C ′ > 0 such that ∀w ∈ Xd ∃w̃ ∈ Xd such that w ≺ w̃, ‖w̃‖X ≤ C ′ ‖w‖X ,
and T ∗ : Λ(w̃) → Λ(w̃) is bounded with ‖T ∗‖L(Λ(w̃),Λ(w̃)) ≤ C. Moreover,

inf C = ρX(T ∗).

In cases (ii) and (iii) the infimum is taken over all C > 0 such that claim (ii)
(resp. (iii)) is satisfied. (ρX(T ) = spectral radius of T as operator from X to X).

Proof. (i) →(ii) Let C > ρX(T ). Given w ∈ (X ′)d let us define

w̃ =
∞∑

n=1

T ∗(n)w

Cn−1
,

where T ∗(n) = T ∗ ◦ n· · · ◦ T ∗. Since C > ρX(T ) = ρX′(T ∗), it follows from Gelfand’s
spectral radius formula that

C ′ = C
∞∑

n=0

∥∥T ∗(n)
∥∥
L(X′,X′)

Cn
< ∞.

Thus

‖w̃‖X′ ≤ C
∞∑

n=0

∥∥T ∗(n)
∥∥
L(X′,X′)

Cn
‖w‖X = C ′ ‖w‖X .

Obviously w̃ is decreasing and w ≺ w̃, since

1
r

∫ r

0

w̃(x)dx ≥ 1
r

∫ r

0

T ∗w(x)dx ≥ 1
(1− λ)r

∫ r

0

w(x)dx ≥ 1
r

∫ r

0

w(x)dx.

Moreover, since

T ∗w̃ =
∞∑

n=1

T ∗(n+1)w

Cn−1
= C

∞∑
n=1

T ∗(n+1)w

Cn
≤ Cw̃,

we have that∫ ∞

0

Tf(x)w̃(x)dx =
∫ ∞

0

f(x)T ∗w̃(x)dx ≤ C

∫ ∞

0

f(x)w̃(x)dx,

that is

T : Λ(w̃) 7−→ Λ(w̃) is bounded with ‖T‖L(Λ1(w̃),Λ1(w̃)) ≤ C.

The fact inf C = ρX(T ) will follow readily from the previous computation if we
see that for any C < ρX(T ) (ii) is not satisfied. Suppose not, i.e. then for some
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C < ρX(T ) condition (ii) holds. Then, since for all f ∈ Xd, T (n)f is decreasing,
we get ∫ ∞

0

T (n)f(x)w(x)dx ≤
∫ ∞

0

T (n)f(x)w̃(x)dx (since w ≺ w̃)

≤ Cn

∫ ∞

0

f(x)w̃(x)dx

≤ Cn ‖f‖X ‖w̃‖X′ (by Hölder’s inequality)

≤ CnC ′ ‖f‖X ‖w‖X′ .

Thus ∥∥∥T (n)
∥∥∥
L(X,X)

≤ CnC ′

which by Gelfand’s formula for the spectral radius, implies that

ρX(T ) = inf
n≥1

(∥∥∥T (n
∥∥∥
L(X,X)

)1/n

≤ C.

A contradiction since we are assuming that C < ρX(T ).
(ii) → (i) is obvious.
The proof of (i) ⇔ (iii) follows in the same way that the previous one applying

that
T : X → X bounded ⇔ T ∗ : X ′ → X ′ bounded.

�

Remark 19. There is an elegant result due to D. W. Boyd (see [6] and [7]) that
gives the spectral radius of Hardy operators in terms of the growth of the operator
norm of the dilation operators Dαf(t) = f

(
t
α

)
as α → 0 and α →∞. Boyd’s result

states that if X is a rearrangement invariant Banach lattice then

ρX(P1−λ) =
1

1− λ− αX
and ρX(Qλ) =

1
λ− αX

,

where

αX = lim
α→∞

lnhX(α)
lnα

, αX = lim
α→0

lnhX(α)
lnα

(here hX(α) is the norm of the dilatation operator Dα and ρX(T ) = spectral radius
of T as operator from X to X).

