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We combine the ideas of scaling theory and universal conductance fluctuations with density-functional
theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the
crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires by computing
the mean free path, sample-averaged conductance (G), and sample-to-sample variations std(G) as a
function of energy, doping density, wire length, and the radial dopant profile. Our main findings are (i) the
main trends can be predicted quantitatively based on the scattering properties of single dopants, (ii) the
sample-to-sample fluctuations depend on energy but not on doping density, thereby displaying a degree of
universality, and (iii) in the diffusive regime the analytical predictions of the Dorokhov-Mello-Pereyra-
Kumar theory are in good agreement with our ab initio calculations.
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Silicon nanowires (SiNWs) are strong candidates for
future nanoelectronic and sensor applications [1-3]. In
most of the demonstrated devices the SINWs are either p
or n doped during the fabrication process. Very thin SINWs
with diameters below 5 nm have been synthesized by
several groups [4-6], and due to the small cross section,
scattering by dopants is likely to be very important.
Moreover, due to reduced acoustic phonon scattering in
quasi-one-dimensional systems, long coherence lengths
might be possible even at room temperature [7], thus
emphasizing the importance of defect scattering. At the
same time sample-to-sample variations become a crucial
issue: when the device length and the mean free path are
comparable, and shorter than the coherence length, varia-
tions of the positions of the individual dopant atoms can
affect the conductance of the wire significantly.

The mathematical theory of the conductance of disor-
dered quasi-one-dimensional systems has reached a high
level of understanding in the diffusive as well as the
localization regime [8,9]. A standard way to model disor-
der, analytically as well as numerically, is to introduce
random noise (Anderson disorder), which in a tight-
binding description is included through randomly varying
on-site energies. It does not seem obvious that a random
disorder is an adequate description of real physical disor-
der, such as dopants or vacancies, nor is there any obvious
connection between a physical defect density and the
amplitude of the random disorder. In particular, if only a
few dopants are present in a wire, the system is in the
crossover region from ballistic to diffusive transport and
the discrete and local nature of the impurities must be
modeled adequately.

Several recent theoretical works considered dopants in
SiNWs using density-functional theory (DFT) [10-12],
mainly focusing on the structural and energetic properties
of different radial dopant positions. As an important first
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step towards the modeling of physical SiNWs, Fernandez-
Serra et al. [13] considered the scattering properties of
single phosphorous (P) dopants in thin nanowires.

In this Letter we complete the analysis by calculating the
conductance of long nanowires with a random distribution
of dopants [either P or boron (B)] along the wire. We
calculate the sample-averaged conductance (G), elastic
mean free path (MFP) [,, localization length &, and the
sample-to-sample fluctuations characterized by the sample
standard deviation std(G). We show that all these quantities
can be understood and accurately estimated from the scat-
tering properties of the single dopants, implying that rela-
tively simple calculations are sufficient in practical device
modeling. The sample-to-sample fluctuations at a given
energy and dopant type vary with L/, in a universal
way independently on the dopant concentration, and in
the diffusive regime for wire length [, <L < &, we ob-
serve good agreement with analytical predictions of the
Dorokhov-Mello-Pereyra-Kumar (DMPK) theory [14].

Method.—The length and energy dependent conduc-
tance of each sample is found using the Landauer formal-
ism together with a standard recursive Green’s function
(GF) approach where the full scattering region containing
the dopant atoms is constructed by repeatedly adding small
unit cells [15]. The unit cells are constructed using first-
principles local orbital DFT calculations [16,17]. We em-
phasize that our combined DFT and GF approach to cal-
culate the conductance is fully ab initio within the low bias
coherent transport regime.

Single dopants.—Figure 1 shows the transmission vs
energy through infinite hydrogen passivated wires contain-
ing only a single dopant atom placed at five different
substitutional positions (1-5) indicated in the inset. The
left part shows the transmission for B dopants at energies in
the valence band while the right part shows results for P
dopants at energies in the conduction band. We notice that
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FIG. 1 (color online). Transmissions through wires with a
single B (left) or P (right) dopant atom placed at the different
radial positions shown in the inset. Left: energies relative to the
valence band maximum, E,; right: energies relative to the
conduction band minimum, E.. The band gap is 2.84 eV.

there are special resonant energies where the conductance
abruptly drops, similar to those observed in Ref. [13], due
to enhanced local densities of states at the dopant atoms
associated with quasibound states. As also pointed out in
Ref. [13], there are significant differences in the scattering
properties between dopants located in the bulk of the wire
and those situated at the surface. Interestingly, there are
qualitative differences between P and B dopants. While B
in position 1 (middle of wire) is a weak scatterer in the
valence band, P at the same position is the strongest
scatterer in the conduction band. For thicker wires the
majority of the dopants are likely to be bulklike and our
calculations thus predict P-doped wires to have smaller
mobilities than B-doped wires with the same dopant con-
centration, in agreement with experimental results [18].

