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Spin-induced angular momentum switching
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When light is transmitted through optically inhomogeneous and anisotropic media the spatial distribution of
light can be modified according to its input polarization state. A complete analysis of this process, based on
the paraxial approximation, is presented, and we show how it can be exploited to produce a spin-controlled
change in the orbital angular momentum of light beams propagating in patterned space-variant optical axis
phase plates. We also unveil a new effect: the development of a strong modulation in the angular momentum
change upon variation of the optical path through the phase plates. © 2007 Optical Society of America
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In the past few years considerable interest has been
attracted to the generation, manipulation, and char-
acterization of helical beams. These beams can trans-
port angular momentum (spin and orbital) along
their propagation direction,' producing mechanical
effects (optical torques) that have been exploited for
trapping atoms, molecules, and macroscopic
particles.z_5 Other applications include the detection
of rotational frequency shifts,®’ geometric phases,g_10
and spatial mode encoding,*'* demonstrated both at
the classical- and single-photon level. For instance,
the possibility of simultaneously using the spin (po-
larization) and orbital angular momenta of light is
becoming increasingly appealing for small-scale
quantum information tasks.!®

The aim of this Letter is to address the problem of
how to exploit the spin degree of freedom of vectorial
helical beams to induce changes in their orbital an-
gular momentum. Prior to coming to the matter, we
mention previous important contributions connected
with this process. Generation of nonscalar helical
waves, based on spatially nonuniform polarization
transformations, with subwavelength diffraction
gratings in the mid-infrared has been reported.m’17 A
proof-of-principle demonstration of spin-controlled
changes in the orbital angular momentum of circu-
larly polarized Gaussian beams in the visible do-
main, using patterned nematic liquid crystals, has
been experimentally achieved.'® Also, a method to
control the transfer of spin with an externally ap-
plied dc electric field in an optically active medium
has been proposed.19 Our approach, based on the vec-
torial paraxial propagation of helical beams in space-
variant optical axis media, enables us to describe in a
remarkably simple way not only the mechanism of
spin-to-orbital angular momentum switching, but
also to reveal a new effect: the development of a
strong modulation in the spin and orbital angular
momentum changes when varying the traversed op-
tical path. Possible wuses for polarization-
entanglement transfer onto orbital angular
momentum-entanglement in two-photon states are
also discussed.

Propagation of monochromatic light (of frequency
) in anisotropic linear media is described, starting
from Maxwell’s equations, by20 VZE—V(V-E)+k%é-E
=0. Here, ky=w/c, &, is the relative dielectric tensor
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(at frequency w), and E is the complex amplitude of
the electric field. We focus our analysis on uniaxial
media in which the optical axis is confined in a plane
orthogonal to the propagation direction of the inci-
dent light (along the z axis), so that the walk-off ef-
fect between the ordinary and extraordinary compo-
nents of the field is absent. Absorption is neglected.
Let us first regard the medium as homogeneous. In
the principal axes reference frame the relative dielec-
tric tensor is represented by a diagonal matrix &,
=diag(nf,nf,n§), with n, and n, being the ordinary
and extraordinary refractive indices, respectively. If
the optical axis is rotated an angle « about the z axis
with respect to a fixed reference frame [see Fig. 1(a)l,
the rotated dielectric tensor £(«) in the xyz frame is
connected with &, by a similarity transformation

é(a):l%z(a)épﬁz(—a), where Rz(a) is the usual 3% 3
rotation matrix about the z axis.?! To solve the propa-
gation equation in the fixed frame, we express
the field in terms of the standard two-dimensional
Fourier integral E(r,z)=/d?qexp(iq-r)&(q,z2),
where r=xu,+yu, and q=k,u,+ku, are the
transverse position and wave-vector components.
We look for plane-wave solutions &(q,z)
=£,(q)exp(ik,.2) + £,(q)exp(ik,z), with &, =[kon’
-¢*1"? and k= [k%nf — (ky cos a+k, sin a)’n?/n’
— (k, sin a - k, cos @)*]"2. The ordinary and extraordi-
nary amplitudes £,, can be explicitly obtained from
the boundary condition of the field, £)(q), at z=0. By
resorting to the paraxial approximation, which
amounts to retaining only the low spatial transverse
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Fig. 1. (Color online) (a) Axes configuration for homoge-
neous uniaxial media. (b) Azimuthally inhomogeneous
uniaxial phase plate. Segments represent the local orienta-
tion of the optical axis. Light propagation is along the z
direction.
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frequencies (|q| < k), the relevant contribution of
the angular spectrum of the field is found to be given

by its transverse part & (q,z)= f]a(q,z)ém(q),
where
. exp(ik,.z) + exp(iky,z)
U.q,2) = 1
2
exp(lkezz) - eXP(lkozZ)
+ 5 R,(a)o, R (= a),