In particular

P1−λ : X → X is bounded ⇔ αX < 1− λ

Qλ : X → X is bounded ⇔ αX > λ

9. Interpolation theory via Extrapolation

We consider the connection between the extrapolation theory developed in this
paper and interpolation theory. Let us start by considering a special, but significant
example. Let T be a quasi-linear operator such that T defines a bounded operator

(9.1) T : L1 → L1,∞ and T : L∞ → L∞.

It is well-known that (9.1) is equivalent to the existence of a constant C > 0 such
that

(9.2) (Tf)∗ (t) ≤ C
1
t

∫ t

0

f∗(x)dx = CPf∗(t).



36 JOAQUIM MARTÍN∗ AND MARIO MILMAN

Hence, for any scale {Λ(w)}w∈I (9.2) implies that

Sd(P ) b Sd(T )

and since P is strongly ∆−factorizable, T : ∆ {Λ(w)}w∈I → ∆ {Λ(w)}w∈I is
bounded.

Let us now compute the signature of the operators P1−λ and Qλ with respect
to the scale {Λ(w)}w∈I , where I is an index of decreasing functions. (By w ↓ we
will denote that w is decreasing).

Theorem 20. The following statements hold:
(i) S(P1−λ) = {(w0, w1) , wi ↓ ; P ◦Qλw0(r) ≤ CPw1(r) for all r > 0} .
(ii) S(Qλ) = {(w0, w1) , wi ↓ ; P1−λw0(r) ≤ CPw1(r) for all r > 0}.
(iii) S(Q) = {(w0, w1) , wi ↓ ; P ◦ Pw0(r) ≤ CPw1(r) for all r > 0} .
(iv) Sd(P1−λ) = {w ↓ ; Qλw(r) ≤ CPw(r) for all r > 0} .
(v) Sd(Qλ) = {w ↓ ; Qλw(r) ≤ CPw(r) for all r > 0} .
(vi) Sd(Q) = {w ↓ ; P ◦ Pw(r) ≤ CPw(r) for all r > 0} .

Proof. (i) w0, w1 ∈ S(P1−λ) if and only if

P1−λ : Λ(w0) → Λ(w1) is bounded.

We need to show that

P1−λ : Λ(w0) → Λ(w1) bounded ⇔ ∃C > 0, P ◦Qλw0(r) ≤ CPw1(r), r > 0.

(⇒) Follows by testing with the functions χ[0,r]. Conversely, if for all r > 0,∫ r

0

Qλw0(s)ds ≤ C

∫ r

0

w1(s)ds

then by Lemma 7 ∫ ∞

0

f∗(s)Qλw0(s)ds ≤ C

∫ ∞

0

f∗(s)w1(s)ds.

But P1−λ and Qλ are adjoint operators:∫ ∞

0

P1−λf∗(s)w0(s)ds ≤ C

∫ ∞

0

f∗(s)w1(s)ds.

Thus,
P1−λ : Λ(w0) → Λ(w1), with ‖P1−λ‖L(Λ(w0),Λ(w1))

≤ C.

(ii) and (iii) are proved in the same way.
(iv) Recall that w ∈ Sd(P1−λ) if and only if P1−λ : Λ1(w) → Λ1(w) is bounded.

Therefore we need to prove the following statement

P1−λ : Λ(w) → Λ(w) bounded ⇔ Qλw(r) ≤ cPw(r), r > 0.

(⇒) Follows by testing with the functions χ[0,r]. To prove the converse note that
by Fubini’s Theorem it follows that

P ◦Qλ =
P + Q

1− λ
,

which combined with Qλw ≤ cPw, yields∫ r

0

Qλw(s)ds ≤ c + 1
1− λ

∫ r

0

w(s)ds.
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Using Lemma 7 and the fact that P1−λ and Qλ are adjoint operators gives∫ ∞

0

P1−λf∗(s)w(s)ds =
∫ ∞

0

f∗(s)Qλw(s)ds

≤ c + 1
1− λ

∫ ∞

0

f∗(s)w(s)ds.