Long wires.—While the scattering properties of the
single dopants are interesting in their own right, real nano-
wires contain several dopants with a certain distribution
along the wire direction as well as in the radial direction.
Because of interference effects between successive scat-
tering events, it is not obvious if the single-dopant results
carry over to the long wire case. In the rest of this Letter we
investigate the conductance of long wires. In particular we
examine to what extent the long wire properties, such as
mean conductance {G) and variations std(G), can be de-
termined from the scattering properties of the single
dopants.

A single recursive GF calculation yields the conductance
of a SINW with a given dopant distribution, length, and
energy. At each energy we do this calculation for 300
different realizations of the dopant positions, and we repeat
these calculations for a range of wire lengths, 10 nm <
L <200 nm, all with the same dopant density. The dopants
are distributed randomly along the wire direction [19] as
well as radially. The sample-averaged resistance increases
linearly for wire lengths shorter than the localization
length, as shown in the left inset in Fig. 2. The initial
linearly increasing resistance defines the energy dependent
MFP, [,(E), through the relation R(L,E) = R.(E) +

T T T T T T T

ol 10 5 4
- 8
st 9 A s |
£ 6 .4 =
7r v _ q
= -~ 4f o OOO 10
o~ 6 £ 2 0° -15 o
S 0 0 Len 1tgo(nm) 200,/
& 5t 0 100 200 9
= Length (nm)
4
O
~

-0.2 -0.1 0.1 0.2
E—EV (eV) E—Ec (eV)

FIG. 2 (color online). Energy dependent average conductance
calculated at L = 10 nm (circles) and L = 100 nm (dots) with
the GF method. Solid lines follow from Eq. (1). Left inset:
Resistance vs wire length at energies £ — E, = 0.01, 0.06, and
0.16 eV (indicated with arrows in the main frame; same behavior
is seen in the entire energy range). Solid lines are obtained using
Eq. (1). Right inset: {(InT) vs length at the same energies, where
T = G/(2¢*/h) is the transmission. Solid lines are linear fits in
the interval 150 nm < L <200 nm from which the localization
length is determined.

R.(E)L/1,(E) for wire lengths L < &, where R.(E) =
1/Go(E) = h/(2¢>N) is the contact resistance of a pristine
wire with N conducting channels. It has recently been
shown that this definition of the MFP agrees with values
found using the Kubo formula and Fermi’s golden rule
[15,20]. In the linear resistance region, we suggest that on
average, the scattering resistances from the dopants add
classically according to Ohm’s law; i.e., the mean resist-
ance of a wire of length L < ¢ and average dopant-dopant
separation d is given by

(R(L, E)) = R.(E) + (R(E)L/d. (D

(R,(E)) is the average scattering resistance of the different
dopant positions which can be estimated from the single-
dopant conductances, G(E), in Fig. 1 as (R,(E)) =
1/{G(E)) — 1/Gy(E). From Eq. (1) we get an estimate of
the MFP, I, = R.d/(R;).

Figure 2 shows the sample-averaged energy dependent
conductance at wire lengths L = 10 nm (circles) and L =
100 nm (dots) for B- and P-doped wires with an average
dopant-dopant separation d = 10 nm (corresponding to a
bulk doping density of n = 10" ¢m™3) and uniform radial
dopant distribution. The dashed line shows the conduc-
tance of the pristine wire, while the solid curves are esti-
mated conductances obtained from the single-dopant
transmissions shown in Fig. 1 using Eq. (1). It is evident
that the average conductances are well reproduced by the
single-dopant results.

We emphasize that Eq. (1) is only valid in the quasibal-
listice (L < [,) and diffusive (I, < L < ¢) regimes. In the
localization regime (L > ¢), the resistance increases ex-
ponentially, R(L) ~ exp(L/&). We have calculated the lo-
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calization length from the (InT) vs L curves shown in the
right inset of Fig. 2 as ¢ = —1/slope, and the slope is
determined from a linear fit in the interval 150 nm < L <
200 nm. In Table I we show the resulting MFPs (/,) and
localization lengths (£) at four different energies. These are
compared with the estimates [, = R.d/(R,) based on the
single-dopant transmissions, and &' = [,(N + 1)/2 (this
relation follows from random matrix theory [9]). It is
evident that both the MFP and the localization length can
be estimated fairly accurately from the single-dopant trans-
missions with a maximum error of 24%. We also note that
the ratio &/, agrees with the prediction (N + 1)/2 with a
maximum deviation of 30%.

Sample  fluctuations.—An interesting question is
whether or not the sample-to-sample variations can also
be understood in terms of the single-dopant transmissions.
In the diffusive regime we expect the variations to be close
to the universal conductance fluctuation (UCF) value,
0.73¢?/h  for quasi-one-dimensional systems [21].
Figure 3 shows the standard deviation, std(G), plotted
against normalized length, L/, for B (a)—(c) and P (d)—
(f) doped wires. The conductance fluctuations correspond-
ing to different concentrations lie close to each other, and
we therefore conclude that at a specific energy and type of
dopant, the sample variations are independent of dopant
concentration but only depend on the normalized length.
This is in accordance with the theory of UCF [21] and
single parameter scaling theory [22] which predict that the
sample fluctuations are independent on the disorder
strength. For modeling purposes this is a very convenient
result because one can limit the simulations to only one
dopant concentration.