R.(a) and &, denoting the 2X2 rotation and the
Pauli matrices about the z axis, respectively.

Let us now examine the more general situation in
which the orientation « of the optical axis in the xy
plane varies with position [remaining uniform along
the z direction; see Fig. 1(b)]. This is of relevance for
patterned nematic liquid-crystal phase plates.18 Let
d denote their thickness. To obtain the output field in
this situation we transform back £, to real-space

variables and integrate U, over the transverse spa-
tial frequencies. This is an excellent approximation
as long as « varies smoothly on the wavelength scale
of the input beam. The transverse field at the output
face of the phase plates is

2

F,+F, |,
EL(r> ¢ad) = l

pdpde [

2mid

F,-F,
+ |: ]R (Cl’)U' R ( a) LO(p;@)y

2
(1)

where F,=explikon,d+iS3,|r—-p|?] is the ordinary
Fresnel kernel with |r—p|?=r2+p?-2rp cos(¢—-¢), B,
=kon,/2d, and the input transverse field of the inci-
dent beam is E | (. The extraordinary Fresnel kernel
reads

F, =explikon.d +if,|r - p|> + iAB,[r*cos 2(a — ¢)
¢ - QD)]},

with B,=ko(n?+n?)/4n,d and AB,=ky(n2-n?)/4n.d.
Equation (1) provides our first main result. It shows
that the action of any uniaxial phase element with
space-constant or space-variant optical axis oriented
orthogonally to the propagation of light produces two
distinct field contributions: (1) a term that preserves
the polarization state of the input field (the one pro-

+ p2cos 2(a — @) — 2rp cos(2a —

portional to the identity matrix 1), and (2) a term that
rotates the polarization state of the input field. The
spatial distribution of the input field is modified in
both cases, although in a different fashion. The first
term is always present and dominates over the sec-
ond term. Notice that Eq. (1) reduces to the well-
known isotropic Fresnel integral when ny=n, (the
second term vanishes). The two contributions can
however be separated by using a suitable combina-
tion of polarizers and a Mach—Zender interferometer.
For input circular polarization the two output contri-
butions have (opposite) circular polarization and no
interferometers are required; one could employ the
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recently proposed chiral liquid microcells that enable
the splitting of circularly polarized beams.?? When
the birefringence is not too large (|AB,| < f,), it is
possible to obtain an accurate approximation for the
extraordinary Fresnel kernel F,=explikon,d+if,|r
-p|?]. The neglected part is responsible for a small
astigmatism in the extraordinary part of the field
profile. We use this approximation henceforth.

Consider now a normalized input transverse field
of the form E ((p,¢)=[au,+bu LG, ,(p)exp(ile),
with degree of polarization o=i(ab"—a’b). Here, o
=+1 for left- and right-hand circularly polarized
light, respectively, whereas o=0 for linearly polar-
ized light. The functlons LGZ »(p) denote the
Laguerre-Gaussian modes,"'* indices standing for
topological charge [=0,+1,+2,..., and nonaxial ra-
dial node number p=0,1,2,.... The properties of
these helical beams expressed in a cylindrically po-
larization basis under strong focusing conditions
have been recently studied.?® Within the paraxial ap-
proximation, the total optical angular momentum
(integrated over the transverse plane) along the
propagation dlrectlon of the input beam can be de-
composed as' J,=L_+S,, where L,=l/w and S,=0/w
correspond to the orbltal and spin angular momenta
per unit energy.