(v) and (vi) are proved in an analogous fashion. �

Following the notation introduced in [1] we will say that

w ∈ B1−λ ⇔ Qλw ≤ cPw.

By combining the previous Theorem and Boyd’s theory (see Remark 19 above)
we obtain

Theorem 21. Let T be a linear operator, and let X, Y be a couple of rearrange-
ment invariant Banach lattices. Then

(i) If S(P1−λ) ⊂ S(T ) and P1−λ : X → Y is bounded, then T : X → Y, is
bounded.

(ii) If S(Qλ) ⊂ S(T ) and Qλ : X → Y is bounded, then T : X → Y, is bounded.
(iii) If S(P1−λ0)

⋂
S(Qλ1) ⊂ S(T ) and P1−λ0 ◦Qλ1 : X → Y is bounded, then

T : X → Y, is bounded.
(iv) If Sd(P1−λ) ⊂ Sd(T ), then T : X → X is bounded for all rearrangement

invariant Banach lattices X such that αX < 1− λ.
(v) If Sd(Qλ) ⊂ Sd(T ), then T : X → X, is bounded on all rearrangement

invariant Banach lattices X such that αX > λ.
(vi) If Sd(P1−λ0)

⋂
Sd(Qλ1) ⊂ Sd(T ), then T : X → X is bounded on all

rearrangement invariant Banach lattices X such that αX < 1− λ0 and αX > λ1.

Proof. (i), (ii), (iii) follow from the fact that (see Lemma 2)

X = ∆{Λ(w)}w∈I0 and Y = ∆{Λ(ν)}w∈I1 ,

where I0 =
{

w ∈ (X ′)d
, ‖w‖X′ ≤ 1

}
and I1 =

{
ν ∈ (Y ′)d

, ‖ν‖Y ′ ≤ 1
}

. Moreover,
since both scales are ∆−total and T, P1−λ and Qλ are linear operators, Theorem 8
applies.

(iv) If X has upper Boyd index αX < 1−λ then (cf. Remark 19) P1−λ : X → X
is bounded and by hypothesis S(P1−λ) ⊂ S(T ). Thus Theorem 8 applies.

(v) and (vi) are proved in the same way. �

If T is a quasi-linear operator we have the following result

Theorem 22. Let T be a quasi-linear operator and let X, Y be a couple of
rearrangement invariant Banach lattices. Then

(i) S(P1−λ) b S(T ) and P1−λ : X → Y is bounded, then T : X → Y, is
bounded.

(ii) S(Qλ) b S(T ) and Qλ : X → Y is bounded, then T : X → Y is bounded.
(iii) S(P1−λ0)

⋂
S(Qλ1) b S(T ) and P1−λ0 ◦Qλ1 : X → Y is bounded, then T

: X → Y is bounded.
(iv) Sd(P1−λ) b Sd(T ), then T : X → X is bounded on all rearrangement

invariant Banach lattices X such that αX < 1− λ.
(v) Sd(Qλ) b Sd(T ), then T : X → X, is bounded on all rearrangement invari-

ant Banach lattices X such that αX > λ.
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(vi) Sd(P1−λ0)
⋂

Sd(Qλ1) b Sd(T ), then T : X → X is bounded on all re-
arrangement invariant Banach lattices X such that αX < 1− λ0 and αX > λ1.

Proof. The results follows from the fact that P1−λ and Qλ are strongly
∆−factorizable operators, Remark 19 and Theorem 10. �

Remark 20. Note that statement (iv) gives us an extrapolation theorem for
B1−λ−weights since (iv) states that if T : Λ(w) → Λ(w) is bounded for all decreasing
weights w ∈ B1−λ then T : X 7−→ X for all rearrangement invariant Banach
lattices X such that αX < 1− λ.

An important class of rearrangement invariant spaces that has been widely
studied in the last decade are the classical Lorentz spaces Λp(w) (1 ≤ p < ∞)
defined by

Λp(w) =

{
f : ‖f‖Λp(w) =

(∫ ∞

0

f∗(x)pw(x)dx

)1/p

< ∞

}
.