In the diffusive limit, L/I, > 1, analytical results are
known for std[G(L)]. For quasi-one-dimensional systems
with many conducting channels and weak random disor-
der, the DMPK equation [14] predicts a weak length de-
pendence, std[G(L)] = /8/15 — 64/315L/&e*/h, [23],
shown in Fig. 3 (solid lines). As the length of the wire
decreases, the sample fluctuations increase, and in most
cases a maximum in std(G) is reached around L/I, = 0.5.
In the limit L — O there are no dopants in the wire and the
sample-to-sample variations vanish.

We next address this maximum value and the general
behavior of the sample-to-sample fluctuations vs L using
the single-dopant conductance results. Figure 4(a) shows

TABLE I. MFP and localization lengths obtained from sample
averaging (I, and &), and estimated values, I/, and &', obtained
from the single-dopant transmissions. N is the number of con-
ducting channels.

E—-E.(eV) N [,(om) [(mm) ¢ @m) ¢ (am)
0.01 1 10 8 7 8
0.06 2 37 46 59 56
0.16 4 49 47 133 123
0.26 6 37 37 164 130

the maximum values of std(G) vs energy for P-doped wires
with a uniform radial distribution (squares) and pure sur-
face doping (circles). In the former case all the dopant
positions 1-5 are equally probable [24] while in the latter
the dopants can only be in position 4 or 5; cf. inset in Fig. 1.
The lower solid line in Fig. 4(a) shows the standard devia-
tion s = std({Gy, Gy, G4, Gs}), where G, is the conduc-
tance of a pristine wire while G4 and G5 are the single-
dopant conductances with the P dopant placed at position 4
and 5. This sequence represents a situation where there is
50% chance for a pristine wire, and 50% chance for a wire
with a single dopant either at position 4 or 5. The upper
solid line in Fig. 4(a) shows similar values for the uniform
dopant distribution. When s is larger than the UCF value
(the horizontal dashed line), the maximum std(G) clearly
follows the trends in s. When s is smaller than the UCF
value, the maximum std(G) lies close to the UCF level.

We conclude that the shape of the std(G) vs L/I, curves
in Fig. 3 can be qualitatively predicted from the single-
dopant transmissions: When s, indicated with small arrows
in Fig. 3, is smaller than the UCF value (0.73¢%/h), we
expect std(G) to approach the analytical line from below.
The B-doped wires in Fig. 3(b) show such a behavior.
Otherwise, if s is larger than the UCF value, std(G) will
reach a maximum value close to s and approach the
analytical line from above.
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FIG. 3 (color online). Sample standard deviation, std(G) vs
normalized length L/I, with average dopant-dopant separation
d = 19 nm (dots), d = 10 nm (squares) and d = 5 nm (circles).
(a)—(c) correspond to the energies E — E, = —0.12, —0.20,
—0.30 eV in the valence band for B-doped wires, (d)—(f) cor-
respond to the energies £ — E. = 0.06, 0.16, 0.26 eV in the
conduction band for P-doped wires. The solid lines are analytical
solutions to the DMPK equation of Ref. [23] which equals the
UCF value 0.73¢?/h at L = 0. The small arrows mark the
maximum std(G), s, estimated from the single-dopant trans-
missions.
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FIG. 4 (color online). Maximal standard deviation (a) for P-
doped wires (d = 10 nm), with a homogeneous radial distribu-
tion (squares) and a pure surface doped wire (circles). The solid
lines show the standard deviation, s, among the single-dopant
transmissions and the pristine wire, and the dashed line marks
the UCF value 0.73e2/h. Panel (b) shows the MFP vs energy for
the two radial distributions (circles and squares). The lines
represent values obtained from the single-dopant transmissions.

Mean free path.—Figure 4(a) shows that the sample
fluctuations are significantly reduced in the surface doped
wires due to the weaker and more uniform scattering
properties of the surface positions. The MFP also depends
significantly on the radial distribution as seen in Fig. 4(b),
showing the MFP for P-doped wires with a uniform
(circles) and pure surface (squares) distribution of dopants.
The solid lines are estimated from the single-dopant trans-
missions using Eq. (1) once again showing that the mean
values of the conductance can be accurately estimated
from the single dopants. A very significant increase in the
MFP is observed for the surface doped wires as compared
to the uniform distribution. This might suggest that in-
creased device performance could be achieved if the P
dopants are located close to the surface, which indeed are
the energetically most favorable positions in the wires
studied here and also found in Refs. [10,13]. There are,
however, potential problems with dopants close to the
surface, as they can be passivated by addition of an extra
hydrogen atom [12,13].

In conclusion, we have considered the conductance
properties in B- and P-doped SiNWs. We find that the
sample-averaged conductance and the sample-to-sample
fluctuations as well as the mean free path and localization
length can be predicted quantitatively from the scattering
properties of the single dopants. Time consuming sample
averaging can thus be avoided, with greatly simplifying
modeling of the statistical conductance properties. These
findings may have a high impact on first-principles model-
ing of electron transport in nanowires.
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