We wish to determine whether, according to the
spin state of the above input beam, the total angular
momentum ¢/, is conserved or changed upon propaga-
tion through space-variant optical axis phase plates.
In the general case where the transverse electric
field, E, =v,u,+v,u,, consists of two distinct spatial
dlstrlbutmns (position-dependent polarization), v,
and v,, the output orbital and spin angular momenta
can be cast as

2w
Z_ZwJ_nyf rdrd¢!vJ ) Jo"qS] (2)

i - 2m 2 (9 * &
S, = %fo fo r drdd);[vxvy -v,0,]. 3)

Assume that the orientation of the optical axis in
the phase plates is described by the azimuthal
relation’® a(e)=qe+ ap, with constants ¢ and «.
Only if ¢ is an integer or a semi-integer the optical
axis does not possess discontinuity lines in the phase
plates, but only a defect in their center. For input
beams corresponding to a fundamental Gaussian
mode ([=p=0), the field at the output face of the
plates will generally exhibit an abrupt steepening in
the vicinity of the origin.

Remarkably, when v, and v, represent the field
components in Eq. (1), one can exactly integrate Eqs.
(2) and (3) for all Laguerre—Gaussian modes. They
yield a strikingly simple formula for the total angular
momentum change (per unit energy) AJ,=AL,+AS,,
where the changes in the orbital and spin parts are
given by

oq 28,8
AL, = : 1- ﬂcos(kdno ne|d) > (4)
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AS, =— 2 2PoPe k d
=——|1-——= - . 5
z w Bg BZCOS( 0|n0 ne| ) ( )

Notice that none of the angular momentum parts de-
pend on the specific input Laguerre—Gaussian modes
nor on the beam width. If g=1, then AJ,=0, irrespec-
tive of the input spin. This fact does not preclude that
the orbital and spin L, and S, exchange their magni-
tudes (equal and of opposite sign). The experiment
reported in Ref. 18 referred to the case of fundamen-
tal Gaussian modes as input beams and plates with
g=1. There, it was confirmed that the initial total an-
gular momentum was conserved, in complete agree-
ment with Eqs. (4) and (5). This fact is expected in
view of the full cylindrical symmetry of both the light
profile and the plates [see Fig. 1(b)], so that the total
angular momentum carried by the incident beam
must be a conserved quantity via Noether’s theorem.
Interestingly enough, one sees another effect from
Egs. (4) and (5), namely, that the orbital, spin, and to-
tal angular momentum change show the develop-
ment of a very strong (nearly 100%) modulation
when varying the thickness d of the phase plates. By
slightly changing the incidence angle of the input
beam on the plates (or by tilting the plates, in a simi-
lar fashion as the well-known Maker fringes are de-
tected when measuring the efficiency in second-
harmonic generation), this effect should be
observable as a net transfer of angular momentum to
absorbing par‘cicles1 trapped on the beam axis in an
optical tweezer.>® An off-axis geome‘cry4 would also
reveal both spin and orbital components. For fixed
g # 1, the maximum change of angular momentum
occurs when the input beams are circularly polarized
(o0==%1) and the anisotropic plate thicknesses are d
=(2m+1)\/2|n,-n,|, m=0,1,2, ..., that is, of the or-
der of the beam wavelength \. Moreover, if the input
beams are linearly polarized (o=0), AJ,=0 holds,
and, in particular, the orbital part (for Laguerre—
Gaussian modes with topological charge [) is thus
conserved (L,=[/w).

In summary, from the above results it is manifest
that a finite exchange of angular momentum between
the input beam and the space-variant optical axis
phase plates will generally take place. However, this
transfer will depend both on the optical spin and the
g-parameter of the plate, but not on the particular
spatial light mode. In this respect, it would also be
quite interesting to identify other physical scenarios,
complementary to the one described here, in which
the change of the distinct optical angular momentum
parts could solely be mediated by the input orbital
angular momentum but not on the spin. The com-
bined action of such two complementary systems
would enable one to perform full-fledged controlled
switching between the two angular momenta degrees
of freedom, of great relevance for quantum informa-
tion processing based on linear optical schemes at the
single-photon level.?* For instance, it should then be
possible to transfer two-photon entanglement,25 ei-
ther in spin or in orbital angular momentum, onto
the other degree of freedom. This is an important op-

eration for the so-called quantum repeaters, where
the interface between a quantum communication
channel and a quantum memory will probably re-
quire manipulation of entanglement involving sev-
eral degrees of freedom of light.
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