It is well known (cf. [1]) that Λp(w) is a Banach space if and only if w ∈ Bp,
i.e. if there exits c > 0 such that for all r > 0

Qpw(r) := rp−1

∫ ∞

r

w(x)
dx

xp
≤ cPw(r).

Moreover,
‖f‖Λp(w) ≈ ‖f∗∗‖Λp(w) .

Using Lemma 6 we obtain the following extrapolation theorem for operators
acting in Lorentz spaces with Cp weights, which again combines features of the
Rubio de Francia and the Jawerth-Milman methods (cf. [2] Theorem 5.2 for a
related result)

Theorem 23. Let T be a quasi-linear operator. Let 1 < r < ∞, and suppose
that T is bounded in Λr(w) for every weight w ∈ Cr, with norm that depends only
on ‖w‖Cr

. Then, for every w ∈ Cp (1 < p < ∞), T is bounded on Λp(w).

Proof. Given w ∈ Cp, using Lemma 6 and with the same proof of Lemma 4
we get

Lp(w) =
{

∆{Lr(wν)}ν∈I if p > r
∪{Lr(w/ν)}ν∈I if p < r

(with ‖wν‖Cr
≤ C ‖w‖Cp

and ‖w/ν‖Cr
≤ C ‖w‖Cp

).
Obviously f ∈ Λp(w) ⇔ f∗ ∈ Lp(w), thus

Λp(w) =
{

∆{Λr(wν)}ν∈I if p > r⋃
{Λr(w/ν)}ν∈I if p < r

moreover all the Lorentz spaces involved are Banach spaces since Cs ⊂ Bs, s ≥ 1.
Now we can finish the proof as in Theorem 15. �

As was observed at the beginning of this section, the signature of the Calderón
operator S = P +Q plays a central role. It is well known (cf. [2] and the references
quoted therein) that S : Λp(w) → Λp(w) is bounded iff w ∈ Bp ∩ B∞, i.e. there is
c > 0 such that for all r > 0

Qpw(r) ≤ cPw(r) and PPw(r) ≤ cPw.
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Thus Sd(S) with respect to the scale {Λp(w)}w∈I is given by

Sd(S) = {w : w ∈ Bp ∩B∞} .

It is easy to see Cp ⊂ Bp ∩B∞ and Bp ∩B∞ is strictly smaller that Cp.
We shall see now that given w ∈ Bp ∩ B∞ there exists w̃ ∈ Cp such that

Λp(w) = Λp(w̃) and hence

Sd(S) = {w : w ∈ Cp} .

To prove this claim, let us recall (cf. [2]) that w ∈ Bp ∩B∞ if and only if there
are two positive constants, c0 and c1 such that

c0Pw(r) ≤ Qpw(r) ≤ c1Pw(r), ∀r > 0.

Now we use again the iteration method. Let ε > 0 such that εc1 < 1, and define

w̃ =
∑
n≥1

εn−1Q(n)
p w.

A standard argument (see for example [8]) shows that with this choice of ε we have
that ∑

n≥1

εn−1Q(n)
p w = Qp−εw.

By Fubini’s theorem,

Pw̃ = PQp−εw =
1

p− ε
(Pw + Qp−εw)

≤ 1
(p− ε) c0

(Qpw + Qp−εw)

≤ 2
(p− ε) c0

w̃.

And since

Qpw̃ =
∞∑

n=1

εn−1Q(n+1)
p w ≤ 1

ε

∞∑
n=1

εn−1Q(n)
p w ≤ 1

ε
w̃,

we get
Pw̃ + Qpw̃ ≤ Cw̃.

Therefore by Proposition 2.8 of [2] we get that w̃ ∈ Cp.
Finally, since

Pw̃ =
∞∑

n=1

εn−1PQ(n)
p w ≤

∑
n≥1

εn−1cn
1Pw = CPw

and

Pw̃ = PQp−εw ≥ 1
p− ε

Pw

we get
Pw ≈ Pw̃

which by Lemma 7 implies that

Λp(w) = Λp(w̃).
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